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Abstract— As microprocessor architectures continue to 
increase computing performance under low-energy consumption, 
the combination of signal integrity, electromagnetic interference, 
and power delivery is becoming crucial in the computer industry. 
In this context, power delivery engineers make use of complex 
and computationally expensive models that impose time-
consuming industrial practices to reach an adequate power 
delivery design. In this paper, we propose a general surrogate-
based methodology for fast and reliable analysis and design 
optimization of power delivery networks (PDN). We first 
formulate a generic surrogate model methodology exploiting 
passive lumped models optimized by parameter extraction to fit 
PDN impedance profiles. This PDN modeling formulation is 
illustrated with industrial laboratory measurements of a 4th 
generation server CPU motherboard. We next propose a black 
box PDN surrogate modeling methodology for efficient and 
reliable power delivery design optimization. To build our black 
box PDN surrogate, we compare four metamodeling techniques: 
support vector machines, polynomial surrogate modeling, 
generalized regression neural networks, and Kriging. The 
resultant best metamodel is then used to enable fast and accurate 
optimization of the PDN performance. Two examples validate our 
surrogate-based optimization approach: a voltage regulator with 
dual power rail remote sensing intended for communications and 
storage applications, by finding optimal sensing resistors and 
loading conditions; and a multiphase voltage regulator from a 6th 
generation Intel® server motherboard, by finding optimal 
compensation settings to reduce the number of bulk capacitors 
without losing CPU performance. 

Index Terms— impedance profile, IP protection, metamodels, 
microprocessor, motherboard, optimization, power delivery 
network, power integrity, surrogate modeling, voltage regulator. 

I. INTRODUCTION

As computer architectures continue to increase the number 
of cores while keeping frugal power consumption [1],[2], the 
combination of signal integrity (SI), electromagnetic 
interference (EMI), and power delivery (PD) is becoming 
crucial in the industrial design of computer platforms to satisfy 
stringent performance requirements within time-to-market 
commitments. In this context, industry is paying more attention 
to PD by emphasizing power integrity (PI) engineering to 
overcome cost and performance targets. 

In a typical industrial PD analysis, a physical power delivery 
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network (PDN) is proposed for which a large and complex 
circuital model (SPICE-like network), including distributed 
passive components, is built. This circuital model is enabled to 
include detailed models for external decoupling capacitance 
aimed at compensating events of sudden change of load 
(di/dt), from the silicon (CPU) up to the voltage regulator 
(VR). These circuital models allow PI engineers to assess the 
performance of the PDN, for instance, by looking into the 
impedance profile [3]-5] for which specified target 
impedances are defined [6],[7]. In addition to the impedance 
profile, other performance metrics, such as voltage drop 
analyses, are needed to ensure the minimum voltage level of 
operation allowed by the VR and other components. Other 
metrics include simultaneous switching noise (SSN) [8],[9], 
also known as ground bounce, voltage regulator’s power losses 
[10],[11], plane current density for copper’s reliability, etc. 

PI engineers rely on several CAD tools to design and 
characterize a PDN; they frequently employ 2.5-D and 3-D 
full-wave EM simulators to extract accurate circuital models 
able to emulate most intrinsic PDN parasitic effects. As 
mentioned before, these circuital models are typically 
implemented as large distributed SPICE networks representing 
the whole PDN [9],[12]-14], whose simulation can last from a 
couple of minutes up to several hours or even days. To 
overcome this high computational cost, some approaches to 
speed up PDN network development and simulation have been 
proposed. Extraction of the PDN equivalent circuital model 
can be accelerated by using the partial element equivalent 
circuit (PEEC) method [14],[15]. PDN metamodeling 
approaches for accurate package prediction of bump 
inductance is proposed in [16] by using design of experiments 
(DoE) and machine learning techniques, e.g., artificial neural 
networks (ANN), support vector machines (SVM), nonlinear 
regression, and combined ANN-piecewise-linear (PWL) 
modeling [16]. Efficient PDN Bayesian optimization is 
proposed in [17] to minimize clock skew and maximize 
voltage regulators efficiency. 

