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Abstract: Cell abundances of Prochlorococcus, Synechococcus, and autotrophic 
picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of 
hyperspectral and multispectral remote-sensing reflectance data. This involved the 
development of models that employed multilinear correlations between cell abundances 
across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. 
The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone 
and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus 
abundances towards temperate waters where Synechococcus flourishes, and an emergence of 
picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided 
a large dynamic range of measurements for the training dataset, which resulted in the 
successful detection of fine-scale Synechococcus patches. Satellite implementation of the 
models showed good performance (R2 > 0.50) when validated against in-situ data from six 
Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral 
models highlights the importance of future high spectral resolution satellite instruments, such 
as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal 
knowledge about ecologically relevant phytoplankton assemblages. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Observing spatiotemporal changes in the composition of phytoplankton assemblages over 
broad areas of the ocean increases our understanding of the response of these critical 
photoautotrophs to environmental and climatic processes. The smallest phytoplankton cells, 
most often categorized as picophytoplankton (< 2 µm [1]) or ultraphytoplankton (< 3 µm [2]), 
are the most abundant primary producers in the global ocean. Despite their individually low 

https://doi.org/10.1364/OA_License_v1
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biomass relative to other primary producers [3,4], picophytoplankton are dominant in ~50% 
of the world’s surface oceans, where the reduced availability of inorganic nutrients limits the 
growth of larger phytoplankton cells [5–7]. Composed of the cyanobacteria Prochlorococcus 
(~0.8 µm) and Synechococcus (~1 µm), as well as a polyphyletic group of picoeukaryotes, 
picophytoplankton are responsible for 50 to 90% of all primary production in open ocean 
ecosystems [8,9]. They therefore play a substantial role in the maintenance of the marine food 
web and contribute up to 30% of the total carbon export to the deep ocean [10–12]. 

Given the important ecological and biogeochemical roles of picophytoplankton, the 
oceanographic community invests substantially in improving our scientific understanding of 
their spatiotemporal patterns. Ship-based in-situ measurements of phytoplankton composition 
have revealed important paradigms in their diversity [13–18]. In the Atlantic Ocean, for 
example, Prochlorococcus inhabits warmer and mostly oligotrophic waters surrounded by 
spatially adjacent fronts of sub-mesoscale Synechococcus patches [8,13,18]. These fronts 
often reside at boundaries where phytoplankton communities start to transition to higher 
concentrations of larger eukaryotic cells, such as picoeukaryotes and nanoeukaryotic 
flagellates [8,19] (Fig. 1). Hence, identification of Prochlorococcus and Synechococcus 
distributions may conceptually be used to identify trophic boundaries in oceanic ecosystems 
[20], in addition to providing insight into productivity, food web regimes, and carbon export. 

 
Fig. 1. a) Carbon concentration estimated from flow-cytometric cell counts across the Atlantic 

Meridional Transect, and b) cell abundance (scaled to group-specific maximum cell 
abundance) of Prochlorococcus (blue), Synechococcus (orange), autotrophic picoeukaryotes 

(green) and autotrophic nanoeukaryotes (red) in surface waters of the frontal  system between 
the South Atlantic Gyre and temperate waters of the South Atlantic (subset of the southern 

portion of the transect in (a) ). Data collected during AMT24 (2014). Red circles in 
Prochlorococcus indicate samples that were taken from CTD casts. The remaining samples 

(across the Synechococcus front) were taken from the ship’s underway system. 

Ocean color satellite instruments provide a tool for capturing and retrospectively 
analyzing phytoplankton spatiotemporal patterns on synoptic and long-term scales that are 
unattainable by conventional in-situ methods [21–23]. These instruments measure visible and 
near-infrared radiances at discrete wavelengths at the top-of-the atmosphere. Atmospheric 
correction algorithms are applied to remove contributions of the atmosphere and surface 
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reflection from the total signal, leaving estimates of spectral remote-sensing reflectances 
(Rrs(λ); sr-1), the light exiting the water column normalized to the downwelling surface 
irradiance [24]. Bio-optical algorithms are subsequently applied to the Rrs(λ) to produce 
estimates of near-surface concentrations of the photosynthetic pigment chlorophyll-a (Chl; 
mg m-3) and other metrics of phytoplankton community composition [25–27]. Other existing 
bio-optical algorithms provide abundances or biomass of different phytoplankton using 
unique empirical relationships between cell abundance and Rrs(λ), as well as additional 
satellite observables such as sea surface temperature (SST; oC) and photosynthetically active 
radiation (PAR; µE m-2 s-1) [9,28–30]. 

