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Abstract 

The need for biofuels is steadily increasing as a result of political strategies and the need for 

energy security. Biorefineries have the potential to improve the sustainability of biofuels 

through further recovery of valuable bioproducts and bioenergy. A life cycle assessment (LCA) 

based environmental assessment of a Danish biorefinery system was carried out to thoroughly 

analyze and optimize the concept and address future research. The LCA study was based on 

case-specific mass and energy balances and inventory data, and was conducted using 

consequential LCA approach to take into account market mechanisms determining the fate of 

products, lost opportunities and marginal productions. The results show that introduction of 

enzymatic transesterification and improved oil extraction procedure result in environmental 

benefits compared to a traditional process. Utilization of rapeseed straw seems to have positive 

effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements 

in the range of 9 to 29 %, depending on the considered alternative. The mass and energy 

balances showed the potential for improvement of straw treatment processes (hydrothermal 

pre-treatment and dark fermentation) as well as minor issues related to enzymes utilization in 

different bio-processes.  

 

Keywords: rapeseed, biofuel, biorefinery, LCA, enzymes. 
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1. Introduction 

Demand for biofuels has been steadily increasing in the last years as a result of a growing need 

for economically viable energy security on one hand and on the other hand of legislative 

mandates aiming to prompt Kyoto oriented GHG control measures. For instance, the European 

Union has adopted in 2009 the Renewable Energy Directive, endorsing a mandatory 10 % 

minimum target for the share of energy from renewable sources in transportation by 2020 [1]. 

This resolution is foreseen to boost the production of liquid biofuels in the coming years with 

global consequences related to the competition between energy crops and food crops [2]. To 

regulate these effects, the directive sets sustainability criteria for the biofuels – calculated on 

thorough LCA-type analyses, addressing the development of improved productions schemes – 

and promotes the production of 2nd generation fuels in order to better exploit also residual 

biomass resources [1]. 

 Biodiesel is the most important biofuel in Europe, representing about 80 % of the 

biofuels sector [3]. Biodiesel has been produced from different oil crops (e.g. rapeseeds, palm 

fruits, soya seeds, sunflower seeds) for many years, rapeseed being the main feedstock and 

covering about 80 % of the biodiesel production in the EU [3]. Technological improvements are 

constantly introduced in processing schemes and the plants with larger scale are built or 

planned. However, first generation rapeseed-based biodiesel is not considered a very effective 

production route, because the recoverable oilseed represents less than 1/3 of the biomass 

obtained in the field [4]. To improve the environmental footprint of biodiesel production, a 2nd 

generation biorefinery approach using the whole crop was suggested to co-produce bioenergy, 

biochemicals and biomaterials and thus overall increase the efficiency of rapeseed utilization 

[5]. The potential benefits of further utilizing rapeseed by-products were suggested in several 

studies [e.g. 6-8] and could represent an instrument for meeting the above mentioned 

sustainability criteria set by EU [9]. 

 LCA studies on biorefinery systems are scarcely reported in literature, especially studies 

including specific data and modelling of straw utilization for recovery of extra valuables [5]. An 

almost common feature of these studies is that the cause-effect chain induced by market 

mechanisms on the trading of products is only partially modelled. In the near future, biomass 
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will be a constrained resource/commodity, and such a constraint will determine market 

competition between different actors and need for alternative supply routes. These market 

related consequences have to be modelled in an LCA study if the study is to be used for 

consistent decision making [10]. Furthermore, most of the LCAs on biorefineries have a general 

character and they make use of default data, thereby focusing more on how biorefineries 

integrate in the energy system rather than on the technology development [e.g. 61, 62]. As a 

consequence, detailed studies of (specific) upcoming or future technologies are almost non-

existing. For instance, in their analysis Harding et al. [11] showed the environmental benefit of 

using enzymatic transesterification over inorganic catalysis, but its relevance at a biorefinery 

system level was not analysed.  

The objective of the study is to provide a detailed analysis of a biorefinery concept 

under development in Denmark. This is done by 1) establishing detailed mass and energy 

balances; 2) collecting specific inventory data; 3) carrying out a consequential LCA to compare 

different configuration of the biorefinery process; and 4) performing sensitivity analysis to 

strengthen the conclusions. The aims of the assessment are to optimize the utilization of 

rapeseed and the operation of the biorefinery system - thus focusing on 1 Mg of rapeseed 

(upstream processes are not included) – and to address whether and where research-based 

improvements of the process are possible from an environmental perspective.  

 

2. Goal and scope definition 

2.1. Methodology 

The study followed consequential LCA approach and aimed at defining more effective and 

sustainable processing methods for 1 Mg of rapeseed harvested in Denmark. The individual 

processes and technologies analysed are currently in operation at pilot or industrial scale, while 

their combination into integrated schemes is still under development [13]. Large industrial 

biorefineries are expected to be fully operative within 5-10 years  [13]. 

Material Flow Analysis (MFA) and energy balance was performed by means of the mass-

balance model STAN version 2.0 [32]. The LCA modelling was facilitated with the LCA-tool 

SimaPro [33], partly based on the ECOINVENT 2.2 database, unless otherwise stated.  
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In all the analysed scenarios, different products are delivered to the market, thereby 

displacing the production of equivalent alternatives elsewhere in the system (assuming the 

products are economically competitive). Following standard practice within LCA, system 

expansion was performed to include benefits/burdens related to these 

replacements/substitutions on the market (see section 2.6 for details). Potential environmental 

impact categories under investigation were Global Warming, Acidification and Terrestrial 

Eutrophication. Impact assessment was carried out based on the EDIP2003 method [34] for a 

time horizon of 100 years. The results are calculated as characterised potential environmental 

impacts and presented both as aggregated and disaggregated values. The disaggregated results 

are presented in two versions, i.e. according to process contribution and to product 

contributions. While still including benefits/burdens of the substituted products, the 

disaggregated results are calculated using energy allocation to distribute upstream impacts to 

the outputs of the individual sub-process of the biorefinery. 

