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Abstract

The BH3-only apoptosis agonists BAD and NOXA target BCL-2 and MCL-1 respectively

and co-operate to induce apoptosis. On this basis, therapeutic drugs targeting BCL-2 and

MCL-1 might have enhanced activity if used in combination. We identified anti-leukaemic

drugs sensitising to BCL-2 antagonism and drugs sensitising to MCL-1 antagonism using

the technique of dynamic BH3 profiling, whereby cells were primed with drugs to discover

whether this would elicit mitochondrial outer membrane permeabilisation in response to

BCL-2-targeting BAD-BH3 peptide or MCL-1-targeting MS1-BH3 peptide. We found that

a broad range of anti-leukaemic agents–notably MCL-1 inhibitors, DNA damaging agents

and FLT3 inhibitors–sensitise leukaemia cells to BAD-BH3. We further analysed the BCL-2

inhibitors ABT-199 and JQ1, the MCL-1 inhibitors pladienolide B and torin1, the FLT3 in-

hibitor AC220 and the DNA double-strand break inducer etoposide to correlate priming

responses with co-operative induction of apoptosis. ABT-199 in combination with pladieno-

lide B, torin1, etoposide or AC220 strongly induced apoptosis within 4 hours, but the MCL-1

inhibitors did not co-operate with etoposide or AC220. In keeping with the long half-life of

BCL-2, the BET domain inhibitor JQ1 was found to downregulate BCL-2 and to prime cells

to respond to MS1-BH3 at 48, but not at 4 hours: prolonged priming with JQ1 was then

shown to induce rapid cytochrome C release when pladienolide B, torin1, etoposide or

AC220 were added. In conclusion, dynamic BH3 profiling is a useful mechanism-based tool

for understanding and predicting co-operative lethality between drugs sensitising to BCL-2

antagonism and drugs sensitising to MCL-1 antagonism. A plethora of agents sensitised

cells to BAD-BH3-mediated mitochondrial outer membrane permeabilisation in the dynamic

BH3 profiling assay and this was associated with effective co-operation with the BCL-2

inhibitory compounds ABT-199 or JQ1.
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Background

The modes of action of diverse cytotoxic agents generally converge on mitochondrial apoptotic

pathways [1]. To allow apoptosis to occur, effector molecules BAX and BAK must oligomerise

to form pores that cause mitochondrial outer membrane permeabilisation (MOMP). BAX and

BAK activation can be triggered by BH3-only proapoptotic BCL-2 family members such as

BID and BIM, PUMA, BAD and NOXA. These are opposed by BCL-2 family prosurvival

members, such as MCL-1 and BCL-2 itself, that sequester pro-apoptotic family members to

hold apoptosis in check. Effective pro-apoptotic drugs alter the equilibrium of the system, both

by altering relative levels of the pro-and anti-apoptotic BCL-2 family members and triggering

changes of phosphorylation, conformation and location [1, 2].

Monotherapies are not successful at inducing remissions in patients with acute myeloid leu-

kaemia. With many new drugs on the market or in the pipeline [3, 4], there is a need to estab-

lish rational principles for predicting suitable drug combinations. One such principle is co-

operation between agents that activate complementary components of pro-apoptotic path-

ways. For example, the sensitiser molecule BAD is ineffective against MCL-1, and NOXA is

ineffective against BCL-2, but there is direct co-operation between BAD and NOXA in mediat-

ing apoptosis [5], suggesting that therapeutic agents that inhibit BCL-2 may complement

agents that inhibit MCL-1. Indeed, several studies have now shown synergy between specific

BCL-2 and MCL-1 antagonists [6–10]. Mechanistically, when BCL-2 is inhibited, e.g. by the

binding agents ABT-737 or ABT-199, the apoptosis activator BIM is released [7, 10–13], but

the released BIM can then be taken up by MCL-1, so protection from apoptosis is maintained

unless MCL-1 is also antagonised [10, 14–16].

There is currently great interest in discovering the ability of different classes of therapeutic

agents to synergise with BCL-2 or MCL-1 antagonists [8, 10, 14–23]. As MCL-1 has a short half-

life (approximately 1 hour) [24] it can be rapidly downregulated, as reported after treatment

with ultraviolet radiation [25] or sorafenib [26] for 3 hours or less. It is unclear whether this is

crucial for induction of apoptosis, since other factors, such as induction of BIM, NOXA or

PUMA are also reported. BCL-2 is a much more stable protein than MCL-1, with a protein half-

life of approximately 14 hours [27, 28]. BCL-2 downregulation can be effected by BET domain

inhibitors, but whereas message downregulation occurs rapidly in sensitive cells, protein loss

takes place over a much longer time period [29]. In contrast, BCL-2 binding antagonists such as

ABT-737 or ABT-199 (venetoclax) [30, 31] can act rapidly to induce apoptosis in sensitive cells.