To date, the majority of bio-optical algorithms that explore phytoplankton community 
composition exploit the capabilities of multispectral ocean color satellites, using only a few 
wavelengths of an Rrs(λ) spectrum [21,23,31]. More recent approaches consider increased 
spectral resolution, following the development of commercial off-the-shelf instrumentation 
allowing the hyperspectral in-situ measurement of Rrs(λ) and the expectation that 
hyperspectral ocean color satellite instruments will be launched in the foreseeable future [32]. 
Given the higher information content of hyperspectral radiometry, sophisticated statistical 
methods have been successfully applied to assess its variability and correlation with 
phytoplankton attributes of interest [18,33–39]. The forthcoming NASA Plankton, Aerosol, 
Cloud, ocean Ecosystem (PACE) mission is expected to increase the interest and demand for 
hyperspectral methods for global phytoplankton community composition assessment [40]. 

In this paper, we present empirical algorithms based on principal component regressions 
that provide estimates of surface abundances of Prochlorococcus, Synechococcus, and 
autotrophic picoeukaryotes, derived from in-situ datasets of measured cell abundances and 
hyperspectral Rrs(λ). First, we explore the viability of principal component techniques for the 
identification of some of the smallest phytoplankton community members using hyperspectral 
and multispectral Rrs(λ). This exploration includes an assessment of performance 
enhancement using both Rrs(λ) and remotely sensed SST as an additional predictor. Second, 
we evaluate the relative performance of multi- and hyperspectral implementations of these 
algorithms. These comparisons quantify improvements in Prochlorococcus and 
Synechococcus retrievals when additional spectral information is used. Knowledge of such 
performance differences provides a metric of relative uncertainty to be considered when 
evaluating results from heritage multispectral satellite instruments in comparison with 
forthcoming hyperspectral satellite instruments such as NASA’s PACE mission [40]. 

 

2. Material and Methods 

2.1 Algorithm training in-situ dataset 

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm 
training were collected during the Atlantic Meridional Transect 24 (AMT24) oceanographic 
expedition, which took place between the United Kingdom and the Falkland Islands during 
boreal autumn (September 30th to November 1st, 2014) onboard the RRS James Clark Ross. 
AMT24 covered most biogeochemical provinces of the Atlantic Ocean (Fig. 2), capturing 
several marine ecosystems inclusive of ocean gyres, the highly productive Equatorial 
Convergence Zone, and the high-latitude boundaries of the ocean gyres [8,41].  

The sampling strategy to generate an appropriate dataset to develop a predictive algorithm 
targeted to a phytoplankton group must be designed according to the spatial scales of 
variability for this group. As such, consideration of previous knowledge about the biology 
and ecology of this phytoplankton group is useful. With that in mind, we considered two 
different approaches to collect discrete samples for the analysis of picophytoplankton 
community structure. First, daily surface (< 10 m depth) samples were collected at 13:00 
(local time) using a Niskin bottle deployed as part of the CTD rosette (Fig. 2). Second, 
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where ρsky and LNIR are scalar coefficients that we obtained by minimizing the following cost 
function: 

 = ∑ ( ) − ( ) −    .    (2) 
 

In practice, this minimization routine ensures that the derived (λ) is approximately zero 
and spectrally flat between 750 and 800 nm. Finally, remote-sensing reflectances were 
computed by dividing Lw(λ) by Ed(λ). 

Once processed, Rrs(λ) from 414 to 660 nm were interpolated (2 nm resolution), then 
quality-controlled by removing: 1) measurements collected earlier than 09:00 local time or 
later than 17:00 local time; 2) spectra that showed negative values in the visible range (400-
700 nm); and, 3) spectra with second derivative values higher than 2 × 10-4 sr-1 nm-1 or lower 
than -2 × 10-4  sr-1 nm-1 in the spectral region from 610 to 660 nm, as a means of noise 
removal. Coincidence between in-situ Rrs(λ) measurements and discrete sampling locations 
was determined by time (date, hour, and minute of sampling). Prior to the numerical analysis, 
each Rrs(λ) spectrum was standardized (Rrs'(λ)) [33,35] following: 

 ′( = ) = 	 ( )	 	 	[ ]	[ ] 	   ,        (3) 

 
where Rrs(λ=i) is the Rrs at the ith wavelength, and mean and sd [ ]  are the average and 
standard deviations of Rrs(λ) of values between 414 and 660 nm in one Rrs(λ) spectrum. This 
standardization of the Rrs(λ) curves highlights spectral features of Rrs(λ) and minimizes 
variance due to amplitude. Within open ocean (case 1) waters, the variability in the shapes of 
spectral features are mostly governed by phytoplankton absorption properties (i.e., pigments 
and packaging) [45], which provide the most useful spectral characteristics to differentiate 
between taxonomic groups. Features caused by changes in the spectral slope of backscattering 
and absorption by colored dissolved organic matter (CDOM) are still reflected in the shape of 
standardized Rrs’(λ) spectra. Less spectrally distinct changes in Rrs(λ) result from 
backscattering effects driven by particle morphological characteristics and refractive indices, 
and from processing errors in underway measured Rrs(λ) such as sea-surface correction and 
cloud effects. The measured Rrs’(λ) spectra used as a training dataset (AMT24) are shown in 
Fig. 3. 
 

