726 research outputs found
Translocation of structured polynucleotides through nanopores
We investigate theoretically the translocation of structured RNA/DNA
molecules through narrow pores which allow single but not double strands to
pass. The unzipping of basepaired regions within the molecules presents
significant kinetic barriers for the translocation process. We show that this
circumstance may be exploited to determine the full basepairing pattern of
polynucleotides, including RNA pseudoknots. The crucial requirement is that the
translocation dynamics (i.e., the length of the translocated molecular segment)
needs to be recorded as a function of time with a spatial resolution of a few
nucleotides. This could be achieved, for instance, by applying a mechanical
driving force for translocation and recording force-extension curves (FEC's)
with a device such as an atomic force microscope or optical tweezers. Our
analysis suggests that with this added spatial resolution, nanopores could be
transformed into a powerful experimental tool to study the folding of nucleic
acids.Comment: 9 pages, 5 figure
The occurrence of metacercariae of Petasiger (Digenea: Echinostomatidae) in an unusual site, within the lateral line scales of cyprinid fishes
This is now an open access journal. http://orcid.org/0000-0002-2908-491XThis is an Open Access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
work is properly cited. The file attached is the published version of the article
Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs
Non-conding RNAs play a key role in the post-transcriptional regulation of
mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact
with their target RNAs through protein-mediated, sequence-specific binding,
giving rise to extended and highly heterogeneous miRNA-RNA interaction
networks. Within such networks, competition to bind miRNAs can generate an
effective positive coupling between their targets. Competing endogenous RNAs
(ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk.
Albeit potentially weak, ceRNA interactions can occur both dynamically,
affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA
networks as a whole can be implicated in the composition of the cell's
proteome. Many features of ceRNA interactions, including the conditions under
which they become significant, can be unraveled by mathematical and in silico
models. We review the understanding of the ceRNA effect obtained within such
frameworks, focusing on the methods employed to quantify it, its role in the
processing of gene expression noise, and how network topology can determine its
reach.Comment: review article, 29 pages, 7 figure
Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained
DHODH modulates transcriptional elongation in the neural crest and melanoma
Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
Two approaches to the study of the origin of life.
This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life
Malformations of the gill filaments of the ruffe Gymnocephalus cernuus (L.) (Pisces) caused by echinostomatid metacercariae
In parasite surveys of fishes from Lake Balaton
and its tributaries in Hungary, infections with
metacercariae of a species of the digenean genus
Echinochasmus (Trematoda: Echinostomatidae)
were found in seven species of fish. In ruffe, Gymnocephalus
cernuus, malformations of the gill filaments
apparently caused by these infections were
observed. These malformations were in the form
of bifurcations of the filaments at about their
mid-length. At the point where the filaments
bifurcate, an Echinochasmus metacercaria was
always embedded in the cartilaginous ray of the
gill filament. All specimens of the ruffe were
found to be infected by these metacercariae, and
each ruffe specimen was infected by 30–300
metacercariae. Such a bifurcation was found in all
of the ruffe specimens, but, apart from these gill
malformations, the metacercariae produced only
local changes in the cartilage. In the other six
infected fish species, only local signs were observed
in the cartilage. Experimental infections of chicks
with metacercariae resulted in the finding of the
sexual adult (marita) of an unidentified species of
Echinochasmus. ITS sequences of the adult and
metacercaria corresponded with each other, and
also with a cercaria isolated from a gravel snail
(Lithoglyphus naticoides), with a 99.5–100%
similarity
- …