In this paper, a general methodology for surrogate-based 
analysis and design optimization of power delivery networks is 
proposed. We first formulate a generic surrogate model 
methodology for accurate and fast prediction of PDN 
performance. Our modeling methodology exploits fast passive 
lumped models optimized by parameter extraction (PE) to fit 
PDN impedance profile from industrial laboratory 
measurements. This is illustrated by modeling a PDN of a 4th 
generation Intel® Xeon® CPU server. Secondly, we propose a 
black box surrogate modeling approach for efficient and 
reliable PDN design optimization [18]-[20]. We compare 
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several PDN metamodels, including support vector machines 
(SVM), polynomial surrogate modeling (PSM), generalized 
regression neural networks (GRNN), and Kriging. The end 
goal of these PDN metamodels is to enable accurate and fast 
optimization of PDN performance. We illustrate our 
metamodel-based design optimization approach by two 
examples: 1) a PDN with dual sensing voltage regulator for 
communications and storage applications, to find optimal 
sensing resistors and loading conditions; and 2) a PDN 
motherboard of a 6th generation Intel® Xeon® computer, to 
find optimal settings of a multiphase switching VR controller, 
reducing by 30% the number of decoupling capacitors without 
losing CPU performance. 

The rest of the paper is organized as follows. Section II 
illustrates the development of PDN passive lumped models by 
fitting the impedance profile, intended to enable customers to 
efficiently build their customized PD board. Section III 
describes a generic formulation to develop PD black box 
surrogate models for enabling PDN performance assessment at 
low computational cost. Section IV illustrates an example to 
build a PD surrogate model of a dual sensing VR to come up 
with an optimized sense resistors’ recipe and achieve the best 
power consumption without impacting silicon’s threshold 
voltage. In Section V, a second example is described by 
addressing components cost reduction of a 6th generation 
Intel® Xeon® CPU from motherboard and VR point of view. 
Finally, in Section VI, our conclusions are presented. 

II. SURROGATE LUMPED MODELS BY PARAMETER 

EXTRACTION FOR CUSTOMIZED ANALYSIS AND DESIGN 

A. Custom PDN Design 

Customers and vendors usually want to customize their own 
motherboard design to offer different CPU performance 
features or cheaper platform costs. CPU manufacturers can 
enable customers by providing a set of reference PD design 
guidelines, as well as coarse surrogate models to estimate 
impedance PDN. This is done with two goals: 1) to protect 
manufacturer’s CPU and chipset intellectual property; and 2) 
to provide an easy way to simulate PD performance for further 
customers’ analyses. 

B. Surrogate Lumped Models for PDN Intellectual 
Property Protection 

As mentioned before, the PDN impedance profile can be 

approximated by equivalent SPICE-like lumped models valid 
over a limited frequency band. A typical frequency response 
measured from a realistic PDN is illustrated in Fig. 1, where 
some frequency resonances caused by each decoupling state 
are shown.  

A fast PDN lumped model can be implemented by a series 
of single-sided RLC sections with an ideal ground return path, 
as shown in Fig. 2. This lumped model approximation is built 
incrementally, where N corresponds to a number of RLC 
sections included, which mainly depends on the number of 
resonant points in the measured impedance profile. The series 
resistors Rs1 … RsN account for the resistivity of copper from 
parallel power and ground layers. Series inductances Ls1 … LsN 
are associated mainly to the vertical transitions of vias 
interconnecting layers as well as the distributed parasitic 
inductance of power and ground planes. Finally, parallel 
capacitances Cp1 … CpN , along with their corresponding 
intrinsic parasites Rp1 … RpN and Lp1 … LpN, represent each 
capacitive decoupling stage placed along the entire PDN, from 
the VR to the silicon. A simplified cross-sectional view of a 
typical PDN with different decoupling stages is shown in Fig. 
3, where it is illustrated the path from the voltage regulator 
module (VRM) up to the chip (silicon). As it is observed, the 
PDN is conformed of several components acting as decoupling 
stages to store energy until the VRM reacts. Some of the most 
important decoupling stages are the die side capacitors (DSC), 
close to the silicon for fast reaction, next the land side 
capacitors (LSC), which act as a secondary reserve of energy, 
followed by the interconnection from the package to the 
motherboard with the socket, which typically is very resistive, 
and finally the last energy reserves implemented by decoupling 
and bulk capacitors. 

