An extended interference pattern close to surface may result in both a
transmissive or evanescent surface fields for large area manipulation of
trapped particles. The affinity of differing particle sizes to a moving
standing wave light pattern allows us to hold and deliver them in a
bi-directional manner and importantly demonstrate experimentally particle
sorting in the sub-micron region. This is performed without the need of fluid
flow (static sorting). Theoretical calculations experimentally confirm that
certain sizes of colloidal particles thermally hop more easily between
neighboring traps. A new generic method is also presented for particle position
detection in an extended periodic light pattern and applied to characterization
of optical traps and particle behaviorComment: 5 pages, 6 figures, Optical Trapping pape