52 research outputs found

    DESARROLLO DE NUEVOS MATERIALES BASADOS EN METALES NOBLES Y SEMINOBLES PARA CATALISIS MEDIOAMBIENTAL Y APLICACIONES BIOCIDAS

    Full text link
    [ES] En esta Tesis Doctoral se ha estudiado el desarrollo de nuevos materiales basados en metales nobles y seminobles para su aplicación como catalizadores para su uso en tratamiento de aguas contaminadas y como aditivos con propiedades biocidas para la conservación de frutas y para recubrimiento de superficies. En primer lugar, se pretende disminuir la concentración de bromatos en agua, que son contaminantes tóxicos y cancerígenos, mediante el uso de catalizadores que permitan su hidrogenación catalítica, transformándolos en sustancias inocuas como los correspondientes bromuros. Para ello, se han empleado diferentes catalizadores de Pd soportados en alúmina y fibras de carbón activo. Las propiedades físicas, químicas y estructurales de los catalizadores han sido relacionadas con su actividad catalítica en la hidrogenación de aniones bromato. Se ha determinado que estos catalizadores son activos a temperatura ambiente y presión atmosférica, siendo el Pd(0) la especie catalíticamente activa. Un análisis exhaustivo de los resultados ha mostrado que las nanopartículas de Pd de mayor tamaño presentan una mayor actividad intrínseca, pues facilitan la disociación del H2 mediante la formación de las especies beta-PdH, que son las especies activas en la reducción catalítica de bromatos. Sin embargo, el aumento del tamaño de partícula de Pd conlleva una disminución en su dispersión metálica sobre el soporte, por lo que se debe encontrar un óptimo entre dispersión y tamaño de partícula de Pd para alcanzar la máxima actividad de los catalizadores. Ambos factores dependen del contenido en Pd, de la sal precursora utilizada y de la naturaleza del soporte, siendo el catalizador más activo por mol de Pd, el catalizador con 1% de Pd soportado sobre Al2O3 y preparado a partir de PdCl2. Por otro lado, se ha analizado la influencia de diversas variables de reacción en la actividad catalítica, comprobándose que la velocidad de reacción se encuentra directamente relacionada con la concentración de bromatos y la presión parcial de H2. En segundo lugar, se ha estudiado la capacidad biocida de distintos materiales frente a varias bacterias y hongos en ensayos in vivo e in vitro. Se ha determinado que los materiales más activos son las zeolitas intercambiadas con plata, comprobándose que el tipo de estructura zeolítica, la relación Si/Al y el contenido en plata son las variables más influyentes en la actividad biocida de los materiales. En este sentido, se ha demostrado que las zeolitas de poro grande, con supercavidades en su estructura y relación Si/Al cercana a dos son las más efectivas en todas las aplicaciones, aunque su actividad depende del tipo de organismo estudiado. Así, los mejores resultados se han obtenido con materiales basados en zeolita faujasita con plata de relación Si/Al=2,4, siendo muy efectivas con bajos contenidos en plata y pudiendo ser incorporadas a materiales poliméricos y recubrimientos comestibles, lo que permite su uso en la conservación de frutas y para dotar de propiedades biocidas a recubrimientos de superficies, tales como encimeras, material quirúrgico o embalajes.[CA] En aquesta tesi Doctoral s'ha estudiat el desenvolupament de nous materials basats en metals nobles i seminobles per a la seua aplicació com catalitzadors per l'ús en tractament d'aigües contaminades i com additius en propietats biocides per a la conservació de fruites i recobriment de superfícies. Primerament, es pretén disminuir la concentració de bromats a l'aigua, contaminants tòxics i cancerígens, mitjançant l'ús de catalitzadors que permeten la seua hidrogenació catalítica, transformant-los en substàncies innòcues com els corresponents bromurs. Per aconseguir-ho, s'han utilitzat diferents catalitzadors de Pd suportats en alúmina i fibres de carbó actiu. Les propietats físiques, químiques i estructurals dels catalitzadors han sigut relacionades amb la seua activitat catalítica en la hidrogenació d'anions bromats. S'ha determinat que aquests catalitzadors són actius a temperatura ambient i pressió atmosfèrica, sent el Pd(0) l'espècie catalíticament activa. L'anàlisi exhaustiu dels resultats ha mostrat que les nanopartícules de Pd de major grandària presenten una major activitat intrínseca, perquè faciliten la dissociació del H2 a través de la formació de les espècies beta-PdH, que són les espècies actives en la reducció catalítica de bromats. No obstant això, l'increment de la grandària de partícula de Pd comporta una disminució en la seua dispersió metàl·lica en el suport, pel que s'ha de trobar un òptim entre dispersió i grandària de partícula de Pd per arribar a la màxima activitat dels catalitzadors. Aquests dos factors depenen del contingut de Pd, de la sal precursora utilitzada i de la natura del suport, sent el catalitzador més actiu per mol de Pd, el de contingut 1% de Pd suportat en Al2O3 i preparat a partir de PdCl2. Per una altra banda, s'ha analitzat la influència de diferents variables de reacció en l'activitat catalítica, comprovant-se que la velocitat de reacció es troba directament relacionada en la concentració de bromats i en la pressió parcial de H2. En segon lloc, s'ha estudiat la capacitat biocida de diferents materials per tractar bacteris i fongs en assajos in vivo i in vitro. S'ha determinat que els materials més actius són les zeolites intercanviades amb argent, comprovant-se que el tipus d'estructura zeolítica, la relació Si/Al i el contingut d' argent són les variables més influents en l'activitat biocida dels materials. En aquest sentit, s'ha demostrat que les zeolites de porus gran, amb supercavitats en la seua estructura i relació Si/Al propera a dos són les més efectives en totes les aplicacions, encara que l'activitat depèn molt del tipus de l'organisme estudiat. D'aquesta manera, els millors resultats han sigut obtinguts amb materials basats en la zeolita faujasita en argent amb una relació Si/Al = 2,4, gaudint de bones efectivitats inclús en baixos continguts en argent. A més a més, aquestes zeolites han pogut ser incorporades en materials polimèrics i recobriments comestibles, que permeten el seu ús en la conservació de fruites i poden afegir propietats biocides a recobriments de superfícies, com ara bancades, material quirúrgic o embalatges.[EN] In the present Doctoral Thesis the development of new materials based on noble and seminobles metals has been studied for its application as catalysts in water treatment and as additives with biocide properties for fruit preservation and coating of surfaces. Firstly, one of the principal aims is the decrease of the carcinogenic and toxic bromates in water using catalytic hydrogenation, obtaining harmless substances such as the corresponding bromides. To this end, different catalysts based on Pd supported in alumina and activated carbon fibers have been used. The physical, chemical and structural properties of these catalysts have been related to the catalytic activity in the hydrogenation of bromates anions. It has been determined that these catalysts are active at room temperature and atmospheric pressure, being the specie Pd(0) the catalytic active specie. A deep analysis of the results has demonstrated that big Pd nanoparticles present a better intrinsic activity, facilitating the dissociation of H2 through the formation of beta-PdH species, responsible of the catalytic reduction of bromates. However, the increase of the size of the Pd particles produces a decrease of the metallic dispersion over the support. Because of that, it is necessary to find an optimum between the dispersion and the Pd particle size in order to achieve the highest activity of the catalysts. Both factors depend on Pd content, on the Pd salt precursor and on the nature of the supports, being the most active catalyst per mol of Pd, the catalyst with 1wt. % of Pd supported in Al2O3 and prepared using PdCl2. On the other hand, the influence of different variables of the reaction have been studied, checking that the reaction velocity is directly related to the bromates concentration and the parcial pressure of H2. Furthermore, the biocide capacity of different materials has been studied against diverse bacteria and fungi using both in vitro and in vivo test. The results determine that the most active materials are the Ag-exchanged zeolites, showing that the type of zeolitic structure, the Si/Al ratio and the silver content are the most significant parameters in the biocide activity of the materials. In that sense, the zeolites with large porous and large supercavities in their structures and with Si/Al ratio close to 2 are the most effective in all the studied applications, although the activity depends widely in the type of organisms treated. Thereby, the best results have been obtained with the materials based on the faujasite zeolite with a Si/Al ratio of 2.4 and doped with silver, being effective even with low contents of silver. Moreover, these Ag-zeolites have been incorporated in polymeric materials and covering materials, permitting their use for the fruit preservation and adding biocide properties to covering materials, such as packaging, worktops or surgical material.Cerrillo Olmo, JL. (2019). DESARROLLO DE NUEVOS MATERIALES BASADOS EN METALES NOBLES Y SEMINOBLES PARA CATALISIS MEDIOAMBIENTAL Y APLICACIONES BIOCIDAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124056TESI