 

Fig. 3. Remote-sensing reflectances (Rrs(λ)) measured at discrete sampling locations across the 
Atlantic Ocean during AMT24: a) original hyperspectral measurements; 

 b) standardized hyperspectral measurements; c) standardized multiband measurements at the 
central wavelengths of seven Aqua-MODIS bands: 443, 469, 488, 531, 547, 555, and 645 nm. 

 
Picophytoplankton cell concentrations (cells ml-1) were analyzed in 1.6 ml seawater 

samples preserved with paraformaldehyde using a FACSCalibur (Becton Dickinson) flow 
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cytometer. Yellow-green 0.5 and 1.0 μm reference beads (Fluoresbrite Microparticles, 
Polysciences, Warrington, PA, USA) were used as an internal standard for both fluorescence 
and flow rates [46]. For Prochlorococcus and Synechococcus, samples were stained with a 
1% commercial stock solution of SYBR Green 1 (Molecular Probes, Inc.) in Milli-Q water, 
then mixed with 300 mol m-3 tripotassium citrate (24.5 mol m-3 final concentration) [47]. This 
method allows the distinction of different populations of microbes based on their DNA 
content and right-angle light scatter (RALS), regardless of their intracellular Chl content (red 
fluorescence) [46]. Autotrophic eukaryotes were quantified based on their red fluorescence 
and RALS, using the method described in Olson et al. [48]. The AMT24 picoplankton dataset 
is freely available [49]. 

 

2.2 Validation in-situ datasets 

Radiometric, hydrographic, and phytoplankton abundance in-situ data for algorithm 
validation were collected during several oceanographic expeditions. First, cross-validation 
(see section 2.4) was performed using the same AMT24 dataset that was used for training the 
model. Then, a satellite implementation was tested using flow cytometric counts from five 
additional AMT cruises (AMT20, 22, 23, 25, and 28) [50–53] and coincident Rrs(λ) and SST 
satellite retrievals (see details in section 2.3), provided by the British Oceanographic Data 
Centre (BODC) [52]. Flow cytometric quantification of Prochlorococcus, Synechococcus and 
autotrophic picoeukaryotes was conducted using the method described in Olson et al. [48], 
except on AMTs 23 and 25 where Prochlorococcus was quantified following Zubkov et al. 
[47]. The collection and processing of flow cytometric data on these cruises followed the 
methods described in Lange et al. [28]. The five AMT cruises surveyed similar locations and 
occurred in similar seasons (late September to early November) spanning 2010 to 2018 
(detailed information on cruise tracks and dates are described in the Atlantic Meridional 
Transect website [54]).  

 

2.3 Satellite data 

MODerate resolution Imaging Spectroradiometer onboard Aqua (Aqua-MODIS) data 
were acquired from the NASA Ocean Biology Processing Group [55]. This included Level-3, 
4-km global maps of Rrs(λ) and SST spanning the following periods: daily and 8-day 
composites from September 30th to November 1st, 2014 (the duration of AMT24); and 8-day 
composites spanning October 12th to November 25th 2010 (AMT20), October 10th to 
November 24th 2012 (AMT22), October 3rd to November 4th 2013 (AMT23), September 11th 
to November 4th 2015 (AMT25) and September 23rd to October 30th 2018 (AMT28). Data 
from 8-day satellite composites were considered to match in-situ sampling locations when the 
date of the in-situ collection fell within the 8-day window of the composite and its location 
was located inside a valid 4-km satellite pixel. The October 2014 monthly cell abundance 
composites were created by averaging products that used 8-day composites from October 
2014 as input.  

Although the temporal interval between in-situ and satellite data may be long (for instance 
3-4 days) when using 8-day satellite composites, the abundance of picophytoplankton cells 
are not expected to change abruptly over time in stratified environments where they are most 
abundant (i.e. ocean gyres and Equatorial divergence zone). Phytoplankton community 
structure in these regions gradually changes over the seasons, with a much less dynamic 
behavior than temperate waters and shelf seas. Thus, these operationally-viable retrievals 
from 8-day satellite composites show their distribution patterns in enough detail and an 
acceptable associated uncertainty led by temporal mismatch. Data processing and quality 
assurance followed the OBPG reprocessing configuration 2018.0 [55]. Available visible 
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Aqua-MODIS Rrs(λ) from the OBPG were used at 443, 469, 488, 531, 547, 555, and 645 nm 
wavelengths. Satellite Rrs(λ) spectra were standardized according to Eq. 3 before being 
utilized for model implementation.  