 
2.2. The biorefinery system: a description 

The biorefinery system is schematically presented in Figure 1. The biorefinery includes 

processing of both seeds and straw from rapeseed for integrated production of biodiesel, 

bioethanol, biogas, biohydrogen. Properly handled, some of the by-products can be exploited 

for additional energy recovery (e.g. glycerine and lignin) or marketed in substitution of 

industrially manufactured products (e.g. glycerine and digestate). During harvesting, rapeseed 

is mechanically sorted (separated) into rape seeds and straw. Rapeoil is extracted from oilseeds 

by means of combined mechanical and enzymatic (for the hulls) treatment; press cake is 

obtained as by-product from the process. The conversion of rapeoil to Rape Methyl Ester 

(RME), one form of biodiesel, is performed through enzymatic transesterification, in which a 

mixture of rendered oils and virgin rapeseed oil react with methanol (produced by a catalytic 

methane reforming process, potentially part of the biorefinery scheme) in a solvent-free carbon 

membrane reactor (CMR) with immobilised enzymes – Thermomyces laguginosa (Lypozyme TL) 

mixed with Candida antartica (Novozym 435) - as catalysers [12-13]. Glycerine, which is a by-

product from the reaction, can be used for a range of purposes as raw material for different 

industrial processes, in industrial boilers for energy production, and/or processed in a digester 
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for biogas production. The press cake is further processed in the biorefinery by means of 

supercritical fluid extraction (CO2 as a solvent) to recover glucosinolates and glucosinolate 

derived compounds [14]. This operation serves two purposes. On one hand the quality of rape 

meal (the processed rape cake) is improved by removing substances which are potentially toxic 

for animals at high doses and by increasing the availability of proteins in the meal. On the other 

hand, valuable products - such as food and plant protection agents and health care 

compounds– can be produced from glucosinolates [15-16]. However, both the extraction of 

glucosinolate and its possible uses are still under research and detailed information was not 

found in literature. Accordingly, both extraction and potential downstream utilization of 

glucosinulates have not been included in the present modelling. 

 

 

Figure 1 - Biorefinery system outline (Scenario 4). 
 

The collected rape straw is a lignocellulosic material and consists of three main 

fractions: 1) cellulose (C6 glucose polymers), 2) hemicelluloses (C5 sugar polymers), and 3) 

lignin. Cellulose can be converted after further processing to ethanol, while hemicellulose can 

be used as raw material for hydrogen production. The straw is pretreated by means of the 
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Liquid Hot Water (LHW) method, followed by filtration to separate a liquid fraction 

(hydrolysate) rich in hemicellulose (pentose sugars: xylose and arabinose) and a solid fraction 

containing cellulose (hexose sugars: glucose), lignin, ash and the undissolved hemicellulose [17-

19]. The hydrolysate is utilized for biohydrogen production through extreme thermophilic dark 

fermentation using basic anaerobic (BA) medium as inoculum [20]. The solid fraction is used for 

bioethanol production in a Simultaneous Saccharification and Fermentation (SSF) bioreactor 

equipped with a direct vacuum distillation unit [21]. The process makes use of Celluclast 1,5L. 

and b-glycosidase (Novozym 188) for the enzymatic hydrolysis and Saccharomyces cerevisiae as 

fermenting microorganisms. The lignin is not affected during the fermentation process [22] and 

is recovered from the residual stillage by means of filtration. The lignin is subsequently 

combusted for recovery of energy. The remaining liquid fraction of the stillage is collected 

together with the effluent from the dark fermentation reactor (biohydrogen production) and 

co-digested in a thermophilic (55°) anaerobic reactor for production of biogas. 

 

2.3. The biorefinery system: mass balance 

Figure 2 presents the Total Solids (TS) balance of the biorefinery system. Assuming a straw-to-

crop ratio of 0.9 on dry basis [55], 1 Mg wet weight (ww) of whole rapeseed delivered at the 

gate of the biorefinery consists of 538 kgww of seeds and 462 kgww of straw. This corresponds to 

490 kg dry weight (dw) of seeds and 441 kgdw of straw, assuming TS contents of 91% [23] and 

95.4% [25] respectively.  

Data regarding rapeoil extraction by enzymatic hydrolisation of the biomass were not 

available in literature. As a conservative estimate, we have assumed that this process has a 

similar performance as a state-of-the-art solvent extraction method, i.e. a meal-to-oil ratio of 

1.38 on wet basis [23] was used. This assumption was based on the fact that the enzymatic 

method was reported enhancing oil extractability up to 10% [24] compared to the full press 

technology, which has a meal-to-oil ratio around 1.50-1.58 [6, 23, 26, 27]. The resulting flows 

were thus 216 kgdm of rapeoil and 273 kgdm of rape meal. 
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Figure 2 - Biorefinery mass balance (Scenario 4) for 1 Mg ww input of rapeseed. Values are 
expressed in kg TS. 

   

 The amount of RME and glycerine obtained from rapeoil depend on the chemical 

composition of the rapeoil used and thus different data can be found in literature. Based on 

data from Thyø et al. [4], Halleux et al. [6], and Jungbluth [26], we have assumed average data 

according to the following Equation 1, where the variation interval represents the data range 

found in the literature: 

rapeoil        +        methanol        →        RME        +        glycerine   (Equation 1) 

[1000 𝑘𝑔]           [110 ± 3 𝑘𝑔]       [980 ± 20 𝑘𝑔]      [110 ± 10 𝑘𝑔] 

 

This relationship does not take into account for possible surplus of methanol added to the 

process, both because this surplus is very limited and because methanol is recovered from the 

glycerine and recirculated back to the biodiesel reactor. The process is supposedly catalyst- and 

solvent-free, thus no other materials (e.g. catalysts such as KOH, NaOH; or catalyst breaker such 

as H3PO4; or solvent such as n-hexane, tert-butanol) are included. A small amount of 

ammonium hydroxide used to neutralize remaining free fatty acids was included in the 
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inventory but not shown for simplicity in the mass balance (Figure 2). The load of enzymes in 

the reactor was 3% Lipozyme TL IM and 1% Novozym 435 [12-13] based on rapeoil weight. The 

enzyme productivity was estimated to 1200 kg biodiesel kg-1 enzyme [28], corresponding to an 

enzyme consumption of 0.82 kg per Mg rapeoil. A conservative assumption of 2.00 kg per Mg 

rapeoil was used (1.5 kg Lipozyme TL IM and 0.5 kg Novozym 435). Liquid effluents consisting of 

free fatty acids, methyl esters and spent enzymes were assumed treated in municipal 

wastewater treatment plants [26]. 