    An in situ XAS study of the activation of precursor-dependent Pd nanoparticles

    Full text link
    [EN] The activation of precursor-dependent Pd nanoparticles was comprehensively followed by in situ X-ray absorption spectroscopy on two inorganic supports for rationalizing the final catalytic activity. Two series of Pd-based catalysts (7 wt% Pd) were prepared by impregnation of gamma-Al2O3 and activated carbon supports varying the metal precursor (Pd(NO3)(2), PdCl2 and Pd(OAc)(2)). The most relevant physicochemical properties of the studied catalysts were determined by several techniques including ICP-OES, XRD, N-2 adsorption and XAS. The results indicate that the thermal stability of the metal precursor plays an important role in the size and speciation of the formed Pd nanoparticles after the activation process. The Cl-based precursor, which presents high thermal stability, passes through a PdOxCly mixed phase when submitted to calcination on Pd/Al2O3 and leaves Cl-species after metal reduction on Pd/C (which can be detrimental to catalytic reactions). Differently, Pd(OAc)(2) and Pd(NO3)(2) promote the formation of larger species due to different precursor decomposition pathways. Ordered PdO is observed even before calcination when Pd(NO3)(2) was used as a metallic source, which translates into large nanoparticles after reduction in H-2. By using the average coordination numbers of Pd species obtained from EXAFS data of the as-reduced catalysts, a correlation was observed comparing the three precursors: PdCl2 generates smaller nanoparticles than Pd(OAc)(2), which in turn generates smaller nanoparticles than Pd(NO3)(2), regardless of the support used for catalyst preparation.The authors thank the Spanish Ministry of Economy and Competitiveness through MAT2015-71842-P (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating beamtime (proposal 2015091414), Carlo Marini and CLAESS beamline staff for their help and technical support during our experiment. C. W. Lopes (Science without Frontiers - Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship. J.L. Cerrillo wishes to thank MINECO for the Severo Ochoa contract for PhD formation (SVP-2014-068600).Wittee Lopes, C.; Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Agostini, G. (2018). An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics. 20(18):12700-12709. https://doi.org/10.1039/C8CP00517FS12700127092018Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058Lu, C., Wang, M., Feng, Z., Qi, Y., Feng, F., Ma, L., … Li, X. (2017). A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Science & Technology, 7(7), 1581-1589. doi:10.1039/c7cy00157fSoares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093Yaseneva, P., Marti, C. F., Palomares, E., Fan, X., Morgan, T., Perez, P. S., … Lapkin, A. A. (2014). Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chemical Engineering Journal, 248, 230-241. doi:10.1016/j.cej.2014.03.034Kalmykov, P. A., & Klyuev, M. V. (2016). A study of palladium hydrogenation catalysts based on nanodiamonds and activated carbon. Petroleum Chemistry, 56(1), 27-32. doi:10.1134/s0965544115080095Gaspar, A. B., & Dieguez, L. C. (2000). Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Applied Catalysis A: General, 201(2), 241-251. doi:10.1016/s0926-860x(00)00442-7Khudorozhkov, A. K., Chetyrin, I. A., Bukhtiyarov, A. V., Prosvirin, I. P., & Bukhtiyarov, V. I. (2017). Propane Oxidation Over Pd/Al2O3: Kinetic and In Situ XPS Study. Topics in Catalysis, 60(1-2), 190-197. doi:10.1007/s11244-017-0733-0Vedyagin, A. A., Volodin, A. M., Kenzhin, R. M., Stoyanovskii, V. O., Rogov, V. A., Medvedev, D. A., & Mishakov, I. V. (2017). Characterization and study on the thermal aging behavior of palladium–alumina catalysts. Journal of Thermal Analysis and Calorimetry, 130(3), 1865-1874. doi:10.1007/s10973-017-6530-yWang, C., Yang, F., Yang, W., Ren, L., Zhang, Y., Jia, X., … Li, Y. (2015). PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Advances, 5(35), 27526-27532. doi:10.1039/c4ra16792aDi Natale, F., Orefice, M., La Motta, F., Erto, A., & Lancia, A. (2017). Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Separation and Purification Technology, 174, 183-193. doi:10.1016/j.seppur.2016.10.022Toebes, M. L., van Dillen, J. A., & de Jong, K. P. (2001). Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 75-98. doi:10.1016/s1381-1169(01)00146-7Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews, 115(14), 6687-6718. doi:10.1021/cr500486uMoulijn, J. ., van Diepen, A. ., & Kapteijn, F. (2001). Catalyst deactivation: is it predictable? Applied Catalysis A: General, 212(1-2), 3-16. doi:10.1016/s0926-860x(00)00842-5Agostini, G., Lamberti, C., Pellegrini, R., Leofanti, G., Giannici, F., Longo, A., & Groppo, E. (2013). Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al2O3. ACS Catalysis, 4(1), 187-194. doi:10.1021/cs400507mCho, S. J., & Kang, S. K. (2000). Reversible Structural Transformation of Palladium Catalyst Supported on La−Al2O3Probed with X-ray Absorption Fine Structure. The Journal of Physical Chemistry B, 104(34), 8124-8128. doi:10.1021/jp991857pHarada, M., & Inada, Y. (2009). In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions. Langmuir, 25(11), 6049-6061. doi:10.1021/la900550tSingh, J., Lamberti, C., & van Bokhoven, J. A. (2010). Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 39(12), 4754. doi:10.1039/c0cs00054jD. C. Koningsberger and R.Prins , X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES , Wiley , 1988Wang, J., Wang, Q., Jiang, X., Liu, Z., Yang, W., & Frenkel, A. I. (2014). Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. The Journal of Physical Chemistry C, 119(1), 854-861. doi:10.1021/jp510730aAgostini, G., Pellegrini, R., Leofanti, G., Bertinetti, L., Bertarione, S., Groppo, E., … Lamberti, C. (2009). Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silica−Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. The Journal of Physical Chemistry C, 113(24), 10485-10492. doi:10.1021/jp9023712Frenkel, A. I., Hills, C. W., & Nuzzo, R. G. (2001). A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles. The Journal of Physical Chemistry B, 105(51), 12689-12703. doi:10.1021/jp012769jFrenkel, A. I. (1999). Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. Journal of Synchrotron Radiation, 6(3), 293-295. doi:10.1107/s0909049598017786Agostini, G., Piovano, A., Bertinetti, L., Pellegrini, R., Leofanti, G., Groppo, E., & Lamberti, C. (2014). Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C, 118(8), 4085-4094. doi:10.1021/jp4091014Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Sing, K. S. W., Rouquerol, F., Llewellyn, P., & Rouquerol, J. (2014). Assessment of Microporosity. Adsorption by Powders and Porous Solids, 303-320. doi:10.1016/b978-0-08-097035-6.00009-7Sing, K. S. W., Rouquerol, F., Rouquerol, J., & Llewellyn, P. (2014). Assessment of Mesoporosity. Adsorption by Powders and Porous Solids, 269-302. doi:10.1016/b978-0-08-097035-6.00008-5Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719Yazawa, Y., Yoshida, H., Takagi, N., Komai, S., Satsuma, A., & Hattori, T. (1998). Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2–Al2O3 in propane combustion. Applied Catalysis B: Environmental, 19(3-4), 261-266. doi:10.1016/s0926-3373(98)00080-0Lin, C.-M., Hung, T.-L., Huang, Y.-H., Wu, K.-T., Tang, M.-T., Lee, C.-H., … Chen, Y. Y. (2007). Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Physical Review B, 75(12). doi:10.1103/physrevb.75.125426Fernández-García, M. (2002). XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews, 44(1), 59-121. doi:10.1081/cr-120001459Agostini, G., Groppo, E., Piovano, A., Pellegrini, R., Leofanti, G., & Lamberti, C. (2010). Preparation of Supported Pd Catalysts: From the Pd Precursor Solution to the Deposited Pd2+Phase. Langmuir, 26(13), 11204-11211. doi:10.1021/la1005117Kim, S.-J., Lemaux, S., Demazeau, G., Kim, J.-Y., & Choy, J.-H. (2002). X-Ray absorption spectroscopic study on LaPdO3. Journal of Materials Chemistry, 12(4), 995-1000. doi:10.1039/b106795hGroppo, E., Liu, W., Zavorotynska, O., Agostini, G., Spoto, G., Bordiga, S., … Zecchina, A. (2010). Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 22(7), 2297-2308. doi:10.1021/cm903176dGóralski, J., Szczepaniak, B., Grams, J., Maniukiewicz, W., & Paryjczak, T. (2007). Characteristic of physicochemical properties of Pd/MgO catalysts used in the hydrodechlorination process with CCI4. Polish Journal of Chemical Technology, 9(3), 77-80. doi:10.2478/v10026-007-0059-yAgostini, G., Groppo, E., Bordiga, S., Zecchina, A., Prestipino, C., D’Acapito, F., … Lamberti, C. (2007). Reactivity of Cr Species Grafted on SiO2/Si(100) Surface:  A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. The Journal of Physical Chemistry C, 111(44), 16437-16444. doi:10.1021/jp074066tShen, W.-J., Ichihashi, Y., Ando, H., Okumura, M., Haruta, M., & Matsumura, Y. (2001). Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Applied Catalysis A: General, 217(1-2), 165-172. doi:10.1016/s0926-860x(01)00606-8Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065Nashner, M. S., Frenkel, A. I., Adler, D. L., Shapley, J. R., & Nuzzo, R. G. (1997). Structural Characterization of Carbon-Supported Platinum−Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16. Journal of the American Chemical Society, 119(33), 7760-7771. doi:10.1021/ja971039fKang, J. H., Menard, L. D., Nuzzo, R. G., & Frenkel, A. I. (2006). Unusual Non-Bulk Properties in Nanoscale Materials:  Thermal Metal−Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. Journal of the American Chemical Society, 128(37), 12068-12069. doi:10.1021/ja064207

    Forest decline evaluation in Antarctic Beech Forests (Nothofagus antarctica) in Chilean Patagonia by using Landsat TM and ETM+

    Get PDF
    Antarctic beech forests (Nothofagus antarctica (G. Forst.) Oerst.) have shown a major decline process in the past few decades, together with an important lack of specific studies on this type of forest. The aim of this work was to create cartography of the surface of Antarctic beech forests and to evaluate decline levels in the XII Region of Chile. A study area was selected between the cities of Puerto Natales and Punta Arenas (latitudes 50º40’S to 52º40’S) and from latitudes 60º15’W to 74º15’W, where a random stratified sampling was carried out in 68 plots, in which the forest cover, mortality, height, normal diameter and regeneration were measured. Using two Landsat images (1986-2002), the study area was classified in terms of vegetation cover and forest mortality, by means of the normalized vegetation index (NDVI). The forests in this study area are characterized by their high density, and, in over half their surface (27,873 ha) they exhibit some degree of mortality, with 7,585 ha of forest completely affected. The distribution of the mortality in Antarctic beech on the period 1986-2002 showed an improvement on forests condition, which seems to corroborate the hypothesis of a change on perturbation pattern as the major reason for this forest decline process.Los bosques de ñirre (Nothofagus antarctica) han experimentado en las últimas décadas un importante proceso de mortalidad. El objetivo de este trabajo fue elaborar una cartografía de las masas de ñirre en función de la fracción de cabida cubierta del dosel arbóreo y el nivel de mortalidad en la XII Región de Chile. En una zona entre las ciudades de Puerto Natales y Punta Arenas (50º40’ - 52º40’ S y 69º15’ - 74º15’ O) se realizó un muestreo estratificado en 68 parcelas, donde se midieron: fracción de cabida cubierta, mortandad del arbolado, altura, diámetro normal (DAP) y regeneración. Mediante clasificación de dos imágenes Landsat TM (1986) y ETM+ (2002) se estudiaron el estado de las masas de ñirre y la evolución de la mortandad en un periodo de 16 años, utilizando el índice de vegetación normalizado (NDVI). En el año 2002 los bosques de ñirre se caracterizaban por una elevada fracción de cabida cubierta, tallas y diámetros medios, y una escasa regeneración. Más de la mitad de la superficie de estudio (casi 28.000 ha) presentaba algún grado de mortandad del arbolado, con 7.585 ha de bosques totalmente muertos. El patrón de mortandad, por comparación con el estado del arbolado en 1986, indicó una tendencia a mejorar el estado del arbolado en los últimos 16 años, lo cual parece confirmar la hipótesis de que los procesos de mortandad en esta especie no están asociados a un cambio en el patrón climático en la zona, sino más bien a la modificación del régimen de perturbaciones

    Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies

    Get PDF
    The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands

    Origin and driving mechanisms of marine litter in the shelf-incised Motril, Carchuna, and Calahonda canyons (northern Alboran Sea)