Whilst several authors have documented the efficacy of the BCL-2 antagonists ABT-199

and ABT-737 at co-operating with agents that downregulate or bind MCL-1 [6, 8, 10, 16–19,

21, 22], the literature is focused on individual drug combinations. In the current study we use

a variety of drugs and chemical inhibitors to systematically identify agents sensitising to BCL-2

antagonism and agents sensitising to MCL-1 antagonism. Dynamic BH3 profiling [32] is a

novel methodology that measures the capacity of drugs to prime mitochondria for apoptosis,

and involves the addition of permeable pro-apoptotic BCL-2 family BH3 peptides to drug

primed cells to induce speedy mitochondrial outer membrane permeabilisation (MOMP). In

this study we measure MOMP after applying BAD (BCL-2 targeting) or MS1 (MCL-1 target-

ing) BH3 peptides to the drug-primed cells. Induction of MOMP is measured here with a cyto-

chrome C release assay [33]. Applying this technique previously, we had shown that the MCL1

downregulator TG02 sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2

antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide, and the two agents

synergise in dual-sensitive cells to induce apoptosis [18]. We dichotomise drugs as either

agents sensitising to BCL-2 antagonism or agents sensitising to MCL-1 antagonism, and we

demonstrate the efficacy of combining an agent from each category in apoptosis assays.

Co-operative dynamic BH3 profiling
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Materials and methods

Materials

Drugs and suppliers used in the study were as follows: 17-AAG, rapamycin, sorafenib and

torin1 from LC labs (www.lclabs.com); AC220, JQ1, selinexor, tosedostat, TW-37 and vosar-

oxin from Selleck (supplied by Stratech UK); ABT-199 from Adooq, www.adooq.com; ABT-

737 from Sequoia, Pangbourne, UK; A-1210477 from Chemie Tek, www.chemietek.com; eto-

poside from Tocris, Bristol, UK; Mylotarg from Wyeth, Pearl River USA; Pladienolide B from

Santa Cruz, supplied by Insight, Wembley, UK; TG02 was from Tragara, San Diego, USA.

Other drugs and reagents were from Sigma (Poole, Dorset, UK) unless specified.

Cells

The MV4.11 cell line was from the American Tissue Culture Collection (Manassas, USA) and

was maintained in RPMI 1640 medium with 10% foetal calf serum (FCS; First Link, Birming-

ham, UK), and 2mM L-glutamine. All cultures were kept at 37˚C in 5% CO2 and all experi-

ments were performed with cell lines in log phase. Continued testing to authenticate these cell

lines was performed using multiplex short tandem repeat analysis (Powerplex 16, Promega,

Southampton, UK). Mycoplasma testing was carried out routinely using the Mycoalert myco-

plasma detection kit (Lonza, Rockland, USA) and following the manufacturer’s instructions.

Dynamic BH3 profiling

MV4.11 cells were incubated (5 X 105/ml) in RPMI with 10% FCS for four hours with the

indicated drugs. Cytochrome C release (using Alexa-647-conjugated cytochrome C antibody,

BD #558709) was measured by flow cytometry after a further 60 minute incubation of digito-

nin-permeabilised cells with BH3 peptides as described [18, 33]. Adjustments for peptide

induced cytochrome C release in untreated cells were made in order to establish agent-specific

release (delta priming), using the formula (percent release with agent and peptide–percent

release with peptide)/ (100 –percent release with peptide). A mutated PUMA-BH3 peptide

(PUMA2A) [33] was used at 100 μM as control in all experiments.

Determination of apoptosis

Cytochrome C release, loss of mitochondrial membrane potential (#Δψm) and uptake of

7-amino-actinomycin D were measured by flow cytometry.

To measure the percentage of cells with loss of Cytochrome C, cells were fixed in 2% para-

formaldehyde directly after a 4 hour drug incubation. Fixed and rinsed cells were permeabi-

lised with saponin and incubated overnight with Alexa-647-conjugated cytochrome C

antibody and analysed by flow cytometry.