C. Optimizing Surrogate Lumped Models by Parameter 
Extraction 

Suitable parameter values for a given a number of RLC 
sections (N) in the proposed PDN lumped model (see Fig. 2) 
should be determined by performing a curve fitting of the PDN 
impedance profile obtained from actual laboratory 
measurements. Performing laboratory measurements on the 
physical PDN and VR can be implemented with a voltage 
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Fig. 2. Single-sided equivalent RLC lumped model with ideal ground 
connection to fit the impedance profile. 

 
Fig. 1. Frequency domain analysis: a typical impedance profile showing 
PDN behavior from the voltage regulator module (VRM) to the silicon. 
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Fig. 3. Cross-sectional view of a PDN including different decoupling 
stages along the VR up to the silicon. 
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regulator test tool (VRTT) that makes use of an interposer to 
emulate CPU loading conditions [21], as illustrated in Fig. 4. 
After collecting the PDN impedance profile from the VRTT, 
we propose finding optimal surrogate lumped model parameter 
values by solving the following parameter extraction (PE) 
problem [22]: 

 
2* t

2
arg min ( ) xx R x R  (1) 

where optimization variables are in x = [Rs1  Ls1 … RsN  LsN   
Cp1  Rp1  Lp1 … Cpn  RpN  LpN]T  n, with n = 5N, x* contains 
the extracted optimal parameter values that make the lumped 
circuit response R(x*) as close as possible to the target 
response Rt  r; in our case, Rt contains the measured PDN 
impedance profile. Once Rt is available, solving (1) is 
computationally very fast and can be repeated by gradually 
increasing N until a good match is found at x*. 

D. PDN Lumped Model PE Example 

To exemplify the usage of this technique, we measured the 
impedance profile of a 4th generation Intel® Xeon® CPU 
server. The SPICE lumped model uses the same topology as in 
Fig. 2, with N = 8 sections (a total of n = 40 optimization 
variables). The PDN impedance profile measured from 100 Hz 
to 7 MHz is shown in Fig. 5. This particular frequency range 
was selected considering the intended PDN application 
(motherboard). We solved (1) by using the trust-region interior 
point nonlinear optimization method available in MATLAB1. 
A comparison between the measured and surrogate lumped 
model impedance is also depicted in Fig. 5. It is observed that 
the lumped model closely follows the impedance profile up to 
6 MHz, with a slight difference in the 30-200 KHz frequency 
range due to the circuit topology employed. The time to 
generate this optimized lumped model was 1 minute and 36 
seconds on a laptop computer with 8 GB RAM and a 7th 
generation i5 processor. 

III. A METHODOLOGY FOR EFFICIENT AND ACCURATE PDN 

DESIGN OPTIMIZATION 

It is possible to use PDN metamodels to optimize a PD 
design, as long as these metamodels have enough accuracy in 

 
1 MATLAB, Version R2010a, The MathWorks, Inc., 3 Apple Hill Drive, 

Natick MA 01760-2098, 2006. 

the design region of interest. To obtain our PDN metamodels, 
we generate training and testing data within a desired design 
region and apply the corresponding metamodeling techniques. 
Then, we select the PDN metamodel with the best 
generalization performance and use it as a vehicle for direct 
PD design optimization. Our end goal is to accelerate PD 
design process, by reducing the time that engineers spend on 
assessing several tradeoff scenarios during PD design flow. 

