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[1] Why do ocean waves break? Understanding this
important and obvious property of the ocean surface has
been elusive for decades. This paper investigates causes which
lead deep-water two-dimensional initially monochromatic
waves to break. Individual wave steepness is found to be
the single parameter which determines whether the wave
will break immediately, never break or take a finite number
of wave lengths to break. The breaking will occur once the
wave reaches the Stokes limiting steepness. The breaking
probability and the location of breaking onset can be
predicted, properties of incipient breakers measured.
Potential applications to field conditions are discussed.
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1. Introduction

[2] One of the most elusive questions in fluid mechanics
surrounds the mechanism responsible for the breaking of
water waves. Wave breaking is ubiquitous on the ocean
surface and is manifested by the appearance of sporadic
white-caps. A full understanding of such wave breaking and
an ability to predict its onset has been hindered by the
strong nonlinearity of the process, together with its irregular
and intermittent nature.
[3] Of the processes responsible for the evolution of

wind-generated waves, breaking dissipation is by far the
least understood. As will be described below, even basic
definitions of breaking rates and incipient breaking, used in
the literature, are ambiguous and often not compatible.
[4] The importance of the breaking process, however, is

difficult to overestimate. The sporadic and violent breaking
of waves results in major energy loss to the wave due to
work done in injecting turbulence and bubbles into the
upper-ocean layer. Hence, in addition to its direct impact on
the wave field, breaking plays a significant role in deter-
mining the fluxes of energy, momentum and gases between
the atmosphere and ocean. Therefore, breaking is also
important in processes such as global weather and climate
change.
[5] A detailed understanding of the breaking process has

been delayed by both theoretical and experimental chal-
lenges. Intuitively, it is clear that wave steepness plays a

role in wave breaking – steep waves are more prone to
break. But steep waves also exhibit enhanced nonlinearity
and therefore cannot be described by traditional perturbation
theories where investigation of nonlinear wave properties
starts from the assumption that the nonlinearity is small.
[6] Experimental investigations of breaking are very

difficult due to the erratic nature of the breaking event.
Although breaking waves are common on the wave surface,
placing instruments in the appropriate location to investigate
the breaker poses a number of logistical issues.
[7] In the present study, we initially investigate the onset

of breaking using a fully nonlinear numerical model. Based
on the insights provided by this model, we then investigate
the physical properties of the wave which determine whether
breaking will occur. These experimental investigations are
performed in a laboratory wave tank, where initial condi-
tions can be tightly controlled. This insight then enables us
to suggest a parameterisation of wave breaking probability
in terms of its initial monochromatic steepness (IMS) and to
test our theories for open ocean data.
[8] Over the last 30 years, theoretical [e.g., Longuet-

Higgins and Cokelet, 1978], experimental [e.g., Melville,
1982] and numerical [e.g., Dold and Peregrine, 1986]
approaches have been applied to investigate instability
mechanisms in nonlinear wave fields, which potentially
lead to wave breaking. Although these studies have
advanced the theoretical understanding of wave instabilities,
there has been a clear lack of progress in our ability to
predict breaking rates as a function of the physical charac-
teristics of real wave fields and to describe these mecha-
nisms in a form suitable for application to the continuous
wave spectrum found in the field.
[9] The investigation of the properties of the incipient

breaking wave is another important outcome of the present
paper. The form of the incipient breaker has been predicted
by analytical theories of wave breaking and is the input for
practical, (i.e., engineering) applications. It is important to
define, however, what is meant by an incipient breaker.
Traditionally, the initial phases of a breaker-in-progress are
treated as incipient breaking [e.g., Caulliez, 2002; Liu and
Babanin, 2004]. Here, we suggest that the incipient breaker
is defined as a wave which has already reached its limiting-
stability, but has not yet started the irreversible breaking
progress. This definition allows the identification of incip-
ient breakers and, once location of the breaking onset can be
predicted, measurement of the physical properties of such
waves.