The percentage of cells with loss of mitochondrial membrane potential (#Δψm) was deter-

mined following incubation of cells as previously reported [34] with the fluorescent dye 3,3’–

dihexyloxacarbocyanine iodide (DiOC6, 40 nM, Molecular Probes, Oregon) for the final 75

minutes of a 5 ¼ hour drug incubation, with 0.5 μg/ml 7-aminoactinomycin D (7-AAD) also

added for the final 30 minutes to measure a later stage of apoptosis [35].

Protein measurement

Protein expression of 4E-BP1 p-thr36/45, BD#560286) and BCL-2 (Ancell #357–040) were

measured by flow cytometry. MCL-1L (long) and MCL-1S (short) forms were measured by

Western Blotting using the sc-819 antibody from Santa Cruz.

Co-operative dynamic BH3 profiling
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MCL1 mRNA short and long form measurement

Expression levels of Mcl-1L and Mcl-1S using cDNA from AML cell lines were determined

quantitatively by qRT-PCR on an ABI Prism 7500 (Applied Biosystems) using SYBR Green

Master Mix (Applied Biosystems). Specific amplification of the isoforms was achieved using

primers with previously reported sequences [36]. Gene expression levels were normalized to

beta-2-microglobulin (β2m) housekeeping gene expression [37]. Negative controls (no tem-

plate) were included in all the experiments and the reactions were run in triplicate.

Calculations and statistics

Fold excess addititivism was calculated as a ratio of observed to expected values for drug com-

binations, where the expected value C is calculated from the Bliss algorithm for response to

two compounds with effects A and B i.e. C = A + B–A�B [38, 39]. This method allows for

potentiation and augmentation as well as synergism. Statistics were carried out using SPSS ver-

sion 22 software (Chicago, IL, USA). P values <0.05 were considered statistically significant.

Results

1. Methodology

MV4-11 cells were used for screening drugs, as these cells were highly sensitive to apoptosis

induced by either BCL-2 or MCL-1 targeting (S1 Fig). These cells do not over-express BCL-XL

[18]. Montero and colleagues [32] have described the technique of dynamic BH3 profiling,

which involves using short drug exposures to prime mitochondria for BH3 peptide-induced

Cytochrome C release, and these authors demonstrated that the assay could predict cytotoxic-

ity. Dynamic BH3 profiling relies on the ability of a drug and a BH3-only pro-apoptotic pep-

tide to induce MOMP in cells when used in combination: sensitivity is compromised if the

agent or peptide induce too much apoptosis individually, so it is crucial to establish suitable

drug concentrations for the assay. To allow drugs to prime cells as single agents, but not to kill

them outright during the course of the assay, we established a suitable incubation time and

drug concentrations by screening with a PUMA-BH3 peptide which can sensitise all the anti-

apoptotic BCL-2 family proteins [28]. We defined appropriate priming concentrations of

agents as those that induced >75% Cytochrome C release in the presence of PUMA-BH3 but

less than 10% when incubated with a control peptide, i.e. a>65% change in priming (“Δ prim-

ing”, Fig 1). The data show that a variety of agents prime to PUMA-BH3 after as little as four

hours. Agents used in the study along with their proposed mechanism of sensitising to apopto-

sis are delineated in Table 1. We grouped agents into four main categories. The first category

comprised agents expected to strongly inhibit MCL-1. The second category of agents com-

prised BCL-2 antagonists. Agents which induce double strand breaks (etoposide, mylotarg,

and vosaroxin—category 3) and FLT3 inhibitors (AC220, sorafenib—category 4) were also

studied. All the agents studied primed to PUMA-BH3 after a four-hour incubation with the

exception of JQ1. Rationales and results for priming to PUMA-BH3 for several additional

agents (miscellaneous, category 5) are shown in S2 Fig.

We previously showed that the MCL-1 reducing agent TG02 primes AML cells to respond

to BCL2 antagonism and that ABT-199 primes cells to respond to MCL-1 antagonism [18]. In

that assay a NOXA-BH3 peptide was used to antagonise MCL-1. However we refined the

methodology for the current study following reports that the MS1 peptide binds to MCL-1

with higher affinity than NOXA-BH3 [52]. In MV4.11 cells the concentration of MS-1 re-

quired to complement ABT-199 was 10-100-fold less than that of NOXA-BH3 (S3 Fig). On the

Co-operative dynamic BH3 profiling
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basis of this data we selected 3 μM BAD-BH3 and 3 μM MS1-BH3 for the complementary pro-

filing assay.

2. Co-operative dynamic BH3 profiling

Cells were incubated for four hours with agents of interest followed by dynamic BH3 profiling.

