208 research outputs found

    Ultrastable actinide endohedral borospherenes.

    Get PDF
    Since the discovery of the first all-boron fullerenes B40-/0, metal-doped borospherenes have received extensive attention. So far, in spite of theoretical efforts on metalloborospherenes, the feasibility of actinide analogues remains minimally explored. Here we report a series of actinide borospherenes AnBn (An = U, Th; n = 36, 38, and 40) using DFT-PBE0 calculations. All the AnBn complexes are found to possess endohedral structures (An@Bn) as the global minima. In particular, U@B36 (C2h, 3Ag) and Th@B38 (D2h, 1Ag) exhibit nearly ideal endohedral borospherene structures. The C2h U@B36 and D2h Th@B38 complexes are predicted to be highly robust both thermodynamically and dynamically. In addition to the actinide size match to the cage, the covalent character of the metal-cage bonding in U@B36 and Th@B38 affords further stabilization. Bonding analysis indicates that U@B36 and Th@B38 can be qualified as 32-electron systems, and Th@B38 exhibits 3D aromaticity with σ plus π double delocalization bonding. The results demonstrate that doping with appropriate actinide atoms is promising to stabilize diverse borospherenes, and may provide routes for borospherene modification and functionalization

    Design and characterization of protein-quercetin bioactive nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids.</p> <p>Results</p> <p>Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated.</p> <p>Conclusions</p> <p>BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.</p

    Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis.

    Get PDF
    BACKGROUND: Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied. METHODS: We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined. RESULTS: Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4+ T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3+ regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ+, IL-17+, and GM-CSF+ CD4+ T cells, while it induced CD4+ Foxp3+ regulatory T cells in splenocytes by flow cytometry. CONCLUSIONS: Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells

    FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity.

    Get PDF
    Rho-Rho kinase (Rho-ROCK) triggers an intracellular signalling cascade that regulates cell survival, death, adhesion, migration, neurite outgrowth and retraction and influences the generation and development of several neurological disorders. Although Fasudil, a ROCK inhibitor, effectively suppressed encephalomyelitis (EAE), certain side effects may limit its clinical use. A novel and efficient ROCK inhibitor, FSD-C10, has been explored. In the present study, we present chemical synthesis and structure of FSD-C10, as well as the relationship between compound concentration and ROCK inhibition. We compared the inhibitory efficiency of ROCKI and ROCK II, the cell cytotoxicity, neurite outgrowth and dendritic formation, neurotrophic factors and vasodilation between Fasudil and FSD-C10. The results demonstrated that FSD-C10, like Fasudil, induced neurite outgrowth of neurons and dendritic formation of BV-2 microglia and enhanced the production of neurotrophic factor brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3). However, the cell cytotoxicity and vasodilation of FSD-C10 were relatively small compared with Fasudil. Although Fasudil inhibited both ROCK I and ROCK II, FSD-C10 more selectively suppressed ROCK II, but not ROCK I, which may be related to vasodilation insensitivity and animal mortality. Thus, FSD-C10 may be a safer and more promising novel ROCK inhibitor than Fasudil for the treatment of several neurological disorders

    Wolfberry genomes and the evolution of Lycium (Solanaceae)

    Get PDF
    AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore