141 research outputs found
True and False Recognition Memories of Odors Induce Distinct Neural Signatures
Neural bases of human olfactory memory are poorly understood. Very few studies have examined neural substrates associated with correct odor recognition, and none has tackled neural networks associated with incorrect odor recognition. We investigated the neural basis of task performance during a yes–no odor recognition memory paradigm in young and elderly subjects using event-related functional magnetic resonance imaging. We explored four response categories: correct (Hit) and incorrect false alarm (FA) recognition, as well as correct (CR) and incorrect (Miss) rejection, and we characterized corresponding brain responses using multivariate analysis and linear regression analysis. We hypothesized that areas of the medial temporal lobe were differentially involved depending on the accuracy of odor recognition. In young adults, we found that significant activity in the hippocampus and the parahippocampal gyrus was associated with correct (true) recognition of odors, whereas the perirhinal cortex was associated with FAs and Misses. These findings are consistent with literature regarding hypothetical functional organization for memory processing. We also found that for correct recognition and rejection responses, the involvement of the hippocampus decreased when memory performances improved. In contrast to young individuals, elderly subjects were more prone to false memories and exhibited less specific activation patterns for the four response categories. Activation in the hippocampus and the parahippocampal gyrus was positively correlated with response bias scores for true and false recognition, demonstrating that conservative subjects produced an additional search effort leading to more activation of these two medial temporal lobe regions. These findings demonstrate that correct and incorrect recognition and rejection induce distinct neural signatures
Preliminary fMRI findings concerning the influence of 5-HTP on food selection
Objective: This functional magnetic resonance imaging study was designed to observe how physiological brain states can alter food preferences. A primary goal was to observe food-sensitive regions and moreover examine whether 5-HTP intake would activate areas which have been associated with appetite suppression, anorexia, satiety, and weight loss.
Methods and Procedure: Fourteen healthy male and female participants took part in the study, of which half of them received the supplement 5-HTP and the rest vitamin C (control) on an empty stomach. During the scanning session, they passively observed food (high calories, proteins, carbohydrates) and nonfood movie stimuli.
Results: Within the 5-HTP group, a comparison of food and nonfood stimuli showed significant responses that included the limbic system, the basal ganglia, and the prefrontal, temporal, and parietal cortices. For the vitamin C group, activity was mainly located in temporal and occipital regions. Compared to the vitamin C group, the 5-HTP group in response to food showed increased activation on the VMPFC, the DLPFC, limbic, and temporal regions. For the 5-HTP group, activity in response to food high in protein content compared to food high in calories and carbohydrates was located in the limbic system and the right caudomedial OFC, whereas for the vitamin C group, activity was mainly located at the inferior parietal lobes, the anterior cingulate gyri, and the left ventrolateral OFC. Greater responses to carbohydrates and high calorie stimuli in the vitamin C group were located at the right temporal gyrus, the occipital gyrus, the right VLPFC, whereas for the 5-HTP group, activity was observed at the left VMPFC, the parahippocampal gyrus bilaterally, the occipital lobe, and middle temporal gyri.
Discussion: In line with the hypotheses, 5-HTP triggered cortical responses associated with healthy body weight as well as cerebral preferences for protein-rich stimuli. The brain’s activity is altered by macronutrients rich or deprived in the body. By reading the organisms physiological states and combining them with memory experiences, it constructs behavioral strategies steering an individual toward or in opposition to a particular food
Functional magnetic resonance imaging (fMRI) changes and saliva production associated with acupuncture at LI-2 acupuncture point: a randomized controlled study
<p>Abstract</p> <p>Background</p> <p>Clinical studies suggest that acupuncture can stimulate saliva production and reduce xerostomia (dry mouth). We were interested in exploring the neuronal substrates involved in such responses.</p> <p>Methods</p> <p>In a randomized, sham acupuncture controlled, subject blinded trial, twenty healthy volunteers received true and sham acupuncture in random order. Cortical regions that were activated or deactivated during the interventions were evaluated by functional magnetic resonance imaging (fMRI). Saliva production was also measured.</p> <p>Results</p> <p>Unilateral manual acupuncture stimulation at LI-2, a point commonly used in clinical practice to treat xerostomia, was associated with bilateral activation of the insula and adjacent operculum. Sham acupuncture at an adjacent site induced neither activation nor deactivation. True acupuncture induced more saliva production than sham acupuncture.</p> <p>Conclusion</p> <p>Acupuncture at LI-2 was associated with neuronal activations absent during sham acupuncture stimulation. Neuroimaging signal changes appear correlated to saliva production.</p
Fractionating the anterior temporal lobe : MVPA reveals differential responses to input and conceptual modality
Words activate cortical regions in accordance with their modality of presentation (i.e., written vs. spoken), yet there is a long-standing debate about whether patterns of activity in any specific brain region capture modality-invariant conceptual information. Deficits in patients with semantic dementia highlight the anterior temporal lobe (ATL) as an amodal store of semantic knowledge but these studies do not permit precise localisation of this function. The current investigation used multiple imaging methods in healthy participants to examine functional dissociations within ATL. Multi-voxel pattern analysis identified spatially segregated regions: a response to input modality in anterior superior temporal gyrus (aSTG) and a response to meaning in more ventral anterior temporal lobe (vATL). This functional dissociation was supported by resting-state connectivity that found greater coupling for aSTG with primary auditory cortex and vATL with the default mode network. A meta-analytic decoding of these connectivity patterns implicated aSTG in processes closely tied to auditory processing (such as phonology and language) and vATL in meaning-based tasks (such as comprehension or social cognition). Thus we provide converging evidence for the segregation of meaning and input modality in the ATL
Stuttered swallowing: Electric stimulation of the right insula interferes with water swallowing. A case report
<p>Abstract</p> <p>Background</p> <p>Various functional resonance imaging, magnetoencephalographic and lesion studies suggest the involvement of the insular cortex in the control of swallowing. However, the exact location of insular activation during swallowing and its functional significance remain unclear.</p> <p>Case presentation</p> <p>Invasive electroencephalographic monitoring was performed in a 24-year-old man with medically intractable stereotyped nocturnal hypermotor seizures due to a ganglioglioma. During stimulation of the right inferior posterior insular cortex with depth electrodes the patient spontaneously reported a perception of a "stutter in swallowing". Stimulation of the inferior posterior insular cortex at highest intensity (4 mA) was also associated with irregular and delayed swallows. Swallowing was not impaired during stimulation of the superior posterior insular cortex, regardless of stimulation intensity.</p> <p>Conclusions</p> <p>These results indicate that the right inferior posterior insular cortex is involved in the neural circuitry underlying the control of swallowing.</p
A Specialized Odor Memory Buffer in Primary Olfactory Cortex
The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes.We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex.These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks
Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography
Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7 +/- 34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2 +/- 56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC
- …