  

2.4 Model development 

Following Craig et al. [33] and Bracher et al. [35], we used principal component 
regression to derive empirical relationships for the prediction of the abundances of 
Prochlorococcus, Synechococcus and autotrophic picoeukaryotic cells from scores of a 
principal component analysis (PCA) of in-situ Rrs’(λ) from AMT24. We also considered the 
SST measured in the AMT24 stations as an additional predictor to improve the performance 
of the PCA score-based empirical models. The decomposition of standardized Rrs(λ) spectra 
via PCA was performed in R using the function prcomp (package stats [56]), using: 1) 
hyperspectral Rrs’(λ) spanning 414-660 nm with 2 nm intervals, hereafter referred to as PCAh, 
and 2) Rrs(λ) measurements at the seven Aqua-MODIS wavelengths (443, 469, 488, 531, 547, 
555, 645 nm) available in the HyperSAS measurement range, hereafter referred to as PCAm. 
The matrix X with the Rrs’(λ) spectra was decomposed into principal components (PC) via: 

 ( , ) = ( , )	∑( )	 ( , )  ,  (4) 
 

where the matrix V of loadings (also known as eigenvectors) shows the spectral contributions 
to each PC (or mode), the vector  contains the singular values (square-root of scores), and 
the matrix U of scores (or eigenvalues) consists of the projection of samples at each PC 
driven by the variability of Rrs’(λ) in distinct sections of the spectrum [35]. The values n, w, 
and p in parentheses indicate dimensions of the matrices and correspond to the number of 
observations, number of wavelengths, and number of PCs, respectively, where the number of 
PCs is equal to the smallest number between n and w. Derived PCs with a standard deviation 
lower than 0.1% of the standard deviation of the first PC were discarded, resulting in 20 PCs 
from PCAh and 5 PCs from PCAm. Additional PCs were discarded based on their 
significance as a predicting variable in the empirical model (p-values > 0.05), resulting in 14 
PCs for PCAh and 3 PCs for PCAm. 

The PC scores were used as predictors in multilinear regression analyses targeting the 
abundances of Prochlorococcus (Pro) (Eq. 5), Synechococcus (Syn) (Eq. 6), and autotrophic 
picoeukaryotes (Apeuk) (Eq. 7). The initial empirical models were developed using SST and 
all PC scores as predictors. Irrelevant predictors (highest p-value in the regression model) 
were then systematically discarded using backward stepwise selection. As each predictor was 
discarded, the new model (without the discarded predictor) was compared with the previous 
model (including that predictor) using the Akaike Information Criteria (AIC), and the model 
with the lower AIC value was selected. This process was interrupted when the model that 
included a target predictor showed lower AIC than the model where it was removed. Then, 
the other variables were removed one by one, and the AIC was re-calculated to assure the best 
selection of variables, including those with low p-values in the regression. In the final 
regressions, SST was used as an additional predictor for Prochlorococcus and picoeukaryotes, 
composing the following formulations: 

 	= 	 +	 log ( ) 	+ + +⋯+     ,     (5) log ( ) 	= 	 +	 + +⋯+      , and     (6) log ( ) 	= 	 +	 log ( ) 	+ + +⋯+     ,     (7) 
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where n is the number of observations, XP is the predicted variable, XO is the observed 
variable, and k is the number of independent variables in the equation. For consistency across 
all phytoplankton assemblages, all metrics were calculated in logarithmic space, and reported 
values therefore can be assessed as relative or percentage uncertainties (i.e., Eqs. 3 and 4 from 
Seegers et al. [57]). Uncertainties were calculated using the following dataset arrangements:  

1) Full-fit in-situ predictions: Models trained with the AMT24 dataset were used to 
compute cell abundances from in-situ Rrs(λ) measurements from AMT24 and 
predictions were compared to in-situ observations of cell abundances from AMT24, 
which were also used for developing the models (Tables 1 and 2);  

2) Cross-validation based on in-situ predictions: Models trained with randomly sub-
sampled training datasets (80% of the original AMT24 dataset) were used to 
compute cell abundances using the remaining 20% of the dataset, and these 
predictions were compared with observations from this 20% sub-dataset (bootstrap 
method). This process was repeated (2000 Monte-Carlo permutations) and the 
average performance metrics were computed (Tables 1 and 2);  

3) Satellite predictions using full-fit multispectral in-situ models: Models trained with 
the AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) 
and SST retrievals (daily and 8-day composites) matching the time and location of 
sampling of AMT24, and predictions were compared to in-situ observations of cell 
abundances which were used to develop the prediction models (Table 3); and, 

4) Validation of satellite predictions with independent datasets: Models trained with the 
AMT24 dataset were used to compute cell abundances from Aqua-MODIS Rrs(λ) 
and SST retrievals (8-day composites) matching the time and location of sampling of 
five AMT cruises (AMTs 20, 22, 23, 25 and 28), and predictions were compared to 
in-situ observations of cell abundances (Table 3).  

Arrangements 1 and 2 assess model performance and robustness against the selection of 
input data, respectively. Arrangement 2 (cross-validation) allows an assessment of whether or 
not the full-fit model is overtrained (i.e., not generalizable to datasets other than its training 
dataset). If the full-fit and the cross-validation performance metrics show similar results, the 
model is robust (i.e., not overtrained). Arrangements 3 and 4 are used to assess the 
performance of the model in terms of application to satellite data to assess its uncertainty by 
validation with independent datasets. All statistical analyses were performed using the R 
packages stats [56], MASS [58], and devtools [59]. 