    Get PDF
    Introduction and methodsMarine litter density, distribution and potential sources, and the impact on canyon seafloor habitats were investigated in the Motril, Carchuna and Calahonda canyons, located along the northern margin of the Alboran Sea. During the ALSSOMAR-S2S oceanographic survey carried out in 2019, canyon floor imagery was collected by a Remotely Operated Vehicle along 5 km in the Motril Canyon, 10 km in the Carchuna Canyon, and 3 km in Calahonda Canyon, together with 41 surficial sediment samples. Additionally, coastal uses, maritime traffic and fishing activity data were analyzed. A 50 m resolution multibeam bathymetry served as base map. ResultsIn the Motril and Calahonda canyons, the density of marine litter was low and the material was dispersed, very degraded and partially buried. In contrast, the Carchuna Canyon contained a greater amount and variety of litter. The Carchuna Canyon thalweg exhibited a density of marine litter up to 8.66 items center dot 100 m(-1), and litter hotspots with a density of up to 42 items center dot m(2) are found along the upper reaches of the canyon thalweg. DiscussionLow litter abundances found in the studied canyons most likely reflect low population densities and the absence of direct connections with streams in the nearby coasts. The high shelf incision of the Carchuna Canyon and its proximity to the coastline favor littoral sediment remobilization and capture as well as the formation of gravity flows that transport the marine litter along the thalweg toward the distal termination of the channel. Litter hotspots are favored by the canyon morphology and the occurrence of rocky outcrops. Most debris is of coastal origin and related to beach occupation and agricultural practices in the adjacent coastal plain. A third origin was represented by fishing gear in the study area. Fishing activity may be producing an impact through physical damage to the skeletons of the colonial scleractinians located in the walls of the Carchuna Canyon. In contrast, the Motril and Calahonda canyons can be considered passive systems that have mainly acted as depositional sinks in the recent past, as evidenced by buried marine litter.18-ESMARES2-CIRCA project of the Instituto Español de Oceanografıa; DL57/2016/CP1361/CT0009info:eu-repo/semantics/publishedVersio

    Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance

    Full text link
    [EN] Mayenite was recently successfully employed as an active catalyst for trichloroethylene (TCE) oxidation. It was effective in promoting the conversion of TCE in less harmful products (CO2 and HCl) with high activity and selectivity. However, there is a potential limitation to the use of mayenite in the industrial degradation of chlorinated compounds-its limited operating lifespan owing to chlorine poisoning of the catalyst. To overcome this problem, in this work, mayenite-based catalysts loaded with iron (Fe/mayenite) were prepared and tested for TCE oxidation in a gaseous phase. The catalysts were characterized using different physico-chemical techniques, including XRD, ICP, N-2-sorption (BET), H-2-TPR analysis, SEM-EDX, XPS FESEM-EDS, and Raman. Fe/mayenite was found to be more active and stable than the pure material for TCE oxidation, maintaining the same selectivity. This result was interpreted as the synergistic effect of the metal and the oxo-anionic species present in the mayenite framework, thus promoting TCE oxidation, while avoiding catalyst deactivation.This work was supported by the grants ORSA167988 and ORSA174250 funded by the University of Salerno. AEP and JLC thank the Spanish Ministry of Economy and Competitiveness through RTI2018-101784-B-I00 and SEV-2016-0683 for the financial support. J.L. Cerrillo wishes to thank the Spanish Ministry of Economy and Competitiveness for the Severo Ochoa PhD fellowship (SVP-2014-068600).Cucciniello, R.; Intiso, A.; Siciliano, T.; Palomares Gimeno, AE.; Martínez-Triguero, J.; Cerrillo, JL.; Proto, A.... (2019). Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. Catalysts. 9(9):1-13. https://doi.org/10.3390/catal9090747S11399Rossi, F., Cucciniello, R., Intiso, A., Proto, A., Motta, O., & Marchettini, N. (2015). Determination of the trichloroethylene diffusion coefficient in water. AIChE Journal, 61(10), 3511-3515. doi:10.1002/aic.14861Ko, J. H., Musson, S., & Townsend, T. (2010). Destruction of trichloroethylene during hydration of calcium oxide. Journal of Hazardous Materials, 174(1-3), 876-879. doi:10.1016/j.jhazmat.2009.09.043Ge, J., Huang, S., Han, I., & Jaffé, P. R. (2019). Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. Environmental Pollution, 247, 248-255. doi:10.1016/j.envpol.2019.01.066Moccia, E., Intiso, A., Cicatelli, A., Proto, A., Guarino, F., Iannece, P., … Rossi, F. (2016). Use of Zea mays L. in phytoremediation of trichloroethylene. Environmental Science and Pollution Research, 24(12), 11053-11060. doi:10.1007/s11356-016-7570-8Meyer, C. I., Borgna, A., Monzón, A., & Garetto, T. F. (2011). Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts. Journal of Hazardous Materials, 190(1-3), 903-908. doi:10.1016/j.jhazmat.2011.04.007Cucciniello, R., Proto, A., Rossi, F., Marchettini, N., & Motta, O. (2015). An improved method for BTEX extraction from charcoal. Analytical Methods, 7(11), 4811-4815. doi:10.1039/c5ay00828jIntiso, A., Miele, Y., Marchettini, N., Proto, A., Sánchez-Domínguez, M., & Rossi, F. (2018). Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environmental Technology & Innovation, 12, 72-79. doi:10.1016/j.eti.2018.08.001Garza‐Arévalo, J. I., Intiso, A., Proto, A., Rossi, F., & Sanchez‐Dominguez, M. (2019). Trichloroethylene solubilization using a series of commercial biodegradable ethoxylated fatty alcohol surfactants. Journal of Chemical Technology & Biotechnology, 94(11), 3523-3529. doi:10.1002/jctb.5965Aranzabal, A., Pereda-Ayo, B., González-Marcos, M., González-Marcos, J., López-Fonseca, R., & González-Velasco, J. (2014). State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemical Papers, 68(9). doi:10.2478/s11696-013-0505-7Li, D., Li, C., & Suzuki, K. (2013). Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Applied Clay Science, 77-78, 56-60. doi:10.1016/j.clay.2013.02.027Tian, W., Fan, X., Yang, H., & Zhang, X. (2010). Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene. Journal of Hazardous Materials, 177(1-3), 887-891. doi:10.1016/j.jhazmat.2009.12.116Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Puche, M., Fetter, G., & Bosch, P. (2014). The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Applied Catalysis B: Environmental, 160-161, 129-134. doi:10.1016/j.apcatb.2014.05.014Taralunga, M., Mijoin, J., & Magnoux, P. (2006). Catalytic destruction of 1,2-dichlorobenzene over zeolites. Catalysis Communications, 7(3), 115-121. doi:10.1016/j.catcom.2005.09.006Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R., & González-Marcos, J. A. (2016). Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Applied Catalysis B: Environmental, 180, 210-218. doi:10.1016/j.apcatb.2015.06.027Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., & Valencia, S. (2016). Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Applied Catalysis B: Environmental, 187, 90-97. doi:10.1016/j.apcatb.2016.01.029Cucciniello, R., Proto, A., Rossi, F., & Motta, O. (2013). Mayenite based supports for atmospheric NOx sampling. Atmospheric Environment, 79, 666-671. doi:10.1016/j.atmosenv.2013.07.065Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., & Rossi, F. (2017). Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental, 204, 167-172. doi:10.1016/j.apcatb.2016.11.035Intiso, A., Martinez-Triguero, J., Cucciniello, R., Proto, A., Palomares, A. E., & Rossi, F. (2019). A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts, 9(1), 27. doi:10.3390/catal9010027Intiso, A., Martinez-Triguero, J., Cucciniello, R., Rossi, F., & Palomares, A. E. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports, 9(1). doi:10.1038/s41598-018-36708-2Proto, A., Cucciniello, R., Rossi, F., & Motta, O. (2013). Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices. Environmental Science and Pollution Research, 21(4), 3182-3186. doi:10.1007/s11356-013-2369-3Eufinger, J.-P., Schmidt, A., Lerch, M., & Janek, J. (2015). Novel anion conductors – conductivity, thermodynamic stability and hydration of anion-substituted mayenite-type cage compounds C12A7:X (X = O, OH, Cl, F, CN, S, N). Physical Chemistry Chemical Physics, 17(10), 6844-6857. doi:10.1039/c4cp05442cSchmidt, A., Lerch, M., Eufinger, J.-P., Janek, J., Tranca, I., Islam, M. M., … Hölzel, M. (2014). Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics, 254, 48-58. doi:10.1016/j.ssi.2013.10.042Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G., Belghoul, B., & Martin, M. (2015). Oxygen Diffusion in Mayenite. The Journal of Physical Chemistry C, 119(18), 9721-9727. doi:10.1021/jp512863uRuszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., & Sojka, Z. (2008). Selective N2O Removal from the Process Gas of Nitric Acid Plants Over Ceramic 12CaO · 7Al2O3 Catalyst. Catalysis Letters, 126(1-2), 72-77. doi:10.1007/s10562-008-9619-xProto, A., Cucciniello, R., Genga, A., & Capacchione, C. (2015). A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catalysis Communications, 68, 41-45. doi:10.1016/j.catcom.2015.04.028Ye, T.-N., Li, J., Kitano, M., & Hosono, H. (2017). Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst. Green Chemistry, 19(3), 749-756. doi:10.1039/c6gc02782bLi, C., Hirabayashi, D., & Suzuki, K. (2009). A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental, 88(3-4), 351-360. doi:10.1016/j.apcatb.2008.11.004Li, H., Wang, S., Wang, X., Wang, Y., Tang, N., Pan, S., & Hu, J. (2017). FeCl3-modified Co–Ce oxides catalysts for mercury removal from coal-fired flue gas. Chemical Papers, 71(12), 2545-2555. doi:10.1007/s11696-017-0250-4Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564-1574. doi:10.1002/sia.1984Mendez, M., Ciuraru, R., Gosselin, S., Batut, S., Visez, N., & Petitprez, D. (2013). Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification. Atmospheric Chemistry and Physics Discussions, 13(6), 16925-16960. doi:10.5194/acpd-13-16925-201