A. High Fidelity Simulation of Power Delivery Networks 

Since most of the PDN building blocks are based on 
physical structures, engineers use CAD tools to predict the PD 
performance for specific power domains. Most of these CAD 
tools are either full-wave EM simulators or quasi-static 
simulation tools. Some of the commercial tools most widely 
used in this area include ADS2 (Momentum, Power EM, etc.), 
ANSYS3 (HFSS, SIwave, etc.), Cadence4 (Power DC, Power 
SI, etc.), CST5, among others. They are in general regarded as 
highly accurate, however, they are computational expensive 
given the complexity of the simulated structures. In this paper, 
we will refer to them as fine models. 

During the simulation stage, PD engineers typically assess 
the effects of changing, for instance, the voltage regulator 
bandwidth, the number of phases needed by the regulator, the 
copper thickness, etc., based on their expertise. Hence, these 
tradeoff scenarios imply a significant amount of time redoing 
fine model simulations, and as a consequence, there is a 
significant engineering cost to provide a robust PD solution. 

B. PDN Surrogate Modeling Flow 

 We propose developing a computationally cheap but 
sufficiently accurate surrogate model of the PDN, which later 
can be used for fast parametric studies or for efficient direct 
design optimization. A simplified surrogate modelling flow is 
shown in Fig. 6. It essentially consists of the following steps: 

 
2 ADS – Advanced Design System, Keysight Technologies, Inc., 1400 

Fountain Grove Pkwy, Santa Rosa, CA 95403-1738, USA, 2019. 
3 ANSYS Inc., Southpointe 2600 Ansys Dr., Canonsburg, PA 15317, USA, 

2019. 
4 Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, 

USA, 2019. 
5 CST – Computer Simulation Technology AG, CST of America, LLC. 

Dassault Systemes, 175 Wyman St., Walman, MA 02451, USA., 2019. 

Fig. 4. Voltage regulator test tool (VRTT) to measure frequency and time-
domain PDN and VR features. Taken from [21].  

Fig. 5. Intel’s 4th CPU generation motherboard’s impedance profile 
comparison: equivalent lumped model (dashed line) vs laboratory 
measurement (solid line). 
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1) Select a suitable PDN fine model (see Sub-section III.A), 
define the n input design parameters (x  n) and the r 
responses of interest (Rf  r). 

2) Generate training and testing data in the design space of 
interest. Given the high computational cost of each fine model 
simulation, frugal sets of data should be collected. We can 
exploit design of experiments (DoE) techniques to improve 
coverage while keeping a small amount of fine model 
simulations. Among the most frugal distributions of points, the 
star and box distributions are preferred. The star distribution 
requires only 2n + 1 training base points [23], while the box 
distribution requires 2n + 1 training base points [24]. Central 
composite design (CCD) [25] can be exploited to define upper 
and lower limits, while the confusion technique with fractional 
factorial design (FFD) [25] can further decrease the amount of 
training data in box distributions with high dimensionality. For 
testing, we use random points inside the training region, in the 
range of 20-25% of the total number of training data. 

3) Train the PDN surrogate model Rs(x). Here we actually 
train several surrogate models with the available training data 
generated in the previous step. We use the following machine 
learning approaches: support vector machines (SVM), 
polynomial surrogate modeling (PSM), generalized regression 
neural networks (GRNN), and Kriging. These particular 
metamodeling techniques have the common characteristic of 
an easy regularization process, reducing the risks of over-
training [26]. They are briefly described in Sub-section III.C 

4) Test the PDN surrogate models. Here we test the 
generalization performance of the resultant surrogate models 
after training. This is done by measuring the relative error of 
each Rs(x) with respect to Rf(x) at all the random testing base 
points not seen during training. 