2. Theoretical Model and Simulations of the
Onset of Breaking

[10] The numerical model employed to obtain the fully
nonlinear solution of the Euler equation is the two-dimensional
Chalikov-Sheinin Model (CSM) [Chalikov and Sheinin,
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2005]. The CSM numerical approach is based on a nonsta-
tionary conformal mapping. This allows the principal equa-
tions of potential flow, with a free surface, to be written in a
surface-following coordinate system. The Laplace equation
retains its form, and the boundary of the flow domain, (i.e.,
the free surface) is the coordinate surface in the new
coordinate system. Accordingly, the velocity potential over
the entire domain receives a standard representation based
on its Fourier expansion on the free surface. As a result, the
hydrodynamic system (without any simplifications) is
represented by two evolutionary equations that can provide
numerical solutions, stable for many hundreds of wave
periods, with very high precision [Chalikov and Sheinin,
2005]. Most important for this study is the model’s ability to
describe the evolution of very steep waves and to reproduce
known strongly nonlinear features of real waves, such as
wave asymmetry with respect to the vertical, which has
been shown to be an inherent characteristic of wave
breaking [Caulliez, 2002; Young and Babanin, 2006]. In
the CSM, the wave model is coupled with an atmospheric
boundary layer model. Thus, it is possible to introduce wind
forcing of the waves, which tends to accelerate the breaking
process.
[11] Two of the most commonly reported nonlinear

features of a breaking wave are its asymmetry (i.e., the
front face of the wave is steeper than the rear face) and its
skewness (i.e., the crest elevation above the mean water
level is greater than the trough elevation below the mean
water level). Geometric definitions of skewness, Sk and
asymmetry, As are shown in Figure 1.
[12] Following the definitions in Figure 1, the skewness

and asymmetry can be defined as:

Sk ¼ a1=a2 � 1; ð1Þ

As ¼ b1=b2 � 1: ð2Þ

Hence, positive skewness represents a wave with a crest
height greater than the trough depth and negative asym-
metry represents a wave tilted forward in the direction of
propagation.
[13] The incipient breaker in Figure 1 (solid line, Sk =

1.15, As = �0.51) was determined from the CSM by
commencing the simulation with a sinusoidal (linear) wave
(dashed line, Sk = 0, As = 0) with initial monochromatic
steepness IMS = ak = 0.25. Here, a is the wave amplitude
and k is wavenumber. Such a value of steepness is well
above the limits of perturbation theory. The model is then
allowed to evolve from this initial condition. It has been
previously shown [Chalikov and Sheinin, 2005] that such a
steep sinusoidal wave immediately transforms into a Stokes
wave (i.e., dash-dot wave of Figure 1, Sk = 0.39, As = 0)
whose further evolution is controlled by the Benjamin-Feir
instability mechanism (BFM) [Chalikov, 2006]. The BFM
leads to modulation of the initially monochromatic wave
train, and as a result some waves can become very large at
the expense of others and ultimately break.
[14] It should be pointed out that the BFM has been

extensively applied to the study of the evolution of nonlinear
wave groups which can lead to the breaking of a wave
within the group [Longuet-Higgins and Cokelet, 1978;
Melville, 1982; Dold and Peregrine, 1986]. The significant
conceptual difference between this study and other applica-
tions of the BFM is that we do not rely on the existence of
wave groups (side bands) in the initial wave field. Rather,
the initial conditions consist of steep monochromatic waves
and hence allow a relationship between the IMS and the
onset of breaking to be developed. Side bands appear
naturally and do evolve in the way described in the
literature, but the cause of the side bands and therefore
the key to the wave breaking rests with the IMS.
[15] In the case shown in Figure 1, IMS = 0.25, however, at

the point of the incipient breaker shown in Figure 1 the BFM
has resulted in an increase in the wave steepness to HK/2 =
0.335. Note that due to the nonlinear wave profile, definition
of the wave steepness as ak becomes confusing (a is not now
clearly defined) and hence the value Hk/2 has been used,
where H is the wave height defined as the vertical distance
between crest and trough (H = a1 + a2).
[16] Figure 2 shows the evolution of the steepness,

skewness and asymmetry for an individual wave. The wave
is initially sinusoidal with IMS = 0.26. Computations are
shown for two wind forcing conditions U/C = 2.5 (moderate
forcing) and U/C = 5.0 (strong forcing), where U is the wind
speed and C is the phase speed of the wave with wave-
number k. Simulations cease when the water surface
becomes vertical at any point (simulating breaking). In the
case of the lighter wind, it takes 32 wave lengths before the
wave breaks, whilst for the stronger wind this is reduced to
9 wave lengths.
[17] The most obvious features of the simulation are the

oscillations in the values of steepness, asymmetry and
skewness. These values oscillate at a frequency half that
of the underlying wave frequency which is consistent with
theoretical expectations for BFM instability [Longuet-
Higgins and Cokelet, 1978]. The simulation begins with
both skewness and asymmetry zero (sinusoidal wave).
These values oscillate between their maximum and mini-
mum values but remain bounded, their maximum and