 The content of glucosinolate in the rape meal was in the order of 10.6 mmol kg-1
dw [29]. 

Assuming a recovery efficiency of 50% for the supercritical fluid extraction method and a molar 

weight of 455 g mol-1 (this may vary between 415-495 g mol-1 [64]), we estimated a recovery of 

0.67 kg of glucosinolate compounds from the total amount of rape meal.  

It was assumed that 65 % (i.e. the maximum harvestable [30]) of the straw was collected 

from the fields, corresponding to 286 kgdw of straw delivered to the biorefinery for processing 

and 154 kgdw left on the field. The collection of straw was modelled based on the ecoinvent 

process “Baling/CH S” [30]. The environmental effects of straw removal are reduction soil 

organic carbon (SOC) content, removal of N, P, K nutrients and change in N2O emission pattern 

[59, 60]. A decrease in SOC of 0.31 Mg C ha-1 yr-1 was calculated according to the IPCC [65] 

(country: Denmark; climate region: cold temperate, moist; native soil type: high clay activity 

mineral; land use type: long-term cultivated, full-tillage, from medium to low input). It should 

be noted that decrease in SOC may affect the crop yield. This effect was however not included, 

because a link between SOC and crop yield cannot be accurately quantified, being crop yield 

also determined by other concurring factors [57]. Removal of N, P, K nutrients with the straw 

implies additional application of mineral fertilizers to keep the yield constant. The amount of 

inorganic fertilizers was 6.5 and 1.1 kg of N, P respectively per Mgdw straw [56], while a value of 

2.8 kg of K per Mgdw straw was taken from Cherubini & Ulgiati [8], considering wheat straw a 

reasonable estimation for rape straw. Decreased N2O emission in the order of 0.03 Kg N-N2O 

Mg-1
dw (or 0.047 Kg N2O Mg-1

dw) were modelled according to the assumption made by Cherubini 

& Ulgiati [8], which is based on estimations by Gabrielle & Gagnaire [54]. 
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Hydrothermal pretreatment of the collected straw was assumed to have an optimized 

performance reported by Lu et al. [31]: 56.9 % of the cellulose and 68.4 % of the hemicellulose 

contained in the raw straw were recovered in the solid fraction (to SSF for bioethanol 

production) and hydrolysate (to dark fermentation) by operating the process with 1% w/w 

sulphuric acid (H2SO4) and 20 % solid content for 10 min at 180°C. It was calculated that the 

20% solid content is obtained by adding about 3.8 L kg-1 TS input (705 kg in total with 176 kgdm 

input).  During pretreatment, 5% of the solids (proportionally distributed among components) 

are lost [21]. The remaining fractions of cellulose and hemicellulose were assumed to be in the 

solid fraction – together with the lignin – but not available for fermentation. No water needed 

to be added to the SSF and dark fermentation processes, as the amount of water added during 

the hydrothermal pretreatment was enough to sustain these processes [21]. 

The SSF process requires input of enzymes for the hydrolysis of cellulose. The load of 

enzymes was 0.11 g g-1
cellulose and 0.05 g g-1

cellulose for 24 h [31] for celluclast 1.5L and 

Novozym188 respectively. Similarly to the transesterification process, enzyme load was 

estimated to 5%, meaning that a consumption of 5.5 g and 2.5 g kg-1
cellulose of Celluclast 1.5 L 

and Novozym 188 respectively was assumed. Bioethanol was produced from hydrolysed 

cellulose according to the following Equation 2: 

 

𝐶6𝐻12𝑂6 → 2𝐶𝐻3𝐶𝐻2𝑂𝐻 + 2𝐶𝑂2  (Equation 2) 

 

The efficiency of the process is assumed to be 90% [17, 18, 21], meaning that about 460 g of 

ethanol and 440 g of CO2 are produced per kg dm of cellulose. The filtration process of the 

stillage was assumed to recover 95 % of the lignin and 50 % of the ash into the solid fraction, 

while the remaining lignin and ash were assumed to remain in the liquid stillage sent to 

anaerobic digestion, together with non-processed cellulose and non-hydrolysed cellulose and 

hemicellulose. 

 Hydrogen is produced during dark fermentation from non-hydrolysed hemicellulose and 

cellulose according to the following (simplified) reactions (Equation 3 and Equation 4): 
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𝐶5𝐻10𝑂5  +  12

3
𝐻2𝑂 →  31

3
𝐻2 + 12

3
𝐶2𝐻3𝑂2

−
3

+  12

3
𝐻+ + 12

3
𝐶𝑂2  (Equation 3) 

 

𝐶6𝐻12𝑂6  + 2𝐻2𝑂 →  4𝐻2 + 2𝐶2𝐻3𝑂2
− +  2𝐻+ + 2𝐶𝑂2   (Equation 4) 

 

The efficiency of the overall process was assumed to be 50 % [20], corresponding to production 

of 22 g of H2 and 240 g of CO2 per kg dm of hydrolysate (95% pentose and 5 % hexose 

hydrolysed sugars). 

 In the anaerobic digestion process, biogas was produced from different substrates 

recovered from previous processes: 

 Hemicellulose and cellulose not hydrolysed during pretreatment and contained in the solid 

fraction; 

 Hemicellulose and cellulose hydrolysed during pretreatment but not utilized during SSF or 

dark fermentation; 

 By-products from the dark fermentation (acetic acid). 

 

The following general reaction (Equation 5) was used to estimate the production of biogas from 

the above mentioned substrates: 

 

𝐶𝑛𝐻𝑎𝑂𝑏  + (𝑛 −
𝑎

4
−

𝑏

2
) 𝐻2𝑂 →  (

𝑛

2
−

𝑎

8
−

𝑏

4
) 𝐶𝐻4 + (

𝑛

2
−

𝑎

8
−

𝑏

4
) 𝐶𝑂2 (Equation 5) 

 

The efficiency of this process was assumed to be 80 %, which was within the range suggested 

by [21]. The non-degraded organic matter was assumed to be transferred to the digestate 

outflow from the biogas reactor. 

