152 research outputs found

    Rocaglates as dual-targeting agents for experimental cerebral malaria

    Full text link
    Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.We thank Susan Gauthier, Genevieve Perreault, and Patrick Senechal for technical assistance. This work was supported by a research grant (to P.G.) from the Canadian Institutes of Health Research (CIHR) (Foundation Grant). J.P. and P.G. are supported by a James McGill Professorship salary award. D.L. is supported by fellowships from the Fonds de recherche sante Quebec, the CIHR Neuroinflammation training program. J.P. is supported by CIHR Research Grant FDN-148366. M.S. is supported by a CIHR Foundation grant. J.A.P. is supported by NIH Grant R35 GM118173. Work at the Boston University Center for Molecular Discovery is supported by Grant R24 GM111625. K.C.K. was supported by a CIHR Foundation Grant and the Canada Research Chair program. (Canadian Institutes of Health Research (CIHR); James McGill Professorship salary award; Fonds de recherche sante Quebec; CIHR Neuroinflammation training program; FDN-148366 - CIHR Research Grant; CIHR Foundation grant; R35 GM118173 - NIH; Canada Research Chair program; R24 GM111625

    L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Get PDF
    L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake

    Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken

    Get PDF
    Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis

    Gentamicin sulphate permeation through porcine intestinal epithelial cell monolayer

    Get PDF
    Gentamicin is an aminoglycoside antibiotic widely used in combination with dimethyl sulphoxide (DMSO) in topical drug formulations. It is not known, however, whether DMSO can enhance the permeation of gentamicin through biological membranes, leading to oto- and nephrotoxic side effects. A simple and reliable high-performance liquid chromatographic (HPLC) method was applied for the quantitative determination of gentamicin collected from the apical and basolateral compartments of the porcine intestinal epithelial cell line IPEC-J2 cell monolayer using fluorometric derivatisation of the analyte with fluorenylmethyloxycarbonyl chloride (FMOC) prior to chromatographic run in the presence and absence of 1% DMSO. The lack of change in transepithelial electrical resistance (TER) demonstrated that gentamicin and 1% DMSO did not affect IPEC-J2 cell monolayer integrity via the disruption of cell membranes. Chromatographic data also ascertained that gentamicin penetration across the cell monolayer even in the presence of 1% DMSO was negligible at 6 h after the beginning of apical gentamicin administration. This study further indicates that the addition of this organic solvent does not increase the incidence of toxic effects related to gentamicin permeation

    Mapping the interaction between eukaryotic initiation factor 4A (eIF4A) and the inhibitor hippuristanol using carbene footprinting and mass spectrometry

    Get PDF
    Protein-ligand interactions are central to protein activity and cell functionality. Improved knowledge of these relationships greatly benefits our understanding of key biological processes and aids in rational drug design towards the treatment of clinically relevant diseases. Carbene footprinting is a recently developed mass spectrometry-based chemical labelling technique that provides valuable information relating to protein-ligand interactions, such as the mapping of binding sites and associated conformational change. Here, we show the application of carbene footprinting to the interaction between eIF4A helicase and a natural product inhibitor, hippuristanol, found in the coral Isis hippuris. Upon addition of hippuristanol we identified reduced carbene labelling (masking) in regions of eIF4A previously implicated in ligand binding. Additionally, we detected hippuristanol-associated increased carbene labelling (unmasking) around the flexible hinge region of eIF4A, indicating ligand-induced conformational change. This work represents further development of the carbene footprinting technique and demonstrates its potential in characterising medicinally relevant protein-ligand interactions

    Tumor Suppressor Pdcd4 Attenuates Sin1 Translation to Inhibit Invasion in Colon Carcinoma

    Get PDF
    Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5′ untranslated region (5′UTR) was fused with luciferase reporter and named as 5′Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation of 5′Sin1-Luc but not the control luciferase without the SIN1 5′UTR, suggesting that Sin1 5′UTR is necessary for Pdcd4 to inhibit Sin1 translation. Ectopic expression of wild-type Pdcd4 and Pdcd4(157–469), a deletion mutant that binds to translation initiation factor 4A (eIF4A), sufficiently inhibited Sin1 translation, and thus suppressed mTORC2 kinase activity and invasion in colon tumor cells. By contrast, Pdcd4(157–469)(D253A,D418A), a mutant that does not bind to eIF4A, failed to inhibit Sin1 translation, and consequently failed to repress mTORC2 activity and invasion. In addition, directly inhibiting eIF4A with silvestrol significantly suppressed Sin1 translation and attenuated invasion. These results indicate that Pdcd4-inhibited Sin1 translation is through suppressing eIF4A, and functionally important for suppression of mTORC2 activity and invasion. Moreover, in colorectal cancer tissues, the Sin1 protein but not mRNA was significantly upregulated while Pdcd4 protein was downregulated, suggesting that loss of Pdcd4 might correlate with Sin1 protein level but not mRNA level in colorectal cancer patients. Taken together, our work reveals a novel mechanism by which Pdcd4 inhibits Sin1 translation to attenuatemTORC2 activity and thereby suppresses invasion

    Predicting effective pro-apoptotic antileukaemic drug combinations using cooperative dynamic BH3 profiling

    Get PDF
    The BH3-only apoptosis agonists BAD and NOXA target BCL-2 and MCL-1 respectively and co-operate to induce apoptosis. On this basis, therapeutic drugs targeting BCL-2 and MCL-1 might have enhanced activity if used in combination. We identified anti-leukaemic drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism using the technique of dynamic BH3 profiling, whereby cells were primed with drugs to discover whether this would elicit mitochondrial outer membrane permeabilisation in response to BCL-2-targeting BAD-BH3 peptide or MCL-1-targeting MS1-BH3 peptide. We found that a broad range of anti-leukaemic agents–notably MCL-1 inhibitors, DNA damaging agents and FLT3 inhibitors–sensitise leukaemia cells to BAD-BH3. We further analysed the BCL-2 inhibitors ABT-199 and JQ1, the MCL-1 inhibitors pladienolide B and torin1, the FLT3 inhibitor AC220 and the DNA double-strand break inducer etoposide to correlate priming responses with co-operative induction of apoptosis. ABT-199 in combination with pladienolide B, torin1, etoposide or AC220 strongly induced apoptosis within 4 hours, but the MCL-1 inhibitors did not co-operate with etoposide or AC220. In keeping with the long half-life of BCL-2, the BET domain inhibitor JQ1 was found to downregulate BCL-2 and to prime cells to respond to MS1-BH3 at 48, but not at 4 hours: prolonged priming with JQ1 was then shown to induce rapid cytochrome C release when pladienolide B, torin1, etoposide or AC220 were added. In conclusion, dynamic BH3 profiling is a useful mechanism-based tool for understanding and predicting co-operative lethality between drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism. A plethora of agents sensitised cells to BAD-BH3-mediated mitochondrial outer membrane permeabilisation in the dynamic BH3 profiling assay and this was associated with effective co-operation with the BCL-2 inhibitory compounds ABT-199 or JQ1
    corecore