Figure 1. Three waves of different non-linearity. In all
cases the waves propagate from left to right, as shown by
the arrow. All three waves have the same height and wave
length.
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minimum values do not increase in magnitude. In contrast,
the oscillations in the steepness progressively increase in
amplitude until a point is reached where breaking takes
place. It is evident from Figure 2 that it is the steepness
which is the limiting parameter for breaking to occur.
[18] There is a clear phase relationship between the three

quantities. The steepness and skewness are in phase, whereas
the asymmetry is 90� out of phase. The wave crest increases
in height, resulting in an increase in the steepness. At the
point of maximal steepness and skewness, however, the
asymmetry is approximately zero (i.e., wave is not tilted
forward). As the peakedness decreases the asymmetry
becomes negative (i.e., wave tilts forward).
[19] Further simulations demonstrated that IMS plays a

critical role in determining whether or not breaking will
occur. The numerical modelling showed that if IMS > 0.3
the wave will break immediately, within one wave length. If
IMS < 0.1, however, the wave with no superimposed wind
forcing will never break, even though it will exhibit the
oscillations of steepness, asymmetry and skewness shown
in Figure 2. Between these two limits, the dimensionless
distance to breaking decreases with increasing IMS.
[20] The wind plays a dual role in this process. Firstly, it

accelerates the growth of individual wave steepness. In the
simulations shown in Figure 2, doubling the wind speed
resulted in the wave growing to its critical height almost
four times faster. This result is consistent with known wave
growth measurements where the growth increment was
shown to be a quadratic function of the wind [e.g., Donelan
et al., 2006]. Secondly, the wind can push the wave over
and thus reduce the critical steepness, but this reduction was
found to be small and only relevant at very strong wind
forcing (U/C > 10, not shown in Figure 2).
[21] Based on the numerical simulations, it can be

postulated that there is a critical steepness (IMS) above
which breaking will always occur. Even if the wave is
initially sinusoidal and linear, the nonlinear evolution of the
wave will ultimately lead to breaking. The distance to
breaking will be a function of this initial steepness. It is

these basic features which will be investigated experimen-
tally in the following sections.

3. Experimental Investigation

[22] The experimental investigations were conducted at the
Air-sea interaction tank at RSMAS,University ofMiami (http://
peas.rsmas.miami.edu/groups/asist). Near-monochromatic
deep-water two-dimensional wave trains were generated
with the wave paddle. With a tank length of 13.24 m,
surface elevations were recorded at 4.55 m, 10.53 m, 11.59 m
and 12.56m from the paddle. Gentle-slope beach was used
to dissipate waves in the end of the tank. Surface of the
slope was designed to split wave orbital velocities into
multiple turbulent jets to increase viscous dissipation.
Energy of reflected wave was found to be about 5–10%
depending on initial wavelength. For each record, the IMS
was varied in such a way that the waves would consistently
break just after one of the wave probes. In this way, the
dimensional distance to breaking, wave train properties
immediately prior to breaking and detailed properties of the
incipient breaker could be determined. The fact that breaking
could be predicted and controlled by manipulating only IMS
is a powerful corroboration of the numerical model.
[23] It should be pointed out that qualitative agreement

between numerical model and experiment is expected,
rather than an exact quantitative confirmation. Although
sophisticated, the model is still a simplification of the real
case and disregards contaminating features such as the
natural presence of additional modes within the tank.
Importantly, the two-dimensional model predicts an imme-
diate breaking onset at IMS > 0.3 whereas it has been
previously shown that at ak > 0.3 waves can exist, but a
three-dimensional instability will dominate BFM [Melville,
1982].
[24] Figure 3 shows a wave record with an initial mono-

chromatic frequency, IMF = 1.8 Hz and an IMS = 0.30, with
no wind forcing. It should be noted that there is a concep-
tual change in the frame of reference compared to the