 

2.4. The biorefinery system: energy balance 

The energy balance for the biorefinery system is presented in Figure 3 (displayed as primary 

energy, as suggested by Börjesson & Tufvesson [63]) and includes energy carried by individual 

material flows and energy inputs/losses to the different processes. The energy contained in 

different material flows was estimated using the calorific values presented in Table 1 and the 
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mass flows shown in Figure 1. Electricity and heat requirements for each process were 

estimated according to unit process data presented in Table 2 and mass flows shown in Figure 

2. Provisions of electricity and heat were modelled using the marginal Danish production, as 

described later. The primary energy embedded in energy and material inputs was estimated 

according to factors presented in Table 3. Inventory data for enzyme provision were obtained 

from producers [66], but the complete inventory is hereby not reported for confidentiality 

reasons; data regarding primary energy consumption associated to enzyme production is 

reported in Table 3. No data were available for the enzymatic transesterification process as the 

technology has not yet been demonstrated and reported at an industrial scale. However, it was 

assumed that the enzymatic transesterification process uses less energy (fewer treatment 

steps) and much less water than the traditional process [13]. Thus, in the present study 30 % 

and 50 % lower energy and water consumption was assumed compared with the traditional 

catalytic transesterification process, according to calculations by Sotoft et al. [28]. The water 

consumption during the catalytic transesterification process was assumed to be 26.6 L Mg-1 

rapeoil input [26]. The relevance of this assumption is discussed further in the sensitivity 

analysis.  

Figure 3 shows that biodiesel represented the product carrying the largest energy 

output (7750 MJ Mg-1 of harvested straw). The energy contained in the harvested straw is on 

the other hand more evenly distributed across the different outputs (ethanol, lignin, methane 

and hydrogen) of the biorefinery. 

Energy losses include both energy lost through the degradation process (organic matter 

converted to CO2 and heat) and mechanical energy spent for the processing. Table 2 shows the 

relevance of energy losses for single processes, expressed as kJ of energy lost per MJ of primary 

energy input (sum of energy contained in the organic flows plus the primary energy embedded 

in ancillaries) to the processes. 
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Figure 3 - Biorefinery primary energy balance for 1 Mg ww input of rapeseed. Values are 
expressed in MJ. 

 

 Energy intensities of the processes were calculated and reported in Table 2. Energy 

intensity is defined as the amount (kJ) of primary energy used per unit (MJ) of energy input to 

the processes (energy contained in the rapeseed-related organic flows). According to the 

results, the most energy intensive processes are enzymatic transesterification, anaerobic 

digestion and hydrothermal pre-treatment, suggesting that for these processes there is a 

potential for further technological development and optimization. However, in case of 

enzymatic transesterification most of the energy input (i.e. methanol) is then recovered in the 

output (biodiesel), with low energy losses. 
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2.5. LCA scenarios 

The biorefinery system was compared with four alternative scenarios/technologies to assess 

whether the introduction of technological innovation resulted in environmental benefits and 

enhanced efficiency for the processing of rapeseed. The following sections present the 

methodological choices/assumptions within the LCA framework and a brief description of the 

five compared scenarios, while outlines of the scenarios are provided in the Supplementary 

Material (Figure S1 to Figure S5). Scenarios were developed based on the reference scenario 

(S1), representing the traditional biodiesel production from rapeseed. In the following 

scenarios, innovative technologies/solutions developed in the integrated biorefinery concept 

are sequentially introduced to test their environmental performance, until Scenario 4, which 

represents the biorefinery concept above described. Scenario 5 represents an alternative to 

scenario 4 within the integrated biorefinery concept. A detailed overview of inventory data and 

process parameters are presented in table 5. The assessment had a technological focus aiming 

at thoroughly analysing the conversion processes, comparing different configurations and 

identifying potential improvements. For the sake of comparison, the provision of rapeseed was 

thus excluded from the system boundaries, as it would have been the same for all the 

investigated scenarios. 

 

2.5.1. Scenario 1 – Traditional rapeseed refinery (S1) 

In Scenario 1, rapeseed is mechanically sorted into rape seeds and straw during harvesting. 

Straw is left on the field and not utilised further. Rapeoil is extracted from rape seeds by means 

of full press technology (using hexane as a solvent), with a meal-to-oil ratio of 1.5 [27] per dry 

basis. Biodiesel is produced in a transesterification process where NaOH is used as a catalyser 

for the process. The consumption of NaOH was assumed to be 1 % based on rapeoil weight 

[13]. Inventory data for the transesterification process were obtained from the ecoinvent 

database (“Rape methyl ester, at esterification plant, RER”, [26]) and adjusted according to the 

amounts of rapeseed produced in the Danish system. Consumption of methanol and 

productions of glycerine and RME were assumed to be the same for all scenarios, regardless of 

the employed technology. 
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2.5.2. Scenario 2 – Enzymatic transesterification (S2) 

In Scenario 2, the introductions of improved rapeoil extraction methods and enzymatic 

transesterification were assessed. Similarly to S1, rapeseed is mechanically sorted into rape 

seeds and straw during harvesting. Straw is left on the field and not further utilised. Rapeoil is 

extracted from oilseeds by means of combined mechanical and enzymatic treatment (hulls), 

assuming a meal-to-oil ratio of 1.32 per dry basis. RME is produced in an enzymatic 

transesterification process as described for the biorefinery concept.  

 

2.5.3. Scenario 3 – Straw combustion (S3) 

In Scenario 3, recovery of straw and its utilization for energy purposes was assessed. Rapeseed 

is treated as in S2 and RME, glycerine and rape meal are the co-products. The amount of straw 

harvested is 65% as described for the biorefinery concept. The straw was assumed to be 

combusted in a straw-fired combined heat & power (CHP) plant for production of electricity 

and heat. Straw combustion is today an integrated part of the Danish energy system and about 

32 % of all straw produced was used for energy production in 2009 [35]. The net energy 

recovery efficiency was assumed to be 21.8 % and 59.8 for electricity and heat respectively, as 

reported for a typical small-scale CHP plant in Denmark [14]. This implies a production of 4.7 GJ 

of electricity and 12.9 GJ of heat per Mg of straw (calorific value = 21.5 MJ kg-1 TS, Table 1). 

 

2.5.4. Scenario 4 – Biorefinery (S4) 

In Scenario 4, the biorefinery concept as described in section 2 is assessed. This included the 

use of straw for the production of bioethanol in SSF process, biohydrogen through dark 

fermentation and biogas through anaerobic digestion, and generation of electricity from 

combustion of woody residues from SSF reactor. 