 

3. Results 

3.1 Selection of explanatory variables 
 
The backward selection of explanatory variables resulted in 14 PCs for PCAh and 3 PCs 

for PCAm. The loadings of the first 6 PCs for the PCAh and PCAm datasets are shown in Fig. 
5. The spectral distribution of PC loadings is akin to results from prior similar approaches 
[33–35], indicating spectral features related to the optical properties of the seawater 
constituents. The spectral variability of the first PC is driven mainly by the particulate 
backscattering of the in-water constituents and the absorption of water molecules, and 
explained more than 96% of the data covariance for both multi- and hyperspectral Rrs’(λ) 
datasets. The second PC highlights spectral features related to the absorption by Chl at the 
ocean surface, explaining ~3.5% of the dataset covariance; and the third PC is driven by the 
spectral variation of Rrs’(λ) due to the absorption of accessory pigments and explained 
~0.16% of the dataset covariance [33–35]. These first three PCs were similar between 
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3.2.2 Multispectral versus hyperspectral cross-validation   

Model performance improved when using hyperspectral Rrs’(λ) compared to consideration 
of only Aqua-MODIS bands (see Fig. 6, Tables 1 and 2). For Synechococcus abundance 
estimation, biases were negligible (Table 2) while multispectral MAEs exceeded 
hyperspectral MAEs in both Arrangements 1 (full-fit) and 2 (cross-validation) (1.45 vs. 1.27 
and 1.50 vs. 1.36, respectively). For the prediction of Prochlorococcus and picoeukaryote 
abundances, the hyperspectral biases and MAEs were also reduced relative to their 
multispectral counterparts for both Arrangements 1 and 2 (Table 2). Finally, the R2 for 
predicting Prochlorococcus, Synechococcus, and autotrophic picoeukaryote abundances 
increased by 6% on average when using hyperspectral approach compared to the 
multispectral approach. Nevertheless, and despite underperforming relative to the 
hyperspectral approach, patterns in the latitudinal variability in the abundance of these groups 
were still reasonably captured by the multispectral approach, using SST when applicable, 
across the full dynamic range of cell concentrations for each phytoplankton group (see Fig. 
6). 

Table 2. Arrangement 1 (full-fit) versus 2 (cross-validation) uncertainty calculations for cell abundance model 
estimates of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes during AMT24. Bias and MAE 
were calculated in log10 space, thus are expressed in relative values corresponding to the percentage deviation 
from 1 (i.e., 1.09 = +9%, 0.93 = –7%). R2 was calculated in log10 space for Synechococcus and picoeukaryotes, 

but with untransformed data for Prochlorococcus because Prochlorococcus abundances naturally show a 
normal distribution. 

Spectral 
resolution 

Predicted variable 
All AMT24 (Arrangement 1) Re-sampled AMT24 (Arrangement 2) 

n bias MAE R2 n bias MAE R2 

Hyperspectral 

Prochlorococcus* 73 1.08 1.31 0.82 16 1.08 1.35 0.78 

Synechococcus 73 ~ 1 1.27 0.92 16 ~ 1 1.36 0.85 

Picoeukaryotes 78 ~ 1 1.21 0.95 16 ~ 1 1.26 0.92 

Multispectral 

Prochlorococcus* 73 1.09 1.33 0.76 16 1.11 1.38 0.74 

Synechococcus 73 ~ 1 1.45 0.81 16 1.01 1.50 0.74 

Picoeukaryotes* 78 1 1.24 0.92 16 0.94 1.39 0.76 

* Models using sea surface temperature (SST) as an additional predictor. 

 

3.3 Model implementation using satellite data (Aqua-MODIS) 

 

3.3.1 Satellite retrievals from AMT cruises 

Assessment of our multispectral model using 8-day Aqua-MODIS Rrs’(λ) and SST 
imagery (September 30th to October 7th, 2014) as input yielded reasonable retrievals of cell 
concentrations when compared to in-situ samples collected during the AMT24 cruise (Table 
3). The MAE of 1.37 for Prochlorococcus, 2.04 for Synechococcus and 1.28 for 
picoeukaryotes was higher than the one encountered for in-situ Rrs’(λ) data (Table 1), 
indicating a degradation in performance when moving to the satellite Rrs’(λ). The bias in 
Prochlorococcus prediction remained around 1.09 (9%) when using Aqua-MODIS Rrs(λ), 
similar to that using in-situ Rrs’(λ) measurements. However, increases in the bias of 
Synechococcus (0.62 (–38%) from Aqua-MODIS and ~ 1 (~ 0%) from in-situ Rrs’(λ)) and 
picoeukaryote retrievals (0.91 (–9%) from Aqua-MODIS and 1 (0%) from in-situ Rrs(λ)) were 
more evident. These underestimations of cell abundances when using satellite data are likely 
associated with the “patchy” nature of their spatial distribution, further augmented by 
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abundance of these taxa. For example, PC1 shows Rrs(λ) features likely attributed to the 
backscatter slope and the spectral shape of the absorption of water molecules, having similar 
shape to the first PC of PCAs from hyperspectral Rrs(λ) spectra of meso- and eutrophic waters 
[33–35]. This first PC was highly correlated with highest Prochlorococcus abundances and 
lowest abundances of larger phytoplankton cells, meaning Prochlorococcus is most abundant 
in waters where the shape of the Rrs(λ) spectrum is most similar to that of PC1, thus having 
lower influence of the absorption of Chl, accessory pigments and other in-water constituents 
(i.e., oligotrophic waters). PCs 2 to 4 were associated with the presence of accessory pigments 
and higher Chl absorption, present in Synechococcus and autotrophic picoeukaryotic cells. 