Figure 2. CSM computations of (first plot) steepness, (second plot) skewness and (third plot) asymmetry for a wave with
IMS = 0.26. Two wind speeds are shown: top three plots, U/C = 2.5; bottom three plots, U/C = 5.0.
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numerical model results. In the case of the model, a single
wave was followed as it approached the point of breaking.
Here, observations are made at a single point as a succes-
sion of waves passes. One can approximately move from
the fixed frame of reference in Figure 3 to the moving frame
by considering the waves shown propagating from right to
left, as indicated by the arrow in Figure 3.
[25] The top plot in Figure 3 shows the measured water

surface elevation (h) as a function of time (horizontal axis).
Interpreting this as a wave moving from right to left shows
that, within each wave group, the maximum value of the
water surface elevation gradually decreases and then
suddenly increases until a point, where breaking occurs.
This point of breaking was located immediately after the
probe at a distance of 10.73 ± 0.10 m from the wave maker.
Each successive wave passing the wave gauge was analysed
to determine its steepness, skewness, asymmetry and
frequency, which are shown in the four plots of Figure 3.
[26] The major features seen in the numerical model are

confirmed by the laboratory data. The incipient breaking
waves are the steepest waves in the wave train, with the
steepness oscillating in a periodic fashion. Skewness and
asymmetry also oscillate, but behave in a less ordered
fashion. However, at the point of breaking skewness is
positive (i.e., peaked up) and asymmetry is small (i.e., not
tilted forward). A feature which could not be determined
from the numerical model is that there is also a modulation
in the frequency. At the point of breaking the frequency
increases rapidly, further increasing the steepness and
hastening the onset of breaking.
[27] These visual observations are summarised in Figure 4,

which shows data for the five steepest breakers. The
analysis is limited to these steepest cases as wave quantities
close to the breaking point change rapidly, as shown in
Figure 3. These steepest cases are considered to be on the
point of breaking. Like in the numerical simulations, steep-

ness seems to be the single robust criteria for breaking. For
the 20 steepest breakers (not all shown in Figure 4),
steepness was confined to the narrow range Hk/2 = 0.37
to 0.44, whilst skewness was scattered over the wide range
Sk = 0 to 1 and asymmetry As = 0.8 to �0.4. Considering
only those waves at the point of breaking, however, as in
Figure 4, shows a clearer trend. The steepness appears to
approach an asymptotic limit of Hk/2 � 0.44, which may
represent an absolute steepness limit. We should point out
that this limit is remarkably close to the theoretical steady
limiting steepness of ak = 0.443 (i.e., the Stokes limit
H/l = 1/7, where l = 2p/k is the wavelength). Such an
observation is very important because it signifies that the
waves break once they achieve the well-established state
beyond which the water surface cannot sustain its stability. It
is postulated that the other geometric, kinematic and dynamic
criteria of breaking, explored in the literature, are indicative
of a wave approaching this state, but are not a reason or a
cause for the breaking. As this limit is approached, the
skewness increases very rapidly and immediately after
the limit is reached the asymmetry becomes negative (i.e.,
the wave starts tilting forward at the point of breaking).
[28] These laboratory results are summarised in Figure 5

(top), which shows the non-dimensional distance to break-
ing, N = xb/l as a function of IMS, where xb is the distance
to breaking. A range of values of IMS are shown, along with
cases with and without wind forcing. As expected, the
addition of wind forcing reduces the non-dimensional
distance to breaking. However, this reduction is not so great
that the data points deviate markedly from the functional
relationship between N and IMS, the nonlinear effect
dominating over the wind forcing.
[29] This result can be approximated by the relationship

N ¼ �11 atanh 5:5 IMS � 0:26ð Þ þ 23½ �; for 0:08 	 IMS 	 0:44:

ð3Þ

Figure 3. Segment of a time series with IMF = 1.8Hz, IMS = 0.30 and U/C = 0. The top plot shows the water surface
elevation, h as a function of time in seconds. The highest wave in each group is an incipient breaker at the measurement
point, breaking immediately after the wave probe. The subsequent plots show properties determined for each of the waves:
(second plot) steepness, (third plot) skewness, (fourth plot) asymmetry and (bottom plot) frequency (solid line signifies
IFM = 1.8Hz).
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Consistent, with the model results, the formula imposes two
threshold values of IMS. For IMS > 0.44, the wave breaks
immediately (compared to IMS � 0.3 for the two-
dimensional model) and if IMS < 0.08 the wave, in the
absence of wind forcingwill never break (compared to IMS�
0.1 for the model).
[30] In Figure 5 (top) two points (squares) are shown

which were derived from Figures 1 and 2 of Melville [1982]
for comparison. The two measurements of Melville [1982]
were conducted for initially uniform wave trains, their initial
steepness and approximate dimensionless distance to break-
ing being known. Although recorded under different con-
ditions, these points agree very well with the above
parameterisation and provide strong support for our results.

