1,401 research outputs found

    Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Get PDF
    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.Fil: Avilés Félix, L.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Butera, Alejandro Ricardo. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: González Chávez, D. E.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Sommer, R. L.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Gomez, Javier Enrique. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentin

    Combined use of the GGSFT data base and on Board Marine Collected Data to Model the Moho Beneath the Powell Basin, Antarctica

    Get PDF
    The Powell Basin is a small oceanic basin located at the NE end of the Antarctic Peninsula developed during the Early Miocene and mostly surrounded by the continental crusts of the South Orkney Microcontinent, South Scotia Ridge and Antarctic Peninsula margins. Gravity data from the SCAN 97 cruise obtained with the R/V Hespérides and data from the Global Gravity Grid and Sea Floor Topography (GGSFT) database (Sandwell and Smith, 1997) are used to determine the 3D geometry of the crustal-mantle interface (CMI) by numerical inversion methods. Water layer contribution and sedimentary effects were eliminated from the Free Air anomaly to obtain the total anomaly. Sedimentary effects were obtained from the analysis of existing and new SCAN 97 multichannel seismic profiles (MCS). The regional anomaly was obtained after spectral and filtering processes. The smooth 3D geometry of the crustal mantle interface obtained after inversion of the regional anomaly shows an increase in the thickness of the crust towards the continental margins and a NW-SE oriented axis of symmetry coinciding with the position of an older oceanic spreading axis. This interface shows a moderate uplift towards the western part and depicts two main uplifts to the northern and eastern sectors

    Reconfiguración asimétrica de un manipulador paralelo de 3-gdl

    Get PDF
    In this paper an asymmetric reconfigurable parallel manipulator is presented. Asymmetric configurations are obtained by modifying the angle between each of the kinematic chains. Thanks to the reconfiguration proposal significant improvement of the manipulator performance can be obtained with respect to a Delta-type parallel robot. The computation of the best condition number is obtained, the results show that by using the redundancy, all the performance indices that depend on the Jacobian matrix can be improved as well.En este trabajo se presenta un manipulador paralelo reconfigurable asimétrico. Al modificar los ángulos de cada una de las cadenas cinemáticas pueden obtenerse configuraciones asimétricas. Gracias a la reconfiguración propuesta pueden generarse mejoras significativas del desempeño del manipulador, con respecto a un robot paralelo tipo Delta. El cálculo del mejor número de condición es obtenido, los resultados muestran que usando la redundancia todos los índices de desempeño que dependen de la matriz Jacobiana pueden ser mejorados también

    Polynomial-based surrogate modeling of microwave structures in frequency domain exploiting the multinomial theorem

    Get PDF
    We propose a methodology for developing EM-based polynomial surrogate models exploiting the multinomial theorem. Our methodology is compared against four EM surrogate modeling techniques: response surface modeling, support vector machines, generalized regression neural networks, and Kriging. Results show that the proposed polynomial surrogate modeling approach has the best performance among these techniques when using a very small amount of learning base points. The proposed methodology is illustrated by developing a surrogate model for a T-slot PIFA antenna simulated on a commercially available 3D FEM simulator

    Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem

    Get PDF
    A general formulation to develop EM-based polynomial surrogate models in frequency domain utilizing the multinomial theorem is presented in this paper. Our approach is especially suitable when the number of learning samples is very limited and no physics-based coarse model is available. We compare our methodology against other four surrogate modeling techniques: response surface modeling, support vector machines, generalized regression neural networks, and Kriging. Results confirm that our modeling approach has the best performance among these techniques when using a very small amount of learning base points on relatively small modeling regions. We illustrate our technique by developing a surrogate model for an SIW interconnect with transitions to microstrip lines, a dual band T-slot PIFA handset antenna, and a high-speed package interconnect. Examples are simulated on a commercially available 3D FEM simulator

    Optical sorting and detection of sub-micron objects in a motional standing wave

    Full text link
    An extended interference pattern close to surface may result in both a transmissive or evanescent surface fields for large area manipulation of trapped particles. The affinity of differing particle sizes to a moving standing wave light pattern allows us to hold and deliver them in a bi-directional manner and importantly demonstrate experimentally particle sorting in the sub-micron region. This is performed without the need of fluid flow (static sorting). Theoretical calculations experimentally confirm that certain sizes of colloidal particles thermally hop more easily between neighboring traps. A new generic method is also presented for particle position detection in an extended periodic light pattern and applied to characterization of optical traps and particle behaviorComment: 5 pages, 6 figures, Optical Trapping pape

    Reliable full-wave EM simulation of a single-layer SIW interconnect with transitions to microstrip lines

    Get PDF
    We present a procedure to obtain reliable EM responses for a substrate integrated waveguide (SIW) interconnect with microstrip line transitions. The procedure focuses on two COMSOL configuration settings: meshing sizes and simulation bounding box. Once both are properly configured, the implemented structure is tested by perturbing the simulation bounding box to assure it has no effect on the EM responsesITESO, A.C

    Design Optimization of Full-Wave EM Models by Low-Order Low-Dimension Polynomial Surrogate Functionals

    Get PDF
    A practical formulation for EM-based design optimization of high-frequency circuits using simple polynomial surrogate functionals is proposed in this paper. Our approach starts from a careful selection of design variables and is based on a closed-form formulation that yields global optimal values for the surrogate model weighting factors, avoiding a large set of expensive EM model data, and resulting in accurate low-order low-dimension polynomials interpolants that are used as vehicles for efficient design optimization. Our formulation is especially suitable for EM-based design problems with no equivalent circuital models available. The proposed technique is illustrated by the EM-based design optimization of a Ka-band substrate integrated waveguide (SIW) interconnect with conductor-backed coplanar waveguide (CBCPW) transitions, a low crosstalk PCB microstrip interconnect structure with guard traces, and a 10-40 GHz SIW interconnect with microstrip transitions on a standard FR4-based substrate. Three commercially available full-wave EM solvers are used in our examples: CST, Sonnet and COMSOL

    Surrogate-based Analysis and Design Optimization of Power Delivery Networks

    Get PDF
    As microprocessor architectures continue to increase computing performance under low-energy consumption, the combination of signal integrity, electromagnetic interference, and power delivery is becoming crucial in the computer industry. In this context, power delivery engineers make use of complex and computationally expensive models that impose time-consuming industrial practices to reach an adequate power delivery design. In this paper, we propose a general surrogate-based methodology for fast and reliable analysis and design optimization of power delivery networks (PDN). We first formulate a generic surrogate model methodology exploiting passive lumped models optimized by parameter extraction to fit PDN impedance profiles. This PDN modeling formulation is illustrated with industrial laboratory measurements of a 4th generation server CPU motherboard. We next propose a black box PDN surrogate modeling methodology for efficient and reliable power delivery design optimization. To build our black box PDN surrogate, we compare four metamodeling techniques: support vector machines, polynomial surrogate modeling, generalized regression neural networks, and Kriging. The resultant best metamodel is then used to enable fast and accurate optimization of the PDN performance. Two examples validate our surrogate-based optimization approach: a voltage regulator with dual power rail remote sensing intended for communications and storage applications, by finding optimal sensing resistors and loading conditions; and a multiphase voltage regulator from a 6th generation Intel® server motherboard, by finding optimal compensation settings to reduce the number of bulk capacitors without losing CPU performance.ITESO, A.C
    corecore