Increasing the spectral resolution of Rrs(λ) substantially improved the prediction of all 
targeted groups (see Tables 1 and 2). Hyperspectral Rrs(λ) provides greater information 
content on oceanic constituents contributing to variability in the optical signal, in particular 
taxon-specific light-absorbing photosynthetic pigments. Pigment-specific light absorption 
imposes spectral features of several nanometers in distance, leading to variations in the 
spectral shape of Rrs(λ) signal [23,38]. As a consequence, our hyperspectral approach resulted 
in a higher number of usable principal components (predictors) than our multispectral 
approach, ultimately increasing the performance of the hyperspectral predictive models, in 
particular for Synechococcus. This result agrees with several previous comparisons of 
hyperspectral and multispectral algorithms that demonstrate how increasing the spectral 
resolution of the Rrs(λ) signal improves predictive models for some phytoplankton taxa [33–
35,38,61].  

Remotely-sensed physical ocean properties such as SST can be useful to further constrain 
empirical models that predict algal abundance. SST can be used as a powerful predictor for 
the accumulation of cells when direct or indirect relationships between SST and certain 
ecological conditions that favor the target taxon are well known, as previously demonstrated 
for the prediction of blooms of the harmful dinoflagellate Alexandrium fundyense in the Bay 
of Fundy [62] and blooms of the diatom Pseudo-nitzschia in Chesapeake Bay [63], and in 
other predicting models for the biomass of specific phytoplankton groups [30,64,65]. In our 
study, the inclusion of SST was relevant for predicting the abundances of Prochlorococcus 
and picoeukaryotes, as ecological niches of both taxa are extremely constrained by 
temperature [66–68]. Prochlorococcus is most abundant in environments with high water 
column stability [69–71], which is usually associated with high SST [72], whereas 
picoeukaryotes grow next to the transition between oligo- and mesotrophic waters [41,73], 
where SST is typically slightly lower than at the center of the gyres [74]. The inclusion of SST 
as a predictor was especially useful for improving multispectral models.  

The performance of empirical models such as the ones presented here are highly 
dependent on the training datasets. For example, inclusion of a dataset collected at higher 
spatial frequency across the frontal region in the South Atlantic allowed for a larger dynamic 
range in the training dataset, yielding better retrievals for phytoplankton taxa that occur in 
high-abundance patches such as Synechococcus at the frontal system of the South Atlantic 
gyre southern boundary [8,29]. When we retrained the multispectral model using only 
samples collected on CTD casts (sparse sampling strategy), Synechococcus cell abundances 
were underestimated in these patches as sparse sampling missed small pockets of high 
Synechococcus abundances, thus not capturing the full range of Synechococcus cell 
concentrations. The increased number of samples across the Synechococcus patch reduced the 
retrieval bias from 0.71 (–29%) to ~ 1 (~ 0%) when using multispectral Rrs(λ) and from 0.84 
(–16%) to ~ 1 (~ 0%) when using hyperspectral Rrs(λ), whereas MAE was reduced from 1.67 
(67%) to 1.45 (45%) in the multispectral model and from 1.37 (37%) to 1.27 (27%) using the 
hyperspectral approach. As an empirical model is only good at predicting cell abundances 
within the cell number range of its training dataset, this result highlights the importance of 
understanding the scales of cell abundances and its spatial distribution patterns for the 



 17

targeted phytoplankton taxon when assembling data to train empirical models. Proper design 
of in-situ sampling plans must cover the full dynamic range of cell abundances of that 
particular taxon. Similarly, vertical sampling needs consideration in such analyses given that 
in situ sampling does not always represent the spectrally-dependent depth range considered in 
the satellite retrieval. We considered the top 10 m of the water column in these analyses, 
which does not consider the full euphotic zone in our areas of interest, but does encompass a 
reasonable fraction of the optically weighted signal observed over the first e-folding depth 
[75]. 