4. Discussion and Conclusions

[31] The relationship (3) potentially provides a means of
predicting the onset of breaking in the open ocean, although
some further modification is required for application to such
a case. In a field situation, the notion of an initial mono-
chromatic steepness does not exist. Besides, the waves will
be three-dimensional and the mechanism which was singled
out in this paper will be combined with wind forcing,
current shear, superposition of dispersive spectral waves,
modulation due to linear wave groups, among other relevant
features. However, the above analysis suggests that should
waves reach some critical steepness then they will ulti-
mately break. It does not matter whether this limiting
steepness occurred due to sustained wind forcing, wave
group modulation or other means, as long as the limiting
value is reached.
[32] Clearly, the breaking process is associated with

individual waves, and hence a local measure of the steep-
ness of each wave is the desired quantity. For applications
(e.g., in a wave prediction model), such time-domain
information is impractical and a spectral or average value

of the steepness of the wave field is the only possible
quantity available.
[33] A further complication in comparing available field

data with predictions of the current parameterisation is due
to the fact that the relationship above predicts the probabil-
ity of incipient breaking, whereas in the field it is impossible

Figure 4. Laboratory statistics for the incipient breakers (5 steepest waves). IMF = 1.8Hz, IMS = 0.30, U/C = 0. (top left)
Skewness versus steepness. (top right) Asymmetry versus steepness. (bottom) Frequency (inverse period) versus steepness.
IMF = 1.8Hz is shown with the solid line.

Figure 5. Parameterisation of the breaking probability.
(top) Laboratory data. Number of wave lengths to breaking
versus IMS. No wind forcing: o �IMF = 1.6Hz; 
 �IMF =
1.8Hz; + �IMF = 2.0Hz. Filled circles represent �IMF =
2.0Hz, with wind forcing applied. The parameterisation
(3) is shown with solid line. (bottom) Field data. Inverse
breaking probability bT, measured by visually detected
whitecaps, versus the peak spectral steepness, e. Triangles
signify measured bT = 0. The line identifies the approxima-
tion (4) (the dotted part is the extrapolation based on
parameterisation of Babanin et al. [2001]).
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to directly measure whether a wave is an incipient breaker
or not. At best, we can measure quantities which result from
the breaking process. Common measures of this type
include the acoustic signature of breaking waves or surface
white-cap coverage. Although these quantities are indirect
measures, they are related to the breaking process. However,
a breaking wave emits an acoustic signature and forms
white-caps over a substantial part of its period, and therefore
the probability of encountering such sound or white-caps
would be higher than the probability of breaking onset [Liu
and Babanin, 2004].
[34] Given the uncertainties, comparison of the present

parameterisation with field data can only be qualitative at
this stage, as the quantities being compared are not identi-
cal. In order to conduct the comparison, the Black Sea
dataset of Babanin et al. [2001] has been considered. Based
on visual observations of white-capping, this dataset pro-
vides information on the probability of breaking, bT of
dominant waves. Dominant waves are defined in the spec-
tral sense as frequencies near the spectral peak frequency, fp
(i.e., f = fp ± 0.3fp). In the present context, bT can be
approximately related to N by bT � 1/N.
[35] Figure 5 (bottom) shows 1/bT as a function of the

peak spectral steepness, e, where e = Hpkp/2, Hp =

4
R1:3fp

0:7fp

F fð Þdf
( )1=2

, kp is the wavenumber of the spectral

peak and F(f) is the frequency spectrum. An approximation
to the data shown in Figure 5, consistent with the functional
form of relationship (3) between N and IMS is

1=bT ¼ �10 atanh 13:3 e� 0:13ð Þ þ 17½ �; for 0:055 	 e 	 0:205:

ð4Þ

[36] The lower limit (no breaking if e < 0.055) is
obtained from the experimental data [Babanin et al.,
2001] and the upper limit (e = 0.205) is obtained by
extrapolating the parameterisation developed by Babanin
et al. [2001] to the 100% breaking condition.
[37] Thus, we conclude that based on a combination of a

nonlinear numerical model and laboratory and field data, a
theory for the onset of the breaking of ocean waves has been
developed and validated. Once waves reach a limiting
steepness, they will ultimately break. The distance before
breaking occurs is a function of the wave initial steepness.

This condition holds, even in the absence of wind forcing.
The final steepness limit reached by these waves is very
close to the Stokes limit, H/l = 1/7. Benjamin-Feir insta-
bility mechanism appears to be the main hydrodynamic
process which leads to achieving this limit if initial waves
are steep enough. Application to field data shows that a
spectral measure of wave steepness can potentially be
substituted for the local steepness limit inherent in the
model and laboratory data.
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