Diverse agents sensitised cells to BAD-BH3, indicating that the four hour drug incubation had

increased the BCL-2 dependence of the cells and thus enabled the cells to cross the threshold

for apoptosis once the BCL-2 antagonist peptide was added (Fig 2A and S4 Fig). In contrast,

only the highly specific BCL-2 antagonist ABT-199 and the BCL-2/BCL-XL antagonist ABT-

737 primed to equimolar (3 μM) MS1: i.e. after priming with a variety of drugs, MCL-1 antag-

onism with MS1-BH3 did not generally enable the cells to cross the threshold for apoptosis

(Fig 2B and S4 Fig).

3. Co-operative induction of apoptosis

On the basis of the BAD-BH3 and MS1-BH3 profiling, we investigated whether the cells would

be sensitive to a combination of BCL-2 and MCL-1 antagonists. ABT-199 is well described as a

powerful BCL-2 antagonist at nanomolar concentrations in AML cells [53]. From the data

illustrated in Fig 2A, we selected two MCL-1 antagonists: pladienolide B and torin1. The spli-

ceosome inhibitor pladienolide B is reported to rapidly induce alternative splicing of MCL-1

from the anti-apoptotic long form to the pro-apoptotic short form [40]. At 10 nM, pladieno-

lide had primed for >99% sensitisation to BAD-BH3 (Fig 2A). We confirmed the reported

alternative splicing mechanism in our system and the rapid loss of MCL1 protein (Fig 3A). We

Fig 1. Dynamic BH3 profiling assay: delta priming to PUMA-BH3. The increase in cells primed to undergo

mitochondrial outer membrane depolarisation (Δ priming) is measured by Cytochrome C release after 4 hour

drug treatment. PUMA-BH3 was used at 3 μM. Values are corrected for Cytochrome C release with peptide

only as described in the methods. (Mean+/- SD for n = 3).

https://doi.org/10.1371/journal.pone.0190682.g001
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also used the powerful chemical mTORC1 antagonist torin1 [42] to inhibit translation,

because translational activation by oncogenic kinases is a widespread phenomenon in AML,

via STAT5, PIM, ERK and PI3K pathways, which all act on translation initiation factors. Inhi-

bition of translation depletes MCL-1 protein [54]. We confirmed that torin1 dephosphorylates

the translational activator 4E-BP1 and depletes MCL-1 in the MV4.11 cells (Fig 3B). A supra-

additive effect of combining ABT-199 with either pladienolide B or torin1 to induce cyto-

chrome C release was documented, but no complementary MOMP or apoptosis was detected

when MCL-1 targeting agents were used with each other (Fig 3C and 3D).

We expanded the study to include a DNA damage-inducing agent and a FLT3 inhibitor,

since these categories of agent are of particular clinical interest in AML and had sensitised to

BAD-BH3 in the dynamic BH3 profiling assay. Combining the double strand break-inducing

agent etoposide or the FLT3 inhibitor AC220 with ABT-199 led to early MOMP and apoptosis

(Fig 4), whereas combining the agents with pladienolide B or torin1 did not have significant

pro-apoptotic effects. Flow cytometric illustrations of apoptosis in treated cells are shown in S5

Fig.

4. Delayed co-operative induction of apoptosis: JQ1 as a BCL-2

antagonist

The pattern observed thus far of common MCL-1 antagonism and rare BCL-2 antagonism is

likely, at least in part, to be predicated on differences in the stability of the two proteins. MCL-

1 has a very short half-life (approximately one hour) [24] which makes it extremely susceptible

Table 1. Agents expected to antagonise or downregulate BCL-2 or MCL-1.

Agent Expected or potential mechanism Rapid (within 4 hours) or delayed response

1. MCL-1 inhibitors

Pladienolide B Alternative splicing of MCL-1[40] MCL-1 protein decrease at 4 hours (current study)

TG02 Protein synthesis inhibition downregulating MCL-1 [18, 41] MCL-1 protein decrease at 4 hours

Torin1 Protein synthesis inhibition [19, 42] MCL-1 protein decrease at 4 hours (current study)

TW-37 Direct inhibition of BCL-2 and MCL-1 in cell free system [43]

Preference for MCL-1 in cellular systems [44] Early timepoints not tested

2. BCL-2 inhibitors

ABT-199 Direct BCL-2 binding and antagonism [31] Apoptosis within 4 hours

Release of BIM/BAX from BCL-2 [15, 45] rapid

ABT-737 Direct BCL-2 binding and antagonism [30] timings not reported

Release of BIM/BAX from BCL-2 [11, 12] rapid

JQ1 Downregulation of BCL-2

[29, 46]