5) Select the best PDN surrogate model. After measuring the 
testing errors of all the surrogate models trained, we select that 
one with the smallest maximum relative testing error. If the 
best generalization performance obtained is acceptable, we end 
the modeling flow. If not, we either reduce the region of 
interest and retrain the surrogate models, or add more training 
data in the same region and retrain the surrogates (for cases 
where the training region size must be kept fixed). 

Having available the best PDN surrogate model, with an 
acceptable generalization performance, we can optimize it to 
find the best PDN design, as described in Sub-section III.D. 

C.  Surrogate Modeling Techniques for Fast PDN 
Simulation 

As mentioned before, we evaluated four different surrogate 
modeling techniques: polynomial surrogate modeling (PSM), 
generalized regression neural networks (GRNN), support 
vector machines (SVM), and Kriging. A brief description of 
each technique follows.  

Polynomial Surrogate Model (PSM). Polynomial functional 
surrogates have been efficiently exploited to approximate 
complex microwave structures [27], even by enforcing low-
order polynomials [24]. Here we use the PSM formulation 
presented in [18], where the multinomial theorem is exploited 
with automated regularization. It is in essence very similar to 

RSM, although PSM is not limited to second order 
polynomials. The m-th order functional approximation used in 
scalar form (per frequency point) is 

 ( ) ( 1) ( )T ( )
s s( ) ( ) ( )m m m mR R  x x w q x  (2) 

where Rs
(m1)(x) is the previous m1 order polynomial 

surrogate model function, w(m) is the corresponding vector of 
weighting factors, and q(m)(xf) contains the m-th order 
multinomial terms [18]. This technique exhibits good 
generalization performance when applied to relatively small 
training regions [18]. 

Generalized Regression Neural Network (GRNN). GRNN is 
a special kind of ANN that does not require an iterative 
training procedure [28]. Its number of hidden neurons is equal 
to the amount of learning data [28]. As the number of learning 
samples becomes large, the GRNN exhibits a fast learning and 
convergence to the optimal regression surface [29]. GRNN 
uses a special type of radial basis functions as nonlinearity; for 
our purposes, we use GRNN default settings of the neural 
network toolbox available in MATLAB. 

Support Vector Machines (SVM). While ANNs are trained 
using the empirical risk minimization principle, SVMs use the 
structural risk minimization, allowing them to obtain a good 
trade-off between model complexity and generalization 
performance [30]. In order to find the optimal model 
parameters, the SVM technique solves a constrained quadratic 
optimization problem by exploiting the use of kernel functions 
[31],[32]. For our implementation, we use the SVM regression 
available in MATLAB with default linear kernel functions and 
sequential minimal optimization solver. 

Kriging. Kriging is a type of kernel-based probabilistic 
model that is based on space filling experiments aiming at 
covering the experimental area [33]. Kriging minimizes the 
prediction variance by exploiting the best linear unbiased 
estimator (BLUE) of the output value for a given input [33]. If 
there are not sufficient training samples, the predictions of the 
resultant Kriging models may become inaccurate [33]. For our 
work, we use default settings of the algorithm as implemented 

start

Select PDN fine model, input 
parameters x, and responses 

of interest Rf

Generate training and testing 
base points

Evaluate Rf(x) at training  
and testing points

Measure generalization 
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end

Train surrogate model Rs(x)

Reduce training 
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more training 
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Fig. 6. Flow diagram to train a PDN surrogate model and test its 
generalization performance. 
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in MATLAB by exploiting its Gaussian regression process. 

D. PDN Surrogate-Based Optimization 

Once the metamodels have been developed, the next step is 
to select the best one and use it for direct optimization to fulfil 
PDN performance specifications. A flow diagram showing the 
proposed optimization methodology is shown in Fig. 7, which 
essentially consist of the following steps: 

1) Select the best PDN surrogate model according to their 
generalization performance. 

2) Set PDN surrogate model input variables (x) as well as its 
constant pre-assigned input parameters z and independent 
variables , if any. 