 

2.5.5. Scenario 5 – Digestion of hydrolysate (S5) 

As an alternative to dark fermentation in Scenario 4, the hydrolysate is routed directly to 

anaerobic digestion in Scenario 5. The performance of the anaerobic digestion process was 
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assumed to be the same as in Scenario 4, as well as energy consumptions per unit of feedstock 

input. 

 

2.6. Substituted processes 

Choices and assumption related to substitutions are discussed in the following paragraphs, 

while an overview of possible substituted processes (also called “lost opportunities”) is 

presented in Table 5.  

 

2.6.1. Biofuels 

Rape methyl ester (RME) is a fuel comparable to conventional diesel. When low shares of RME 

are blended to conventional diesel, adjustment of cars’ engine is not needed [26]. The 

substitution is modelled on a 1:1 energy basis, using the ECOINVENT process “Operation, 

Operation, passenger car, diesel, fleet average” [26] to model the substituted diesel. Emissions 

of exhaust gases from combustion of RME in a diesel blend were modelled based on data from 

Pelkmans et al. [58]. 

Glycerine produced during the transesterification process can have several applications, 

as shown in Table 5. The upgrading and use of glycerine as raw material in industrial processes 

would be an environmentally sound choice, as the production of synthetic glycerine requires 

large inputs of fossil energy [36]. However, with the growing biofuel market the amount of 

glycerine co-produced with biodiesel is likely to be several times larger than the market 

capacity [36]. Therefore, the use of glycerine for energy purposes is the most likely 

consequence in the future. It is here assumed that glycerine is used in gas-fired industrial 

boilers, as this solution is already technically available [4]. In this case, the displaced fuel is 

natural gas with an assumed substitution ratio of 1 GJ of glycerine to 0.94 GJ of natural gas [4]. 

Emissions from combustion of glycerine are assumed to be the same as for natural gas 

combustion. 

Ethanol can be blended with conventional gasoline, substituting fossil gasoline on a 1:1 

energy basis. It was assumed that 5 vol.-% bioethanol is blended with 95 vol.-% gasoline, as 

allowed in the European standard for gasoline EN-228. The substitution was modelled using the 
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ECOINVENT process “Operation, passenger car, petrol, fleet average 2010” [26] for the 

substituted gasoline, while data from Pelkmans et al. [58] were used with regards to emissions 

from combustion of bioethanol in gasoline blends. 

Hydrogen produced during dark fermentation may be used for different purposes, as 

shown in Table 5. It was assumed that hydrogen is upgraded and used in industrial processes, 

thus replacing hydrogen produced from steam reforming of natural gas. The substitution was 

modelled on a 1:1 mass basis. 

Biogas generated during anaerobic digestion is used for energy production. It is 

assumed that after a cleaning stage the biogas is combusted in a gas engine, where electricity is 

generated with an efficiency of 42% and delivered to the grid. Heat is also co-generated in the 

engine, but used internally.  

 

2.6.2. Electricity and heat 

Electricity and heat produced from the biorefinery are delivered to the grid (national for 

electricity, local for district heating), displacing energy production elsewhere in the system. For 

Denmark, the marginal technology (i.e. the avoided production) for electricity production was 

assumed to be coal [37-38]. In case of biogas utilization, an alternative to gas engine could be 

the combustion of biogas in gas-fired power plants, thus replacing natural gas. However, this 

substitution mechanism is at all similar to the gas engine, because an increase in electricity 

generation based on natural gas will push in the long term coal-based energy out of the system, 

hence making coal the marginal fuel. On the other hand, the production of heat has 

consequences at a local scale. For Danish conditions, the production of heat from the 

biorefinery system is most likely to affect heat production at decentralised natural gas fired 

plants [39-40], which was therefore assumed to be the substituted technology.  

 

2.6.3. Other outputs 

Glucosinolates extracted from the rape meal can potentially be used for different purposes. As 

introduced earlier, it is anticipated that they can be used as food and plant protection agents 

(e.g. biopesticides) or they can be further processed into human medicaments (e.g. anti-
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carcinogenic compounds). However, possible applications are currently under research and 

sufficient information for definition of downstream processes is not yet available in literature. 

Thus, the substitution of other products by glucosinolates is not included in the modelling.  

Rape meal is used as animal fodder. As described by Schmidt & Weidema [41], the 

fodders replaced by the use of rape meal are and barley meals, sources of proteins and energy 

respectively. Furthermore, the avoided production of soybean meal would result in a decreased 

supply of soybean oil, which has to be provided by palm oil (i.e. the marginal vegetable oil). This 

means that 1 Mg of rape meal displaces the production of 979 kg soybean (or 763 kg of 

soybean meal) in Brazil and 114 Kg barley in Canada and induces an increased production of 

239 kg of palm oil fruit in Malaysia (calculated based on Schmidt [23] using a meal-to-oil ratio of 

1.38). Inventory data for soybean production in Brazil and barley production in Canada were 

taken from Schmidt [23], in both cases including intensified production and land expansion. The 

supercritical fluid extraction employed for recovering glucosinolates in Scenarios 4 and 5 

increases the net protein utilization (NPU) value of the rape meal - because the biological value 

(BV) is increased. It is estimated that the NPU of rape meal can increase from average values of 

65-70 up to 80. This increase in NPU thus implies that a larger amount of marginal protein 

source (soy meal) can be substituted. This was in Scenario 4 and 5 modelled by a 10 % increase 

in both the amount of soybean displaced and the production of palm oil. 

Digestate generated during anaerobic digestion can be used as fertilizer on agricultural 

land, thus displacing the production of inorganic fertilizer at an industrial level. According to 

Norouzi et al. [42], rape straw contains 0.83, 0.057 and 0.76 %TS of N, P and K respectively 

(values in line with other references such as BIOBIB database and Sander [43]). The fertilizing 

potential of the digestate has been estimated assuming that N, P, K are not degraded during 

biological process and that 25.3% (same as TS) is removed in the filter press together with 

lignin. Hence, the nutrients recovered in the digestate are 6.2, 0.43 and 5.7 kg of N, P and K 

respectively per tonne dw of straw or 28.7, 2.0 and 26.4 kg of N, P, K per tonne dw of digestate. 