Rapid decrease in message. Slow decrease in protein

3. DNA damaging agents

etoposide Downregulation of MCL-1 [47] Within 8 hours. Earlier time points not studied

Activation of ceramide [48, 49]

(associated with BCL-2 inhibition and BAD activation [50, 51]

Rapid

mylotarg Possibly as reported for etoposide

vosaroxin Possibly as reported for etoposide

4. FLT3 inhibitors

sorafenib Downregulation of MCL-1

[17, 26]

rapid

Inactivation of ERK associated with bcl-2 dephosphorylation [26] rapid

AC220 Possibly as reported for sorafenib

https://doi.org/10.1371/journal.pone.0190682.t001
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to rapid downregulation when protein synthesis is decreased or degradation pathways are acti-

vated [28, 54]. BCL-2 however, has a much longer half-life (10–14 hours)[27], such that where

an agent downregulates BCL-2 at the message level, it may take several hours for functional

consequences to be observed. The BET domain inhibitor JQ1 is documented to downregulate

BCL-2 [29] and therefore might acquire the capacity to prime for an MS1 (MCL1-antagonist)

Fig 2. Dynamic BH3 profiling assay: delta priming to (A) BAD-BH3 and (B) MS1-BH3 peptides. Delta

priming is measured by cytochrome C release after 4 hour drug treatment and additional incubation with the

indicated BH3 peptides (BAD-BH3 at 3 μM, MS1-BH3 at 3 μM, PUMA2A control at 100 μM). Values are

corrected for cytochrome C release with peptide only as described in the methods. (Mean+/- SD for n = 3).

https://doi.org/10.1371/journal.pone.0190682.g002
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Fig 3. Co-operative induction of apoptosis by ABT-199 with pladienolide B or torin1. (A) MCL-1 long form (L)

and short form (S) transcripts (i) and protein (ii) were quantified in untreated cells and cells treated with 10 nM

pladienolide B (PLB) for 4 hours. (B) 4E-BP1 phosphorylation (i) and MCL-1 protein (ii) were quantified in untreated

cells and cells treated with 1μM torin1 for 4 hours. (C, D) Cells were incubated with 10 nM ABT-199 (199, turquoise), 10

nM pladienolide B (PLB, red), 1 μM torin1 (green) or the indicated combinations (bright blue bar, height = effect with

both agents in combination–sum of effects with agents individually). (C) After 4 hours cells were fixed and processed for

Cytochrome C release. (D) After 4 hours DiOC6 was added for a further 75 minutes and 7-amino actinomycin D for the

last 30 minutes. (Mean+/- SD for n = 3). Fold excess additivism (FEA) is shown on the figures and was calculated as a

ratio of observed to expected values after corrections according to the Bliss algorithm (see methods). Asterisks indicate

observed values significantly higher than expected values (P<0.05).

https://doi.org/10.1371/journal.pone.0190682.g003
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Fig 4. Co-operative induction of apoptosis by ABT-199 with etoposide and AC220. Cells were

incubated with 10 nM ABT-199 (199, turquoise), 10 nM pladienolide B (PLB, red), 1 μM torin1 (green), 1 μM

Co-operative dynamic BH3 profiling
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response. In MV4-11 cells BCL-2 protein downregulation was noted which plateaued at

approximately 48 hours, and JQ1 was able to prime to MS-1 BH3 after 48 hours of incubation

(Fig 5A and 5B). Cells were therefore incubated with JQ1 for 48 hours with addition of addi-

tional agents for the final four hours. JQ1 was found to prime cells to pladienolide, torin1, eto-

poside and AC220 (Fig 5C). No significant interaction was observed between JQ1 and ABT-

199.

5. Scheduling-specific dependence of co-operation between ABT-199

and the MCL-1 antagonist A-1210477

The specific MCL1 binding inhibitor A-1210477 is an in vitro chemical tool that had not

been used in our earlier panel as it induced apoptosis in its own right at high concentrations

(> 3μM) but failed to prime to BAD-BH3 at sub-micromolar concentrations (S6 Fig). We nev-

ertheless decided to investigate it further because of its specificity for MCL-1 [6]. A supra-addi-

tive effect of combining ABT-199 or JQ1 with 1 μM A-1210477 to induce cytochrome C

release was documented, but no enhancement of cytochrome C release was detected when