3) Define PDN performance specifications. Regularly, the 
PDN specifications fall in the category of dc resistance (Rdc), 
also called as R-path, minimum functional threshold voltage 
(Vmin), maximum voltage (Vmax) allowed for functional 
reliability, target impedance (Zt), peak to peak voltage noise 
(Vp2p), power consumption (PD), power loss (Ploss), etc. 

4) Set an initial design x(0) to start the optimization 
algorithm. Usually, this seed is determined from PD engineer’s 
expertise. 

5) Formulate the objective function U(x) to solve the 
following constrained minimax optimization problem: 

 * arg min ( )U xx x  (3) 

 U(x) = max{…ek(x)…} (4) 
subject to 

 lb ub x x x  (5) 
where x* is the optimal design found, xlb and xub are the lower 
and upper limits of the input variables x, respectively, and 
ek(x) is the k-th error function defined as: 
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ub
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where Rk(x) is the k-th model response at point x, Sk
ub and Sk

lb 
are the upper and lower bound specifications ( 0), and Iub and 
Ilb are the corresponding index sets. 

6) Check if the optimum response R(x*) complies with the 
required performance specifications. For this assessment, two 
conditions can occur: a) U(x*) < 0, which implies the optimal 
solution found satisfies all the performance specifications, 
ending the algorithm; b) U(x*) ≥ 0, which implies that at least 
one of the performance specifications is violated. If the second 
condition is found, it might be due to a local minimum, in 
which case we perturbed the starting point and optimize again 
the surrogate model. If it is not a local minimum, then the PDN 
performance specifications might be too demanding, in which 
case we relax them and re-optimize the surrogate (see Fig. 7). 

IV. EXAMPLE I: PDN OPTIMIZATION FOR DUAL SENSING 

VOLTAGE REGULATOR 

Consider the monolithic CPU processor proposed in [34], 
which consists of two power domains sharing a single VR 
using a dual sensing scheme, as shown in Fig. 8. Each power 
domain has its own individual minimum voltages (contained in 
vector Vmin  2) and power consumptions (PD  2) 
specifications. By varying the sense resistors (Rsense  2) and 
limiting the maximum current of each power domain (Imax  
2), the purpose of the optimization problem is to ensure the 
best performance of the circuitry while reducing the power 
consumed from both power domains. Our PDN fine model was 
simulated with Synopsys®-HSPICE6, where each simulation 
took an average of 5 minutes using a laptop computer with 8 
GB RAM and a 7th generation i5 core processor. The design 
variables are x = [Rsense1  Rsense2  Imax1  Imax2]T  4 and the 
system responses are R(x) = [PD1  PD2  Vmin1  Vmin2]T  4. 

A. Training and Testing Data Generation 

Training data was generated using a box distribution 
exploiting CCD and FFD techniques using 2 central points, 
resulting in 28 training base points. For generalization 
measurement, we simulated 6 random testing points within the 
design region of interest, which was delimited by the following 
lower and upper bounds:  15  to 85  for Rsense1 and Rsense2; 
0.9 A to 2.2 A for Imax1; and 12 A to 28 A for Imax2. In addition, 
we normalized all the input data to train the surrogate models. 
The entire process of generating and collecting the training 
and testing data took 2.83 hours. 

 
6 Hspui for Windows, G-2012.06, Synopsys®, 690 East Middlefield Road, 

Mountain View, CA 94043. 

start

Select metamodel

Set x, z, and ψ 
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x* = arg minx U(x)

U(x) = max{...ek(x)…}
subject to

xlb  ≤  x  ≤  xub

U(x*) < 0  end
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local 
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Fig. 7. Flow diagram for direct constrained design optimization of the PDN 
metamodel. 