    Functional Ag-Exchanged Zeolites as Biocide Agents

    Full text link
    "This is the peer reviewed version of the following article: Cerrillo, José Luis, Antonio Eduardo Palomares, Fernando Rey, Susana Valencia, María Bernardita Pérez-Gago, Diana Villamón, and Lluís Palou. 2018. Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect 3 (17). Wiley: 4676 82. doi:10.1002/slct.201800432, which has been published in final form at https://doi.org/10.1002/slct.201800432. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Materials based on silver are used for controlling different pathogenic microorganisms. However, the influence of the silver carrier in the biocidal activity of the material has been scarcely reported. The present research is focused on studying the influence of zeolite properties on the biocidal activity of silver-exchanged zeolites, acting as reservoirs of silver species. The biocidal action of Ag-Faujasite (Ag-FAU) and Ag-Linde Type A (Ag-LTA) zeolites, containing different silver contents, is studied against different types of bacteria and fungi. Importantly, zeolite structure is found to be a significant parameter for controlling the antibacterial activity of Ag-exchanged zeolites. The results show that Ag-FAU presents a higher activity than Ag-LTA, because the topology of FAU combined with its highest Si/Al ratio favors the formation and release of silver species with important biocidal activity. Some insights on the bactericidal mechanism of Ag-zeolites are envisaged by means of high resolution transmission electron microscopy, showing the multi-targeted biocidal action of Ag species released from zeolites. Besides, it is shown that Ag-zeolites are more active against bacteria than fungi. Antifungal activity is highly dependent on the fungi species and the structure of the zeolite is not as determinant as it is for the antibacterial activity.The authors thank the Spanish Ministry of Economy and Competitiveness through MAT-2015-71842-P and SEV-2016-0683 for the financial support and J.L. Cerrillo wish to thank Spanish Ministry of Economy and Competitiveness for the Severo Ochoa PhD fellowship (SVP-2014-068600).Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Valencia Valencia, S.; Pérez-Gago, MB.; Villamón-Pérez, D.; Palou-Valls, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect. 3(17):4676-4682. https://doi.org/10.1002/slct.201800432S46764682317Dai, D., Prussin, A. J., Marr, L. C., Vikesland, P. J., Edwards, M. A., & Pruden, A. (2017). Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 51(14), 7759-7774. doi:10.1021/acs.est.7b01097Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., Camargo, E. R. de, & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110. doi:10.1016/j.ijantimicag.2009.01.017Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. doi:10.1128/aem.02001-07Sánchez, M. J., Mauricio, J. E., Paredes, A. R., Gamero, P., & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Materials Letters, 191, 65-68. doi:10.1016/j.matlet.2017.01.039Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041Haile, T., Nakhla, G., Zhu, J., Zhang, H., & Shugg, J. (2010). Mechanistic study of the bactericidal action of silver-loaded chabasite on Acidithiobacillus thiooxidans. Microporous and Mesoporous Materials, 127(1-2), 32-40. doi:10.1016/j.micromeso.2009.06.030Saint-Cricq, P., Kamimura, Y., Itabashi, K., Sugawara-Narutaki, A., Shimojima, A., & Okubo, T. (2012). Antibacterial Activity of Silver-Loaded «Green Zeolites». European Journal of Inorganic Chemistry, 2012(21), 3398-3402. doi:10.1002/ejic.201200476Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003Inglezakis, V. J. (2005). The concept of «capacity» in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68-79. doi:10.1016/j.jcis.2004.08.082Fonseca, A. M., & Neves, I. C. (2013). Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 181, 83-87. doi:10.1016/j.micromeso.2013.07.018Amorim, R., Vilaça, N., Martinho, O., Reis, R. M., Sardo, M., Rocha, J., … Neves, I. C. (2012). Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. The Journal of Physical Chemistry C, 116(48), 25642-25650. doi:10.1021/jp3093868Neves, I. C., Cunha, C., Pereira, M. R., Pereira, M. F. R., & Fonseca, A. M. (2010). Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. The Journal of Physical Chemistry C, 114(24), 10719-10724. doi:10.1021/jp101001aGóra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446hDemirci, S., Ustaoğlu, Z., Yılmazer, G. A., Sahin, F., & Baç, N. (2013). Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Applied Biochemistry and Biotechnology, 172(3), 1652-1662. doi:10.1007/s12010-013-0647-7Tekin, R., & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55-60. doi:10.1016/j.micromeso.2016.07.006Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A.-, & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. doi:10.1016/j.micromeso.2012.05.006Lalueza, P., Monzón, M., Arruebo, M., & Santamaria, J. (2011). Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem. Commun., 47(2), 680-682. doi:10.1039/c0cc03905eKawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 16(6), 452-455. doi:10.1016/s0109-5641(00)00050-6Bedi, R. S., Cai, R., O’Neill, C., Beving, D. E., Foster, S., Guthrie, S., … Yan, Y. (2012). Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. Microporous and Mesoporous Materials, 151, 352-357. doi:10.1016/j.micromeso.2011.10.012Chiericatti, C., Basílico, J. C., Basílico, M. L. Z., & Zamaro, J. M. (2014). Antifungal activity of silver ions exchanged in mordenite. Microporous and Mesoporous Materials, 188, 118-125. doi:10.1016/j.micromeso.2013.12.033Cerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Palou, L., & Pérez-Gago, M. B. (2017). Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 254, 69-76. doi:10.1016/j.micromeso.2017.03.036Mayoral, A., Carey, T., Anderson, P. A., & Diaz, I. (2013). Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 166, 117-122. doi:10.1016/j.micromeso.2012.04.033Kaur, B., Srivastava, R., Satpati, B., Kondepudi, K. K., & Bishnoi, M. (2015). Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids and Surfaces B: Biointerfaces, 135, 201-208. doi:10.1016/j.colsurfb.2015.07.068Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5), 1516-1524. doi:10.1111/j.1365-2672.2007.03673.xSun, T., & Seff, K. (1994). Silver Clusters and Chemistry in Zeolites. Chemical Reviews, 94(4), 857-870. doi:10.1021/cr00028a001Sayah, E., Brouri, D., & Massiani, P. (2013). A comparative in situ TEM and UV–visible spectroscopic study of the thermal evolution of Ag species dispersed on Al2O3 and NaX zeolite supports. Catalysis Today, 218-219, 10-17. doi:10.1016/j.cattod.2013.06.003Satsuma, A., Shibata, J., Shimizu, K., & Hattori, T. (2005). Ag Clusters as Active Species for HC-SCR Over Ag-Zeolites. Catalysis Surveys from Asia, 9(2), 75-85. doi:10.1007/s10563-005-5993-1Hutson, N. D., Reisner, B. A., Yang, R. T., & Toby, B. H. (2000). Silver Ion-Exchanged Zeolites Y, X, and Low-Silica X:  Observations of Thermally Induced Cation/Cluster Migration and the Resulting Effects on the Equilibrium Adsorption of Nitrogen. Chemistry of Materials, 12(10), 3020-3031. doi:10.1021/cm000294nFeng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:43.0.co;2-3Compendium of Citrus Diseases 200

    The Influence of Infection and Colonization on Outcomes in Inpatients With COVID-19 : Are We Forgetting Something?