A-1210477 was used with the MCL-1 downregulating agents pladienolide B or torin1 or with

etoposide or AC220 (Fig 6A), thus providing further evidence of the particular efficacy of com-

bining BCL-2 antagonists with MCL-1 antagonists. As the BH3 profiling assay had not pre-

dicted the co-operative potential of 1 μM A-1210477 with BCL-2 antagonists, we investigated

this anomaly. A possible explanation is predicated on the fact that, in the BH3 profiling assay,

the MCL-1 antagonist A-1210477 and the BCL-2 antagonist (BAD-BH3 peptide) are added to

cells sequentially, possibly allowing pro-apoptotic activators such as BIM and PUMA to return

to an undepleted pool of MCL-1 when the cells are washed in preparation for addition of pep-

tide in permeabilisation buffer, whereas in the apoptosis experiments A-120477 and ABT-199

are incubated with cells simultaneously. An assay in which we compared sequential with con-

current use of ABT-199 and A-1210477 showed that A-1210477 was indeed ineffective when

incubated with cells for four hours and washed off before a two hour incubation with ABT-199

(Fig 6B). However the reverse sequence, i.e. applying ABT-199 before A-1210477, was as effec-

tive as using the two agents concurrently.

Discussion

The technique of co-operative dynamic BH3 profiling has shown that a range of anti-AML

drugs and chemical inhibitors sensitise to BCL-2 antagonism and a much smaller number of

agents (ABT-199, ABT-737 and JQ1) sensitise to MCL-1 antagonism. MCL-1 and BCL-2 are

both guardians of mitochondrial integrity, protecting the healthy cell by sequestering pro-apo-

ptotic BCL-2 family members but allowing controlled release of the pro-apoptotic molecules

in response to appropriate stresses. The technique provided evidence that many drugs cause

early (within 4 hours) pro-apoptotic changes in cells. Dynamic BH3 profiling does not specify

exactly which molecules are effecting these pro-apoptotic changes, but it does show whether

these changes can be complemented by specifically antagonising BCL-2 or MCL-1. We add

etoposide (orange) and 10 nM AC220 (mauve) or the indicated combinations (bright blue bar, height = effect

with both agents in combination–sum of effects with agents individually). (A) After 4 hours cells were fixed and

processed for Cytochrome C release. (B) After 4 hours DiOC6 was added for a further 75 minutes and

7-amino actinomycin D for the last 30 minutes. (Mean+/- SD for n = 3). Fold excess additivism (FEA) is shown

on the figures and was calculated as a ratio of observed to expected values after corrections according to the

Bliss algorithm (see methods). Asterisks indicate observed values significantly higher than expected values

(P<0.05).

https://doi.org/10.1371/journal.pone.0190682.g004
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Fig 5. Co-operative induction of apoptosis by pladienolide, torin1, etoposide or AC220 with JQ1. (A) Time course of bcl-

2 protein downregulation in response to JQ1 measured by flow cytometry. MFI = mean fluorescence intensity, corrected for

isotype control. (B) Time course of delta priming to BAD-BH3 and MS1-BH3 measured by cytochrome C release after drug

treatment and additional incubation with the indicated BH3 peptides. Values are corrected for Cytochrome C release with

peptide only as described in the methods. (C) Cells were incubated with 250 nM JQ1 for 2 days. 10nM pladienolide B (PLB),

1 μM torin1, 10nM ABT-199 (199), 1 μM etoposide (ETO) or 10 nM AC220 were added for the final 4 hours. Cells were then

fixed and processed for Cytochrome C release. Bright blue bar height = cytochrome C release with both agents in combination–
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sum of cytochrome C release with both agents individually). Fold excess additivism is shown on the figures and was calculated

as a ratio of observed to expected values after corrections according to the Bliss algorithm (see methods). Asterisks indicate

observed values significantly higher than expected values (P<0.05). (Mean+/- SD for n = 3).

https://doi.org/10.1371/journal.pone.0190682.g005

Fig 6. Co-operative induction of apoptosis using A-1210477. A. Cells were co-incubated with 1 μM A-

1210477 (477) and with 10 nM ABT-199 (199), 10nM pladienolide B (PLB), 1 μM torin1, 1 μM etoposide or 10

nM AC220 for 4 hours. Alternatively, cells were incubated with JQ1 for 48 hours and A-1210477 was added

for the final four hours of the incubation. Cells were then fixed and processed for Cytochrome C release.

(Mean+/- SD for n = 3). B. Cells were incubated with 1 μM A-1210477 for four hours and 10 nM ABT-199 was

added either before, after or concurrently (final 2 hours). In the two-step conditions, cells were pelleted and

rinsed twice in RPMI at 4˚C in between agents. R10 = medium without drug.

https://doi.org/10.1371/journal.pone.0190682.g006
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the caveat that A-1210477, and likely other transient binding agents, do not work well in this

assay.

