21 research outputs found

    PACE Technical Report Series, Volume 6: Data Product Requirements and Error Budgets Consensus Document

    Get PDF
    This chapter summarizes ocean color science data product requirements for the Plankton, Aerosol, Cloud,ocean Ecosystem (PACE) mission's Ocean Color Instrument (OCI) and observatory. NASA HQ delivered Level-1 science data product requirements to the PACE Project, which encompass data products to be produced and their associated uncertainties. These products and uncertainties ultimately determine the spectral nature of OCI and the performance requirements assigned to OCI and the observatory. This chapter ultimately serves to provide context for the remainder of this volume, which describes tools developed that allocate these uncertainties into their components, including allowable OCI systematic and random uncertainties, observatory geo location uncertainties, and geophysical model uncertainties

    Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts

    Get PDF
    Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2> 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblage

    PACE Technical Report Series, Volume 5: Mission Formulation Studies

    Get PDF
    This chapter summarizes the mission architecture for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, ranging from its scientific rationale to the history of its realized conception to itspresent-day organization and management. This volume in the PACE Technical Report series focuses ontrade studies that informed the formulation of the mission in its pre-Phase A (2014-2016; pre-formulation:define a viable and affordable concept) and Phase A (2016-2017; concept and technology development).With that in mind, this chapter serves to introduce the mission by providing: a brief summary of thescience drivers for the mission; a history of the direction of the mission to NASA's Goddard Space Flight Center (GSFC); a synopsis of the mission's and instruments' management and development structures; and a brief description of the primary components and elements that form the foundation ofthe mission, encompassing the major mission segments (space, ground, and science data processing) and their roles in integration, testing, and operations

    Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts

    Get PDF
    Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

    Get PDF
    [EN] This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications.INDIGO-Datacloud has been funded by the European Commision H2020 research and innovation program under grant agreement RIA 653549.Salomoni, D.; Campos, I.; Gaido, L.; Marco, J.; Solagna, P.; Gomes, J.; Matyska, L.... (2018). INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. Journal of Grid Computing. 16(3):381-408. https://doi.org/10.1007/s10723-018-9453-3S381408163García, A.L., Castillo, E.F.-d., Puel, M.: Identity federation with VOMS in cloud infrastructures. In: 2013 IEEE 5Th International Conference on Cloud Computing Technology and Science, pp 42–48 (2013)Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to OpenStack. Journal of Grid Computing 12(1), 3–27 (2014)Craig, A.L.: A design space review for general federation management using keystone. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp 720–725. IEEE Computer Society (2014)Pustchi, N., Krishnan, R., Sandhu, R.: Authorization federation in iaas multi cloud. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, pp 63–71. ACM (2015)Lee, C.A., Desai, N., Brethorst, A.: A Keystone-Based Virtual Organization Management System. In: 2014 IEEE 6Th International Conference On Cloud Computing Technology and Science (Cloudcom), pp 727–730. IEEE (2014)Castillo, E.F.-d., Scardaci, D., García, A.L.: The EGI Federated Cloud e-Infrastructure. Procedia Computer Science 68, 196–205 (2015)AARC project: AARC Blueprint Architecture, see https://aarc-project.eu/architecture . Technical report (2016)Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experiences with distributed computing for meteorological applications: grid computing and cloud computing. Geosci. Model Dev. 8(7), 2067–2078 (2015)Plasencia, I.C., Castillo, E.F.-d., Heinemeyer, S., García, A.L., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. The European Physical Journal C 73(4), 2375 (2013)Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review 49(1), 71–79 (2015)Docker: http://www.docker.com (2013)Gomes, J., Campos, I., Bagnaschi, E., David, M., Alves, L., Martins, J., Pina, J., Alvaro, L.-G., Orviz, P.: Enabling rootless linux containers in multi-user environments: the udocker tool. Computing Physics Communications. https://doi.org/10.1016/j.cpc.2018.05.021 (2018)Zhang, Z., Chuan, W., Cheung, D.W.L.: A survey on cloud interoperability taxonomies, standards, and practice. SIGMETRICS perform. Eval. Rev. 40(4), 13–22 (2013)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments. Journal of Grid Computing 12(4), 559–592 (2014)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Technical report, Open Grid Forum (2011)(Ca Technologies) Lipton, P., (Ibm) Moser, S., (Vnomic) Palma, D., (Ibm) Spatzier, T.: Topology and Orchestration Specification for Cloud Applications. Technical report, OASIS Standard (2013)Teckelmann, R., Reich, C., Sulistio, A.: Mapping of cloud standards to the taxonomy of interoperability in IaaS. In: Proceedings - 2011 3rd IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2011, pp 522–526 (2011)García, A.L., Castillo, E.F.-d., Fernández, P.O.: Standards for enabling heterogeneous IaaS cloud federations. Computer Standards & Interfaces 47, 19–23 (2016)Caballer, M., Zala, S., García, A.L., Montó, G., Fernández, P.O., Velten, M.: Orchestrating complex application architectures in heterogeneous clouds. Journal of Grid Computing 16 (1), 3–18 (2018)Hardt, M., Jejkal, T., Plasencia, I.C., Castillo, E.F.-d., Jackson, A., Weiland, M., Palak, B., Plociennik, M., Nielsson, D.: Transparent Access to Scientific and Commercial Clouds from the Kepler Workflow Engine. Computing and Informatics 31(1), 119 (2012)Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow Scheduling in Cloud Computing a Survey. In: IEEE 18Th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), 2014, Vol. 71, pp. 372–378. Springer, New York (2014)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017)Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level Dynamic Workflow Orchestration in the INDIGO DataCloud for Large-scale, Climate Change Data Analytics Experiments. Procedia Computer Science 80, 722–733 (2016)Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multicloud deployment of computing clusters for loosely coupled mtc applications. IEEE transactions on parallel and distributed systems 22(6), 924–930 (2011)Katsaros, G., Menzel, M., Lenk, A.: Cloud Service Orchestration with TOSCA, Chef and Openstack. In: Ic2e (2014)Garcia, A.L., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Dal Pra, S., Salomoni, D., Donvito, G.: Improved Cloud resource allocation: how INDIGO-DataCloud is overcoming the current limitations in Cloud schedulers. J. Phys. Conf. Ser. 898(9), 92010 (2017)Singh, S., Chana, I.: A survey on resource scheduling in cloud computing issues and challenges. Journal of Grid Computing, pp. 1–48 (2016)García, A.L., Castillo, E.F.-d., Fernández, P.O., Plasencia, I.C., de Lucas, J.M.: Resource provisioning in Science Clouds: Requirements and challenges. Software: Practice and Experience 48(3), 486–498 (2018)Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a systematic survey of challenges and solutions. Software - Practice and Experience 47(4), 599–644 (2017)Somasundaram, T.S., Govindarajan, K.: CLOUDRB A Framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud. Futur. Gener. Comput. Syst. 34, 47–65 (2014)Sotomayor, B., Keahey, K., Foster, I.: Overhead Matters: A Model for Virtual Resource Management. In: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing SE - VTDC ’06, p 5. IEEE Computer Society, Washington (2006)SS, S.S., Shyam, G.K., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in cloud computing SS Manvi A survey. J. Netw. Comput. Appl. 41, 424–440 (2014)INDIGO-DataCloud consortium: Initial requirements from research communities - d2.1, see https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 . Technical report (2015)Europen open science cloud: https://ec.europa.eu/research/openscience (2015)Proot: https://proot-me.github.io/ (2014)Runc: https://github.com/opencontainers/runc (2016)Fakechroot: https://github.com/dex4er/fakechroot (2015)Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures Future Generation Computer Systems (2018)de Vries, K.J.: Global fits of supersymmetric models after LHC run 1. Phd thesis Imperial College London (2015)Openstack: https://www.openstack.org/ (2015)See http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html (2017)See https://en.wikipedia.org/wiki/xacml (2013)See http://www.simplecloud.info (2014)Opennebula: http://opennebula.org/ (2018)Redhat openshift: http://www.opencityplatform.eu (2011)The cloud foundry foundation: https://www.cloudfoundry.org/ (2015)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015)See http://www.infoq.com/articles/scaling-docker-with-kubernetes http://www.infoq.com/articles/scaling-docker-with-kubernetes (2014)Prisma project: http://www.ponsmartcities-prisma.it/ (2010)Opencitiy platform: http://www.opencityplatform.eu (2014)Onedata: https://onedata.org/ (2018)Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project (2011)Fts3: https://svnweb.cern.ch/trac/fts3 (2011)Fernández, P.O., García, A.L., Duma, D.C., Donvito, G., David, M., Gomes, J.: A set of common software quality assurance baseline criteria for research projects, see http://hdl.handle.net/10261/160086 . Technical reportHttermann, M.: Devops for developers Apress (2012)EOSC-Hub: ”Integrating and managing services for the European Open Science Cloud” Funded by H2020 research and innovation pr ogramme under grant agreement No. 777536. See http://eosc-hub.eu (2018)Apache License: author = https://www.apache.org/licenses/LICENSE-2.0 (2004)INDIGO Package Repo: http://repo.indigo-datacloud.eu/ (2017)INDIGO DockerHub: https://hub.docker.com/u/indigodatacloud/ https://hub.docker.com/u/indigodatacloud/ (2015)Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-datacloud-releases https://indigo-dc.gitbooks.io/indigo-datacloud-releases (2017)Van Zundert, G.C., Bonvin, A.M.: Disvis: quantifying and visualizing the accessible interaction space of distance restrained biomolecular complexes. Bioinformatics 31(19), 3222–3224 (2015)Van Zundert, G.C., Bonvin, A.M.: Fast and sensitive rigid–body fitting into cryo–em density maps with powerfit. AIMS Biophys. 2(0273), 73–87 (2015

    IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Volume 7.0. Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis. (IOCCG Protocols Series, Volume 7.0). DOI: http://dx.doi.org/10.25607/OBP-1835

    Get PDF
    In 2018, a working group sponsored by the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) project, in conjunction with the International Ocean Colour Coordinating Group (IOCCG), European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and Japan Aerospace Exploration Agency (JAXA), was assembled with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 5–7, 2018, at the University Space Research Association headquarters in Columbia, MD, USA, bringing together 26 active researchers from 16 institutions. In this document, we discuss and develop the workshop findings as they pertain to primary productivity measurements, including the essential issues, nuances, definitions, scales, uncertainties, and ultimately best practices for data collection across multiple methodologies

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
    corecore