 
Fig. 8. PDN with a single voltage regulator and two remote sense resistors 
for two different power domains at silicon level. Taken from [34]. 
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B. Surrogate Modeling 

Four different surrogate modeling techniques were 
implemented by using the above training data: PSM, Kriging, 
GRNN, and SVM. The corresponding training errors are 
shown in Table I. By using the testing data, the corresponding 
generalization errors are shown in Table II. From these results, 
it is observed that in this case the Kriging surrogate model 
exhibits the overall best training and generalization 
performance, selecting it to perform the direct optimization 
procedure. 

C. Surrogate-Based Optimization 

We use the following performance specifications:  
a) Maximum transient power for PD1, PD1lim = 2.86 W 
b) Maximum transient power for PD2, PD2lim = 36.45 W 
c) Minimum transient voltage for Vmin1, Vmin1lim = 0.71 V 
d) Minimum transient voltage for Vmin2, Vmin2lim = 0.70 V. 
By using the Kriging surrogate model, we perform its direct 

optimization using a starting point x(0) = [50   50   1.55   20]T. 
The corresponding initial system response is Rs(x(0)) = [1.6368  
19.6409  0.710  0.691]T which yields an objective function 
value U(x(0)) = 0.0143. By using the Nelder-Mead 
optimization algorithm available in MATLAB, the optimal 
design was found after 26 iterations and 136 surrogate model 
evaluations and corresponds to x* = [50   49.97   0.8099   
7.6522]T. The corresponding surrogate system response is 
Rs(x*) = [1.6168   19.9141   0.721   0.703]T, which leads to a 
surrogate objective function U(Rs(x*)) = 0.0043. The 
corresponding system fine response for the optimal metamodel 
design is Rf(x*) = [1.62  19.91  0.721  0.704]T yielding a fine 
model objective function U(Rf(x*)) = 0.0043. 

According to these results, the surrogate optimal designs 
resulted in a fine model that achieves the desired 
specifications. A total of 35 system simulations were required 
(34 for collecting training and testing data and one simulation 
to test the optimal design), instead of the hundreds of fine 
model system evaluations that a direct optimization 
methodology could require, speeding up the system design 
process. 

V. EXAMPLE II: CAPACITORS REDUCTION ADJUSTING 

VOLTAGE REGULATOR’S PID COMPENSATION 

Now consider a motherboard of a 6th generation Intel® 
Xeon® server. The compensation parameters of a multiphase 
VR controller are included in the design variables to optimize 
the motherboard performance, as discussed in [35] and [36]. 
The VR controller is simulated in SIMetrix/SIMPLIS7, 
including the PDN parasites and the VRTT interposer, as 
mentioned in [35] and illustrated in Fig. 9.  

The VR controller PID compensation parameters (kp, kd, ki) 
and the number of bulk capacitors used in the motherboard 
layout area (NCblk) are selected as design variables, x = [kd  kp  
ki  NCblk]T 4. The responses of interest correspond to the 
maximum transient voltage Vmax and the minimum transient 
voltage Vmin, represented as R(x) = [Vmax   Vmin]T 2. Fig. 10 
illustrates a typical transient waveform, where Vmax is 
measured as the maximum peak voltage and Vmin is measured 
as the lowest valley, both occurring during a 3 ms time 
window. 

A. Training and Testing Data Generation 

Training data was generated using a star distribution, 
resulting in 9 training points.  For generalization measurement, 
3 random testing points were generated. The design region was 
constrained by the following lower and upper bounds: 100 to 
250 for kp and ki; 250 to 450 for kd; and 3 to 7 for NCblk. For 
training purposes, input data was normalized. Collecting this 
set of data from simulations took approximately 48 hours. 