Although often described together, there are important functional differences between

MCL-1 and BCL-2 which bear upon the findings of the current study. MCL-1 is an unstable

protein with a very short half-life [24, 28, 54]. Its rapid destruction may be a common factor in

cellular responses to stresses, such that the propensity of major drug types to downregulate

MCL-1 may be a dominant cause of sensitising cells to BCL-2 antagonism. Brunelle and col-

leagues documented that BCL-2 overexpression conferred resistance to a range of chemothera-

peutic agents, but the same agents were effective in MCL-1 over-expressing cells. Moreover

MCL-1 protein was depleted in sensitive, drug-treated cells [47]. Priming to BCL-2 inhibitors

is not exclusively through MCL-1 downregulation: alternative pathways have been docu-

mented [55, 56], but a lot of evidence points to MCL-1 downregulation being a very common

feature of chemo responsiveness (see Introduction, Table 1 and Fig 3). An inference here

might be that MCL-1 binding antagonists become redundant where the drug has caused pro-

tein depletion. This could account for the lack of interaction between the antagonist A-

1210477 and the spliceosome inhibitor pladienolide or the mTOR inhibitor torin1 in our

study, both of which ablated MCL-1. From a different angle, MCL-1 binding antagonists may

be useful to supplement the MCL-1 depleting effects of less efficient agents, particularly in
vivo. Also, the apparent lack of avidity of A-1210477 binding (Fig 6), draws attention to the

complication that, whereas transient MCL-1-binding agents may have an advantage in reduc-

ing toxicity in a clinical setting, their efficacy in combination with BCL-2 inhibitors may

require co-administration.

In contrast to the MCL-1 depleting abilities of many drugs, agents that inhibit BCL-2 are

uncommon. ABT-199 has been well characterised in the literature and is being used (as vene-

toclax) in the clinic. BET domain inhibitors and their interactions with other drugs are less

well characterised, but there is currently huge interest in their development [57]. Although

BCL-2 downregulation by JQ1 and associated sensitisation to MS1-BH3 were documented in

our study, we add the caveat that BET domain inhibitors are highly non-specific and have

numerous additional targets [29].

The current set of experiments is applicable to agents that elicit rapid pro-apoptotic

changes, which could be a useful strategy to pre-empt protective stress responses. Agents as

diverse as etoposide and AC220 sensitised powerfully to BAD-BH3 after just 4 hours (Fig 2).

We did not find complementary dynamic BH3 profiling to be useful in the context of nucleo-

side analogues ara-C or 5-azacytidine, which elicited only weak priming to BAD-BH3 (S4 Fig)

or with ABT-199 in 4 hour apoptosis experiments (data not shown). We also did not find the

dynamic profiling assay to be useful for predicting synergy in 48 hour dose response assays

(data not shown), so the current findings are likely confined to early interactions. The original

dynamic BH3 profiling work found correlations between 16-hour drug priming to BIM-BH3

and 72 hour apoptosis [32], so our much shorter, four-hour, culture is likely to be particularly

relevant to agents with early pro-apoptotic effects.

In a clinical setting, the combination of an agent sensitising to BCL-2 antagonism and one

sensitising to MCL-1 antagonism could be useful in a synthetic lethal combination, such as the

combination of ABT-199 or a BET domain inhibitor with the FLT3 inhibitor AC220 docu-

mented in Figs 4 and 5. FLT3 internal tandem duplications affect 30% of AML patients [58].

The decision to use FLT3 inhibitors in this study was based on work showing the downregula-

tion of MCL-1 to be a consequence of inhibition of translation initiation by sorafenib [26].

FLT3 internal tandem duplications drive constitutive activation of STAT5 and PI3K, both of

which can drive MCL-1 overexpression through the translation initiation complex [59], such

that MCL-1 downregulation is likely to be a common effect of diverse FLT3 inhibitors. Synergy
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between JQ1 and AC-220 has been reported [60]. The spliceosome inhibitor pladienolide B

was also highly effective in combination with ABT-199 or JQ1 in the current study. Early evi-

dence suggests that targeting of the spliceosome in cases of MDS or AML with spliceosome

mutations could be effective [61].

