We investigate theoretically the translocation of structured RNA/DNA
molecules through narrow pores which allow single but not double strands to
pass. The unzipping of basepaired regions within the molecules presents
significant kinetic barriers for the translocation process. We show that this
circumstance may be exploited to determine the full basepairing pattern of
polynucleotides, including RNA pseudoknots. The crucial requirement is that the
translocation dynamics (i.e., the length of the translocated molecular segment)
needs to be recorded as a function of time with a spatial resolution of a few
nucleotides. This could be achieved, for instance, by applying a mechanical
driving force for translocation and recording force-extension curves (FEC's)
with a device such as an atomic force microscope or optical tweezers. Our
analysis suggests that with this added spatial resolution, nanopores could be
transformed into a powerful experimental tool to study the folding of nucleic
acids.Comment: 9 pages, 5 figure