    Get PDF
    The COVID-19 epidemic has been a great challenge to health systems and especially hospitals. A prospective observational epidemiological study was planned as of February 26, 2020 in a tertiary hospital in the Valencia region. The total number of patients followed up with complete information during the first year was 2,448. Among other variables, the comorbidities of the patients were collected (and grouped in the Charson index), the stay in the intensive care unit (ICU), the co-infections, and the colonizations. Data on nosocomial infections due to said virus were also collected. The median days from the onset of symptoms to diagnosis were 4 + 4.6, while an additional 4.4 days had to pass for the patients to be admitted to the ICU. The factors associated with a higher risk of death were those with coinfection, especially with Candida auris [odds ratio (OR): 4.6], a situation that also occurred in the ICU (OR: 3.18). Charlson Index comorbidity and C. auris colonization were also very important both in general hospitalization and in the ICU

    Endogenous transplacental transmission of Neospora caninum during successive pregnancies across three generations of naturally infected sheep

    Get PDF
    [EN] Endogenous transplacental transmission, which occurs during pregnancy as the result of reactivation of a latent infection in the dam, is the main mechanism of propagation of Neospora caninum within cattle herds. However, the importance of this propagation mechanism has not yet been evaluated in relation to ovine neosporosis. In this study, involving three generations of ewes naturally infected by N. caninum, we demonstrated that endogenous transplacental transmission may also be highly efficient in the ovine host since transmission of infection occurred in 96.6% of gestations and the congenital infection rate ranged between 66.7 and 93%. Nevertheless, parasite burdens decreased gradually in consecutive generations. Reactivation of latent infections had a strong impact on the pregnancy outcome, with high mortality rates recorded in the offspring of the two first generations of ewes (21.4-46.1%). Histological examination of the brain revealed that all aborted foetuses had characteristic lesions of neosporosis (necrotic glial foci) and a few parasite cysts, whereas most stillborn and newborn lambs that died shortly after birth had non-specific lesions (mild glial foci without necrosis) and parasite cysts were more frequent. Microsatellite analysis revealed scarce genetic variability in the N. caninum population, in accordance with a scenario in which infections were of a single origin and were exclusively maintained by clonal propagation through endogenous transplacental transmissionSIThe present study was supported by the Ministerio de Ciencia, Innovación y Universidades of Spain (INIA project RTA2014-00013

    Carbon Sequestration in Carob (Ceratonia siliqua L.) Plantations under the EU Afforestation Program in Southern Spain Using Low-Density Aerial Laser Scanning (ALS) Data

    Get PDF
    Climate change is one of the environmental issues of global dominance and public opinion, becoming the greatest environmental challenge and of interest to researchers. In this context, planting trees on marginal agricultural land is considered a favourable measure to alleviate climate change, as they act as carbon sinks. Aerial laser scanning (ALS) data is an emerging technology for quantitative measures of C stocks. In this study, an estimation was made of the gains of C in biomass and soil in carob (Ceratonia siliqua L.) plantations established on agricultural land in southern Spain. The average above-ground biomass (AGB) corresponded to 85.5% of the total biomass (average 34.01 kg tree−1), and the root biomass (BGB) was 14.5% (6.96 kg tree−1), with a BGB/AGB ratio of 0.20. The total SOC stock in the top 20 cm of the soil (SOC-S20) was 60.70 Mg C ha−1 underneath the tree crown and 43.63 Mg C ha−1 on the non-cover (implantation) area for the C. siliqua plantations. The allometric equations correlating the biomass fractions with the dbh and Ht as independent variables showed an adequate fit for the foliage (Wf, R2adj = 0.70), whereas the fits were weaker for the rest of the fractions (R2adj < 0.60). The individual trees were detected using colour orthophotography and the tree height was estimated from 140 crowns previously delineated using the 95th percentile ALS-metric. The precision of the adjusted models was verified by plotting the correlation between the LiDAR-predicted height (HL) and the field data (R2adj = 0.80; RMSE = 0.53 m). Following the selection of the independent variable data, a linear regression model was selected for dbh estimation (R2adj = 0.64), and a potential regression model was selected for the SOC (R2adj = 0.81). Using the segmentation process, a total of 8324 trees were outlined in the study area, with an average height of 3.81 m. The biomass C stock, comprising both above- and below-ground biomass, was 4.30 Mg C ha−1 (50.67 kg tree−1), and the SOC20-S was 37.45 Mg C ha−1. The carbon accumulation rate in the biomass was 1.94 kg C tree−1 yr−1 for the plantation period. The total C stock (W-S and SOC20-S) reached 41.75 Mg ha−1 and a total of 4,091.5 Mg C for the whole plantation. Gleaned from the synergy of tree cartography and these models, the distribution maps with foreseen values of average C stocks in the planted area illustrate a mosaic of C stock patterns in the carob tree plantation
    corecore