Satellite implementation of the empirical models to monthly composites of Aqua-MODIS 
Rrs(λ) and SST provided a qualitative view of the spatial and temporal distributions (see Fig. 
9) of targeted taxa, if only to provide a visual case study to assess the portability of our 
model. For Prochlorococcus, our model predicts highest surface abundances at the edges of 
the ocean gyres and Equatorial Convergence, showing similar distribution to that of in-situ 
observations from AMT cruises (see Fig. 1) [8,14,52]. This Prochlorococcus distribution 
pattern agrees with predictions of other ocean color-based models, such as Alvain et al. [76], 
El-Hourany et al. [77], and Xi et al. [31], and the model of Lange et al. [28] which combines 
ocean color information with environmental variables. In turn, a model based solely on 
environmental variables (SST, photosynthetically-active radiation - PAR) – i.e. Flombaum et 
al. [29] – estimates highest Prochlorococcus abundances in western boundary currents such 
as the Gulf Stream and the Brazil Current because, in this model, SST is the most important 
driver of the distribution of Prochlorococcus. SST is a powerful predictor of Prochlorococcus 
[66–68], possibly due to its causal relationship with water column stratification [72] which 
favors the growth of this cyanobacterium [71]. Stratification induces oligotrophy, avoiding 
the growth of microbial assemblages that include herbivores of Prochlorococcus [78]. The 
direct relationship between Prochlorococcus and water column stability, rather than 
temperature, would justify the high Prochlorococcus abundances found in the Mediterranean 
Sea [79], and its absence in polar regions where stratification is seasonal or episodic. While 
SST may fail to predict the presence of Prochlorococcus in regions where salinity is important 
in driving stratification, ocean color variables such as Rrs(λ) provide direct observation of the 
surface water components. Rrs(λ) and spectral phytoplankton absorption coefficients (aph(λ)) 
provide refined information on the presence of optically-relevant phytoplankton, which are 
abundant in the absence of Prochlorococcus. In other words, Prochlorococcus is most 
abundant where the optical influence of phytoplankton on the Rrs(λ) spectrum is minimal. 
However, concurrent high abundances of Prochlorococcus and other phytoplankton groups 
(such as diatoms, nano- and picoeukaryotes) occur in areas where nutrient input is high 
despite high stratification levels (i.e., high SST), such as the Equatorial Convergence Zone 
[8,80]. This explains the best performance of our Prochlorococcus model when using ocean 
color information and SST as predictors. 

Regarding Synechococcus estimates, our ocean color-based model finds highest 
abundances at the high-latitude edges of the ocean gyres, especially the South Atlantic gyre, 
surrounding possible blooms of larger phytoplankton cells such as coccolithophorids [81], 
similar to predictions based on SST and PAR [29]. Highest abundances of autotrophic 
picoeukaryotes were found at the higher latitude edges of the ocean gyres (> 45o N and S), 
mimicking patterns seen in the Chl distribution. However, picoeukaryotic populations slightly 
decrease where Chl concentrations reach values of ~ 1 mg m-3. Such spatial and temporal 
patterns highlight the importance of these picophytoplankton taxa as proxies for certain 
ecosystems or trophic conditions. For example, high abundances of Prochlorococcus 
delineate the extension of the ocean gyres, and Synechococcus becomes abundant in a narrow 
band at the transition between oligotrophic (i.e. South Atlantic gyre) and mesotrophic waters 
(i.e. temperate waters of higher latitudes where pico- and nanophytoplankton bloom), as also 
observed in several studies [8,14,18,41]. It is important to note that our model estimates cell 
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abundances, which are highly correlated with group-specific carbon biomass but not always 
with pigment concentrations because of photophysiological adaptations of picophytoplankton 
cells to the different environmental conditions found across oceanic fronts [8,41,82–85]. 

In a similar way, we hypothesize that the inclusion of datasets from other parts of the 
ocean outside the Atlantic would improve the global model and allow for basin-specific 
tuning. Such models could allow for a segregated assessment of the photophysiological and 
optical characteristics of basin-specific ecotypes of the picocyanobacteria and picoeukaryotic 
flora, ultimately improving the performance of these empirical models. Furthermore, the 
ability of models to retrieve abundances of Synechococcus and autotrophic picoeukaryotes 
could be improved by including datasets from coastal and/or high Chl areas (> 1 mg m-3), 
allowing for a merged approach (similar to NASA’s current operational Chl algorithm). In 
these waters, the contribution of CDOM and carotenoids in large phytoplankton to the 
spectral variability of Rrs(λ) is higher, diminishing the relative influence of picophytoplankton 
cells. However, the spectral characteristics of these two groups are different in complex 
waters: Synechococcus ecotypes display different concentrations of accessory pigments to 
adapt to different optical niches [86–89], although they all contain phycobiliprotein 
complexes which are rather unique and likely to be detected by the PCA; and the taxonomic 
composition of autotrophic picoeukaryote communities is highly variable according to 
nutrient availability, temperature and stratification [41,90]. This could also deteriorate finding 
robust models for the specific groups. Xi et al. [31] used a large global matchup dataset for 
setting up similar Empirical Orthogonal Function (EOF) models with pigments (measured 
using HPLC) and satellite Rrs(λ) data. While eukaryotic phytoplankton groups were very well 
predicted globally, the prediction skill of Prochlorococcus and Synechococcus was rather 
poor. 