B. Surrogate Modeling 

Once again, four different surrogate modeling techniques 
were implemented: PSM, Kriging, GRNN, and SVM. A 
summary of the resulting training and testing (generalization) 
errors are shown in Tables III and IV, respectively. From these 
results, it is observed that the Kriging model exhibits the best 

 
7 SIMetrix/Simplis 7.20e (x64), Copyright © 2014 Simplis Technologies Ltd, 

78 Chapel Street, Thatcham, Berkshire, RG18 4QN, UK, 
http://www.simetrix.co.uk/site/index.html 

TABLE I 
SUMMARY OF RELATIVE TRAINING ERRORS (%) USING DIFFERENT 

SURROGATE MODELS FOR TWO POWER DOMAINS 
output erGRNN erPSM erSVM erKriging 

PD1 46.59 18.40 18.92 18.05 

PD2 47.97 2.03 6.34 1.160 

Vmin1 35.81 28.91 13.08 11.26 

Vmin2 37.02 43.30 7.25 6.22 
 

TABLE II 
SUMMARY OF RELATIVE TESTING ERRORS (%) USING DIFFERENT 

SURROGATE MODELS FOR TWO POWER DOMAINS 
output erGRNN erPSM erSVM erKriging 

PD1 44.32 10.46 9.45 13.44 

PD2 35.04 3.90 4.63 3.47 

Vmin1 38.70 32.72 25.10 23.40 

Vmin2 50.54 36.15 20.78 19.42 
 

 
Fig. 9. SIMPLIS schematic of a multiphase VR controller including output 
inductors and all decoupling capacitors, as well as a 6th generation Xeon®

CPU board and VRTT interposer parasites PD model. 
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generalization performance, selecting it as the PDN 
metamodel to perform direct optimization. 

C. Surrogate-Based Optimization 

The desired performance specifications are:  
a) Lower bound for min. transient voltage, Vlb

min = 1.65 V 
b) Upper bound for max. transient voltage, Vub

max = 1.85 V 
c) Peak to peak noise ripple, Vp2p ≤ 200 mV. 
For the surrogate-based optimization we used the initial 

design x(0) = [175 350 175 5]T, which yields an initial 
surrogate system response Rs(x(0)) = [1.8270  1.6560]T and an 
initial surrogate objective function value U(Rs(x(0))) = 0.0148. 
By using the Nelder-Mead algorithm, the optimal design was 
found after 20 iterations and 105 surrogate model evaluations 
and corresponds to x* = [162.7846  350.3494  189.9643  5]T. 
The optimal surrogate system response is Rs(x*) = [1.7810  
1.6761]T which leads to an optimal surrogate objective 
function U(Rs(x*)) = 0.01067. The fine model system 
response at the optimal surrogate design is Rf(x*) = [1.782  
1.678]T, yielding a fine model objective function U(Rf(x*)) = 
0.0101. These results confirm that the proposed methodology 
can be exploited to substantially speed up the design process 
by reducing the amount of fine model system simulations, 
finding an optimal design that achieves the performance 
specifications. The whole process required 13 system fine 
model simulations (12 for collecting training and testing data, 
plus one simulation to test the optimal design), instead of the 
hundreds of fine model evaluations that a direct optimization 
methodology could require. The engineer’s expertise is used to 
define the metamodel design region as well as a suitable 
starting point. Once the metamodel is developed, the 
optimization process is conducted automatically with the 
proposed methodology, allowing engineers to focus their 
efforts on other aspects of the system design. 

VI. CONCLUSIONS 

We described a general methodology for surrogate-based 

analysis and design optimization of power delivery networks. 
We first propose a formulation for accurate and fast prediction 
of PDN performance by exploiting passive lumped models 
optimized by parameter extraction (PE) to fit PDN impedance 
profiles obtained from industrial laboratory measurements. 
This formulation allows protecting chip makers intellectual 
property. Next, we propose a metamodeling approach for 
efficient and reliable PDN design optimization exploiting 
support vector machines (SVM), polynomial surrogate 
modeling (PSM), generalized regression neural networks 
(GRNN), and Kriging. Our methodology allows accurate and 
fast optimization of PDN performance. Realistic industrial 
cases illustrate our general PDN analysis and design 
optimization methodology. 
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