The utilization rates for the nutrients are assumed to be 40, 100, 100 % for N,P,K as reported in 

Møller et al. [44], meaning that only 40% of the nitrogen substitutes inorganic N. 
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3. Results and discussion 

In this section, disaggregated results are presented as characterized potential impacts, together 

with comparative results for the five scenarios analysed and the sensitivity analysis. For sake of 

clarity, Figure 5 only displays the processes with the largest contribution; the remaining 

processes are grouped under “remaining processes”. Detailed contribution analysis is provided 

in Supporting Information (Figure S6 to figure S8). 

 

3.1. Impact assessment of the biorefinery system (Scenario 4) 

Figure 4 presents potential environmental impacts for the biorefinery system distributed 

among the output products of the refinery. It can be seen that the main credits to the system 

are due to the biodiesel (replacing fossil diesel) and rape meal (substituting for soy meal). This 

was quite expectable, as these two flows represent the main outputs (both mass and energy) of 

the biorefinery system. Figure 4 also shows that potential impacts are distributed similarly 

across the analysed impact categories, the only exception being combustion of lignin that 

results in savings when considering global warming whereby it represents a burden to the 

environment in terrestrial eutrophication, mainly due to NH3 and NOx from the combustion 

process. 

 

Figure 4 – Distribution of potential environmental impacts (units in brackets) among different 
outputs of the biorefinery system (Scenario 4) for 1 Mg of rapeseed input. 
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 Figure 5 presents potential environmental impacts for the biorefinery system 

disaggregated into sub-processes. It is seen that the substitution of fossil diesel with biodiesel 

has important benefits for the global warming impact category, representing the major saving. 

The production of rape meal has also benefits because it results in large savings linked to the 

avoided production of soy meal in Brazil (both soybean production and provision of land). Two 

significant burdens are represented by palm oil production in Malaysia - an indirect 

downstream effect of increased rape meal production – and removal of rapeseed straw from 

field (on global warming, not displayed in the figure for cut-off reasons), indicating that these 

processes should not be excluded from the modelling. With regards to Acidification and 

Terrestrial Eutrophication categories, contributions from sub-processes are distributed similarly 

to Global Warming, thereby indicating that the latter can be a good indicator for non-toxic 

categories when evaluating bioenergy systems. 

 

 

Figure 5 – Contribution of different sub-processes to potential environmental impacts (units in 
brackets) related to the biorefinery system (Scenario 4) for 1 Mg of rapeseed input. 
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3.2. Comparative results 

Comparative results for the assessed scenarios are presented in Figure 6, presented as 

normalised potential impacts. As expected, results are negative (i.e. avoided impacts form 

substituted processes are larger than direct burdens) for all scenarios and all impact categories, 

meaning that there are overall potential environmental benefits. For all impact categories, the 

introduction of enzymatic transesterification results in some environmental benefits (compared 

to traditional process), due to the increased diesel production – the improved rapeoil extraction 

has a lower meal-to-oil ratio. The decrease input of energy and materials to the 

transesterification process has a minor effect. However, these findings are very sensitive to the 

assumptions made and thus the related parameters will be screened in the sensitivity analysis. 

When looking at Scenarios 3 to 5, it can be seen that the collection and utilization of straw can 

have environmental benefits. In terms of global warming, Scenarios 3 to 5 show improvements 

compared to Scenario 2 in the order of 29, 9 and 10 % respectively. Relative improvements are 

a bit smaller for the acidification (10, 12, and 14% for Scenarios 3, 4, and 5 respectively) and 

eutrophication (7, 0, and 2%). The combustion of straw performs better than the conversion of 

straw to different biofuels (i.e. ethanol, hydrogen, methane) from a global warming 

perspective. This result was expectable, as combustion of straw involves fewer conversion 

processes and thus less energy losses. However, it should be remembered that, with regards to 

the transportation sector, liquid and gaseous fuels have logistically some advantages (e.g. they 

are storable and can be used as high-energy-density fuels in aviation and for other specific 

applications) compared to electricity and heat. From Figure 6 it can also be noted that the use 

of hydrolysate for the production of hydrogen (Scenario 4) or methane (Scenario 5) leads to 

similar results, despite different performances of the two processes: the lower conversion 

efficiency and higher energy consumption of the dark fermentation is compensated by the 

production of a higher quality fuel (hydrogen). 
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Figure 6 – Potential environmental impacts (units in brackets) for the analysed scenarios for 1 
Mg of rapeseed input. 

 

3.3. Sensitivity analysis 

The robustness of results in relation to different factors was tested by means of uncertainty 

important analysis [45], which includes an assessment of the relevance of different parameters 

on the results, a qualitative evaluation of their uncertainty, and a sensitivity test.  

A number of parameters were selected. A qualitative evaluation of the uncertainty was 

carried out as follow: 

 Meal-to-oil ratio for Scenario 1 was provided by an existing biodiesel producer. Improved 

extraction efficiency was assumed to be equal to a start-of-the-art chemical extraction 

method, since the effects of the enzymatic treatment on the hulls are not known yet. The 

assumption regarding the meal-to-oil ratio can thus be considered highly uncertain. 

 The consumption of electricity during enzymatic transesterification was estimated by means 

of process simulation [28] and it is thus associated with low uncertainty. 

 The consumption of enzymes during enzymatic transesterification was estimated by means 

of process engineering [28] and it is thus associated with low uncertainty. 
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 The straw-to-seed ratio was extrapolated from official statistics for Denmark. However, 

productivity of future rapeseed species is not easily predictable. The parameter it 

considered medium uncertain.  

 The marginal electricity mix was chosen according the standard and well-agreed LCA 

approach applied in Denmark. However, future marginal electricity mix is based on 

modelling and speculations done for the future energy scenarios and it is thus less certain. 

The chosen mix is thus considered medium uncertain. 

 The consumption of enzymes during SSF was assumed to be in the same order as for the 

enzymatic transesterification process. However, this data is not verifiable as literature is 

scarce on the subject. The used value is associated with high uncertainty.  

The relevance of the selected parameters on the results was determined based on the results 

presented previously (Figure 4 to 6) and are presented in Table 6. The influence of the different 

parameters on the results was evaluated with a sensitivity test.  Selected parameters were 

varied in the respective scenarios according to Table 6. The quantitative results of the test are 

shown graphically in Figure 7 by means of variation intervals. The sensitivity of each parameter 

was then described with a qualitative indicator: high sensitivity was assigned in case the 

variation interval was larger than the absolute (numerical) difference between the analysed 

scenarios or if the variation interval was large relatively to the impact in itself. The qualitative 

results are reported in Table 7 and show that none of the parameters is critical. 