Observed changes in model performance between ocean basins or different Atlantic 
cruises may be expected and could stem from multiple sources. First, the occurrence of 
distinct ecotypes of Prochlorococcus and Synechococcus and combinations of picoeukaryotic 
taxa in each ocean basin, and their associated optical properties (due to the physiological 
acclimation and/or evolutionary adaptation) might have made our model specific to the 
Atlantic Ocean during the AMT sampling season(s) only. Second, the relationships between 
group-specific cell abundances and the Rrs(λ) signature can be influenced by the structure of 
the ecosystem itself – that is, the presence of other phytoplankton cells (e.g., diatoms in the 
Equatorial Convergence Zone), or other optically-active water constituents (e.g., CDOM and 
non-algal particles). Differences in ecosystem structure, specifically in the top-down control 
and other loss pathways for these phytoplankton populations, could also potentially influence 
model predictions. In addition, flow cytometric cell counts enable a precise determination of 
the abundance of picophytoplankton groups, which can be converted to carbon biomass 
[83,84], and do not depend on models and their associated uncertainties to attribute group-
specific biomass from marker pigments. However, the use of marker pigments as proxies for 
phytoplankton taxa is most directly linked to the observed change in the Rrs(λ) spectrum, and 
also provide estimates of the contribution of larger phytoplankton to the total phytoplankton 
biomass and its influence in the Rrs(λ) spectrum, which can be useful for analysis 
interpretation. Lastly, while methods used to collect Rrs(λ) for this study followed similar 
community-approved procedures, approaches used to quantify the cell abundances on 
different oceanographic expeditions differ, potentially adding to differing validation 
performances when comparing outputs of the model with alternate datasets where different 
flow cytometric procedures were adopted (i.e., Olson et al. [48] versus Zubkov et al. [47] for 
quantifying Prochlorococcus and Synechococcus).  

Since the goal of the model is to detect the large-scale spatial variability in open ocean 
waters, where picophytoplankton cells are most abundant, the model has not been tested in 
shelf seas and coastal waters. We expect that the models will need to be retuned for such 
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waters because the presence of suspended sediments and CDOM will change the spectral 
distribution of the eigenvectors of each principal component. 
 

5. Summary and conclusions 

Cell abundances of Prochlorococcus, Synechococcus and autotrophic picoeukaryotes 
were estimated in surface waters of the Atlantic Ocean using empirical models based on a 
combination of SST and the scores of an Rrs(λ) principal component analysis, which captured 
the association between changes in ocean color and the abundance of these picophytoplankton 
groups. These models were implemented using satellite data (Aqua-MODIS), which allowed 
us to estimate cell abundances on a basin scale. Although these phytoplankton types occur in 
high abundances in oligotrophic oceans, the spectral signature of waters inhabited by these 
cells is highly influenced by their optical attributes and other water constituents that co-vary 
with their abundance, such as the absorption of CDOM and backscattering of heterotrophic 
bacteria, which modify the magnitude and shape of the Rrs(λ) spectrum, being expressed in 
different PCs of the PCA.  

The extension of the predictive models to a basin scale is feasible because of the broad 
swath of the reference AMT in-situ dataset, which covers a large range of marine 
environments, including the North and South Atlantic gyres where picoplankton are 
dominant, and the Equatorial Convergence Zone where pico-sized cells are abundant but 
share the environment with larger phytoplankton. Along the AMT transect, model estimates 
successfully demonstrate the expected distributions of Prochlorococcus in gyres, with higher 
cell concentrations at the Equatorial Convergence and near the gyre edges. The model shows 
the emergence of autotrophic picoeukaryotes where Chl concentrations increase, and 
latitudinal changes in the abundance of Synechococcus showing high-abundance patches in 
areas of trophic transition such as between the ocean gyres and mesotrophic waters of higher 
latitudes.  

Our model successfully predicts the abundance of Prochlorococcus, Synechococcus and 
autotrophic picoeukaryotic cells in the surface oceans using remote-sensing reflectance and 
sea surface temperature. The models using hyperspectral Rrs(λ) substantially improved the 
prediction of Prochlorococcus when compared to the multispectral model. The sampling 
strategy to generate an appropriate dataset to develop a predictive algorithm targeted to a 
phytoplankton group must be designed according to the scale of spatial variability of this 
group; for example, in the case of Synechococcus accurate algorithm retrievals necessitate 
fine spatial sampling to detect the full abundance range including elevated cell concentrations 
along transition zones between oligotrophic and mesotrophic waters. Thus, consideration of 
previous knowledge about the biology and ecology of the target phytoplankton group is 
required.  
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