The MV4-11 cells used in this study were sensitive to either BCL-2 or MCL-1 inhibition,

and were used in order to focus on differences between drugs, rather than differences between

cells. Cellular dependence on different members of the BCL-2 family is highly heterogeneous,

even within a single disease such as AML, and possibly even within different clones from a sin-

gle patient. Considerable further work will be needed to document the efficacy of co-operative

drug combinations in cells with different BCl-2 family dependencies. In a previous report we

showed that the complementarity between ABT-199 and TG02 was synergistic in some cases

of AML, whereas in other cases we showed the combination to be effective when one or other

of the agents alone was ineffective [18].

In conclusion we have used dynamic BH3 profiling to demonstrate that drugs sensitising to

BCL-2 antagonism and drugs sensitising to MCL-1 antagonism can be systematically identi-

fied and to determine that dynamic co-operative BH3 profiling can predict drug combinations

that induce rapid apoptosis.

Supporting information

S1 Fig. Sensitivity to ABT-199 and TW-37 in AML cell lines. We antagonised BCL-2 with

ABT-199 [31] and MCL-1 with TW-37 [44]. The IC50s shown were obtained from alamar blue

assays after treating 11 AML cell lines at a starting cell concentration of 2.5x105 /ml for 48

hours. Each cell line thawed is tested around the time of its final passage to authenticate its

provenance using the Powerplex 16 kit (Promega, Southampton, UK) to amplify short tandem

repeats. The reactions are run on a 3130 Genetic Analyser and data analysed using Genemap-

per. Mycoplasma testing was carried out routinely using the Mycoalert mycoplasma detection

kit (Lonza, Rockland, USA) and following the manufacturer’s instructions.

(TIF)

S2 Fig. Dynamic BH3 profiling assay: Delta priming to PUMA-BH3 with additional anti-

AML drugs. Delta priming is measured by cytochrome C release after 4 hour drug treatment

and additional incubation with 3 μM PUMA-BH3. Values are corrected for Cytochrome C

release with peptide only as described in the methods). (Mean+/- SD for n = 3). Suitable prim-

ing concentrations (>65% specificity) were established for the hsp90 inhibitor 17-AAG and

the CRM1 inhibitor selinexor, but other agents were less effective. Hsp90 inhibitors [62] and

selinexor [63] are reported to downregulate MCL-1. Tosedostat is reported to induce NOXA

[64]. The contrast in priming abilities between rapamycin and torin1 (Fig 1) merits comment:

this may be explicable in terms of the rapamycin insensitive effects of mTORC1 on 4E-BP1

[42]. 5-azacytidine (5-aza) and cytosine arabinoside (ara-C) were included for general interest.

(TIF)

S3 Fig. Dynamic BH3 profiling assay: Delta priming with TG02 and ABT-199 to

BAD-BH3 and MS1-BH3 peptides. Delta priming is measured by cytochrome C release after

TG02 (50 nM) and ABT-199 (50 nM) treatment and additional incubation with the indicated

BH3 peptides. Values are corrected for Cytochrome C release with peptide only as described

in the methods). (Mean+/- SD for n = 3).

(TIF)

S4 Fig. Dynamic BH3 profiling assay: Delta priming with additional anti-AML drugs to

BAD-BH3 and MS1-BH3 peptides. Delta priming is measured by cytochrome C release after
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drug treatment and additional incubation with the indicated BH3 peptides (BAD-BH3 at

3 μM, MS1-BH3 at 3 μM, PUMA2A control at 100 μM). Values are corrected for Cytochrome

C release with peptide only as described in the methods). (Mean+/- SD for n = 3).

(TIF)

S5 Fig. Additional indicators of co-operative induction of apoptosis by ABT-199 with pla-

dienolide B, torin1, etoposide and AC220: FACS plots. Cells were incubated with the indi-

cated combinations of 10 nM ABT-199, 10 nM pladienolide B, 1 μM torin1, 1 μM etoposide

or 10 nM AC220. After 4 hours cells were incubated for a further 75 minutes with DiOC6 to

measure #Δψm. 7-AAD was added to the cells for the final 30 minutes of the incubation. The

FACS plots illustrate that the treated cells stained by 7-AAD (indicating cell membrane perme-

ability at a final stage of apoptosis) tend to lag very slightly behind cells with #Δψm, indicating

rapid transition from #Δψm to irreversible apoptosis.

(TIF)

S6 Fig. Dynamic BH3 profiling assay: A-1210477. Delta priming is measured by cytochrome

C release after A-1210477 treatment and additional incubation with the indicated BH3 pep-

tides. Values are corrected for cytochrome C release with peptide only as described in the

methods. Results from priming with 10nm pladienolide are illustrated as positive control

(<10% priming without peptide, strong priming with peptide) (Mean+/- SD for n = 3).

(TIF)
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