The qualitative results of the sensitivity analysis are shown in Table 7 and they indicate 

that the most problematic parameters are the straw-to-crop ratio and the chosen marginal 

electricity mix. Results are also affected to a minor extent by the uncertainty introduced by 

parameters such as the meal-to-oil ratio and the consumption of enzymes during SSF. Despite 

the fact that none of the parameters listed in Table 7 seem to heavily affect the conclusions 

drawn from the results, it is still recommended to carry out further investigations in the future 

to improve the quality of these parameters. Similarly, the modelling of the marginal 

technologies and processes is based on assumptions and interpretations of market mechanisms 

that may need to be checked with changing economy dynamics in the future. 
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Figure 7 – Results of the sensitivity test (variation intervals) for the selected parameters (details 
provided in Table 6). 

 

4. Conclusions 

In the present study we have carried out a technological assessment of a biorefinery concept 

under development in Denmark for the conversion of rapeseed into different biofuels and 

valuable products. Results were calculated for three impact categories (global warming, 

acidification, terrestrial eutrophication) and they show that the introduction of enzymatic 

transesterification could potentially results in environmental benefits, but mainly for the 

improved rapeoil extraction procedure than for savings of energy/materials during the 

esterification process. The utilization of rapeseed straw for energy purposes showed also an 

improved environmental footprint compared to the 1st generation (traditional) biorefinery 

system, regardless the conversion option adopted. The production of liquid and gaseous 

biofuels is not as efficient as combustion for recovering the energy contained in the straw, but 

has certainly some advantages for the variety of possible products and their nature – liquid 

fuels have high energy content and can be easily stored or transported. The energy balance 

showed also that the energy consumption in different processes (i.e. hydrothermal treatment 

and dark fermentation) employed for conversion of straw is quite relevant and thus from a 

technological perspective improvements are potentially achievable and needed. Based on the 
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assumptions made in the study, the use of enzymes (in enzymatic transesterification and SSF) 

does not pose a major environmental concern. However, data from full scale facilities using 

enzymes are needed to confirm the findings. The sensitivity analysis showed that further 

investigations are also needed to better define output/output ratios in some of the processes 

(i.e. straw-to-crop and meal-to-oil ratios). 
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Table 1 – Alternatives for downstream processes (system expansion) relative to different outputs from the biorefinery. 
 
Output Use Purpose Substituted process 
RME Diesel blend Vehicles’ fuel Production of diesel from petroleum 

Glycerine 

Upgrade to pure glycerine Use in industrial processes Industrial production of synthetic 
(pharmaceutical) glycerine 

Combustion in industrial boilers Energy production Energy production based on natural gas 
Anaerobic digestion Energy production Energy production based on coal 
Raw material in chemical industry Production of chemicals Petroleum derivates 

Glucosinolate Raw material in agrochemical industry Production of plants’ protection agents Production of chemical pesticides 
Raw material in pharmaceutical industry Production of health care compounds Production of anti-carcinogenic compounds 

Rape meal Fodder Feeding of animals Production of soybean meal 
Fodder Feeding of animals Production of spring barley meal 

Bioethanol Gasoline blend  Vehicles’ fuel Production of diesel from petroleum 

Biohydrogen Raw material in chemical industry Production of chemicals Industrial production of hydrogen 
Use of hydrogen in car fuel cells Production of electromechanical energy Production of gasoline from petroleum 

Lignine Combustion in biomass plant Energy production Energy production based on coal 
Biogas Combustion in gas engine (at plant) Energy production Energy production based on coal 
Digestate Use on agricultural land Fertilizer Production of mineral fertilizer 
Straw Combustion in biomass plant Energy production Energy production based on coal 
 



Table 2 – Energy consumptions, energy losses and energy intensities of individual sub-processes of the biorefinery system. 
 
 Energy consumption Energy losses Energy intensity* 
Operation Unit Electricity Heat Source/COMMENT kJ MJ-1

input kJ MJ-1
input 

Overhead (admin., etc.) MJ Mg-1 rapeoil 4 2 [23]  0.25 
Pressing + cake treatment MJ Mg-1 seed 158.4 468 [26] 41 60 
Enzymatic transesterification MJ Mg-1 rapeoil 30.2 136.5 [26]** 18.1 120 
Supercritical fluid extraction MJ Mg-1 rapecake n.a. n.a. - n.a. n.a. 
Hydrothermal treatment MJ GJ-1 straw  87.8 [49] 166 104 
Dark fermentation MJ kg-1 H2 20.2 - [50] 166 143 
SSF MJ Mg-1 TSinput 65.5 - [44] 117 42 
Filter press MJ Mg-1 TSinput 40.8 - [51] 16 17 
Anaerobic digestion MJ m-3 biogas 0.54 - [25]*** 147 70 
Water supply MJ m-3 water 0.58 - EDIP database - - 
Wastewater treatment MJ m-3 wastewater 0.78 - [52] - - 
* Expressed as primary energy 
** Values in this study are assumed 30% lower 
*** assumed as an agricultural AD 
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Table 3 – Primary energy (MJ) used for the production of electricity, heat, methanol, 
H2SO4 and enzymes. 

 
 Unit Value Source/comment 
Coal based electricity MJ MJ-1 electricity 5.95 EDIP, exergy allocation, DK 
Coal based heat MJ MJ-1 heat 1.05 EDIP, exergy allocation, DK 
Methanol MJ kg-1 methanol 30.2 [25] 
H2SO4 MJ kg-1 H2SO4 3.8 [25] 
Enzymes MJ kg-1 enzyme 63-723 [66] 

 



Table 4 – Important parameters and input/output data for the assessed scenarios. 
 
   Scenario  
Process Parameter Unit S1 S2 S3 S4 S5 Source 
Harvesting Straw-to-crop ratio  0.9 0.9 0.9 0.9 0.9 [55] 
Oil extraction Meal-to-oil ratio  1.5 1.38 1.38 1.38 1.38 [23] [24] 
Straw collection Straw harvested % straw gen. - - 65 65 65 [30] 

  
Process Input Unit S1 S2 S3 S4 S5  
Overhead Electricity MJ Mg-1 oil 4 4 4 4 4 [23] 

Heat cons. MJ Mg-1 oil 2 2 2 2 2 [23] 
Oil extraction Electricity kWh Mg-1 seed 44 44 44 44 44 [27] 

Gas m3 Mg-1 seed 12 12 12 12 12 [27] 
Hexane kg Mg-1 seed 1.1 - - - - [26] 
H3PO4 kg Mg-1 seed 0.3 - - - - [26] 

Transesterification Electricity MJ Mg-1 oil 43.2 30.2 30.2 30.2 30.2 [28] 
Heat MJ Mg-1 oil 195 136.5 136.5 136.5 136.5 [28] 
NaOH catalyser kg Mg-1 oil 10 - - - - [13] 
Methanol kg Mg-1 oil 110 110 110 110 110 [4] [6] [26] 
H3PO4 kg Mg-1 oil 4.5 - - - - [13] 
Water kg Mg-1 oil 26.6 13.3 13.3 13.3 13.3 [26] 
Enzymes (Novozym 435) kg Mg-1 oil - 0.5 0.5 0.5 0.5 [12] [13] [28] 
Enzymes (Lipozyme TL) kg Mg-1 oil - 1.5 1.5 1.5 1.5 [12] [13] [28] 

Glucosinolate extr. Electricity MJ Mg-1 rapecake - - - n.a. n.a.  
Hydrothermal 
treatment 

Heat MJ GJ-1 straw - - - 87.8 87.8 calc. 
Water Mg Mg-1

dw
 straw - - - 4 4 calc. 

H2SO4 kg Mg-1
dw

 straw - - - 50 50 calc. 
SSF Electricity MJ Mg-1 TSinput - - - 65.5 65.5 [26] 

Enzymes (Celluclast) kg Mg-1 cellulose - - - 5.5 5.5 [12] [13] [28] 
Enzymes (Novozym 188) kg Mg-1 cellulose - - - 2.5 2.5 [12] [13] [28] 

Dark fermentation Electricity MJ kg-1 H2 - - - 20.2 - [51] 
Filter press Electricity MJ Mg-1 TSinput - - - 40.8 40.8 calc. 
Anaerobic 
digestion 

Electricity MJ m-3 biogas - - - 0.54 0.54  [26] 

  
Process Output Unit S1 S2 S3 S4 S5  
Transesterification RME kg Mg-1 oil 980 980 980 980 980 calc. 

Glycerine kg Mg-1 oil 110 110 110 110 110 calc. 
Glucosinolate Extr. Glucosinolate kg Mg-1 rapecake - - - 0.67 0.67 calc. 
Straw combustion 
 

Electricity GJ Mg-1
dw

 straw - - 4.7 - - calc. 
Heat GJ Mg-1

dw
 straw - - 13.3 - - calc. 

Ash kg Mg-1
dw

 straw - - 42.5 - - calc. 
SSF Bioethanol kg Mg-1

dw
 straw - - - 108 108 calc. 

Lignin kg Mg-1
dw

 straw - - - 171 171 calc. 
Dark fermentation Biohydrogen kg Mg-1

dw
 straw - - - 3.4 

 
- calc. 

Anaerobic 
digestion 
 

Methane kg Mg-1
dw

 straw - - - 88 93 calc. 
Digestate kg Mg-1

dw
 straw - - - 304 319 calc. 

n.a. = not available; calc.=calculated;   
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Table 5 – Alternatives for downstream processes (system expansion) relative to different outputs from the biorefinery. 
 
Output Use Purpose Substituted process 
RME Diesel blend Vehicles’ fuel Production of diesel from petroleum 

Glycerine 

Upgrade to pure glycerine Use in industrial processes Industrial production of synthetic 
(pharmaceutical) glycerine 

Combustion in industrial boilers Energy production Energy production based on natural gas 
Anaerobic digestion Energy production Energy production based on coal 
Raw material in chemical industry Production of chemicals Petroleum derivates 

Glucosinolate Raw material in agrochemical industry Production of plants’ protection agents Production of chemical pesticides 
Raw material in pharmaceutical industry Production of health care compounds Production of anti-carcinogenic compounds 

Rape meal Fodder Feeding of animals Production of soybean meal 
Fodder Feeding of animals Production of spring barley meal 

Bioethanol Gasoline blend  Vehicles’ fuel Production of diesel from petroleum 

Biohydrogen Raw material in chemical industry Production of chemicals Industrial production of hydrogen 
Use of hydrogen in car fuel cells Production of electromechanical energy Production of gasoline from petroleum 

Lignine Combustion in biomass plant Energy production Energy production based on coal 
Biogas Combustion in gas engine (at plant) Energy production Energy production based on coal 
Digestate Use on agricultural land Fertilizer Production of mineral fertilizer 
Straw Combustion in biomass plant Energy production Energy production based on coal 
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Table 6 – Sensitivity test for different parameters and scenarios. 
 
Test name Tested scenario Parameter changed Change From To 
Meal-to-oil Scenario 2 Meal-to-oil ratio + 5 % 1.38 - 1.45 
Electricity enzymatic 
transesterification 

Scenario 2 Electricity use in 
enzymatic transester. 

± 20 % 30.2 
MJ Mg-1 oil 

24.2 
MJ Mg-1 oil 

36.2 
MJ Mg-1 oil 

Enzyme 
transesterification 

Scenario 2 Enzyme consumption 
during transester. 

+ 300 % 2 
kg Mg-1 oil 

- 8 
kg Mg-1 oil 

Straw-to-crop Scenario 3 Straw-to-crop ratio + 33 % 0.9 - 1.2 
Marginal electricity Scenario 3 Marginal electricity mix  Coal Danish mix 
Enzyme SSF Scenario 4 Enzyme consumption 

during SSF 
+ 300 % 8  

kg Mg-1 
cellulose 

- 32 
kg Mg-1 
cellulose 
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Table 7 – Qualitative results of the uncertainty importance analysis. 
 
Parameter Uncertainty Relevance on the results Sensitivity 
Meal-to-oil High High Low 
Electricity requirements Low Low Low 
Enzyme transesterification Low Medium Low 
Straw-to-crop Medium High Medium 
Electricity mix Medium High Medium 
Enzyme SSF High Medium Low 
 


