45 research outputs found

    Evolutionary Comparison Provides Evidence for Pathogenicity of RMRP Mutations

    Get PDF
    Cartilage-hair hypoplasia (CHH) is a pleiotropic disease caused by recessive mutations in the RMRP gene that result in a wide spectrum of manifestations including short stature, sparse hair, metaphyseal dysplasia, anemia, immune deficiency, and increased incidence of cancer. Molecular diagnosis of CHH has implications for management, prognosis, follow-up, and genetic counseling of affected patients and their families. We report 20 novel mutations in 36 patients with CHH and describe the associated phenotypic spectrum. Given the high mutational heterogeneity (62 mutations reported to date), the high frequency of variations in the region (eight single nucleotide polymorphisms in and around RMRP), and the fact that RMRP is not translated into protein, prediction of mutation pathogenicity is difficult. We addressed this issue by a comparative genomic approach and aligned the genomic sequences of RMRP gene in the entire class of mammals. We found that putative pathogenic mutations are located in highly conserved nucleotides, whereas polymorphisms are located in non-conserved positions. We conclude that the abundance of variations in this small gene is remarkable and at odds with its high conservation through species; it is unclear whether these variations are caused by a high local mutation rate, a failure of repair mechanisms, or a relaxed selective pressure. The marked diversity of mutations in RMRP and the low homozygosity rate in our patient population indicate that CHH is more common than previously estimated, but may go unrecognized because of its variable clinical presentation. Thus, RMRP molecular testing may be indicated in individuals with isolated metaphyseal dysplasia, anemia, or immune dysregulation

    Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes.

    Full text link
    A primary motivation for sequencing the mouse genome was to accelerate the discovery of mammalian genes by using sequence conservation between mouse and human to identify coding exons. Achieving this goal proved challenging because of the large proportion of the mouse and human genomes that is apparently conserved but apparently does not code for protein. We developed a two-stage procedure that exploits the mouse and human genome sequences to produce a set of genes with a much higher rate of experimental verification than previously reported prediction methods. RT-PCR amplification and direct sequencing applied to an initial sample of mouse predictions that do not overlap previously known genes verified the regions flanking one intron in 139 predictions, with verification rates reaching 76%. On average, the confirmed predictions show more restricted expression patterns than the mouse orthologs of known human genes, and two-thirds lack homologs in fish genomes, demonstrating the sensitivity of this dual-genome approach to hard-to-find genes. We verified 112 previously unknown homologs of known proteins, including two homeobox proteins relevant to developmental biology, an aquaporin, and a homolog of dystrophin. We estimate that transcription and splicing can be verified for >1,000 gene predictions identified by this method that do not overlap known genes. This is likely to constitute a significant fraction of the previously unknown, multiexon mammalian genes

    GENCODE: producing a reference annotation for ENCODE

    Get PDF
    BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation

    EGASP: the human ENCODE Genome Annotation Assessment Project

    Get PDF
    Background: Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes. Results: Consensus elements phylogenetically related to the I, LINE1, LINE2, LOA and R2 elements of the 14 eukaryotic non-LTR clades are described from C. intestinalis. The ascidian elements showed conservation of both the reverse transcriptase coding sequence and the overall structural organization seen in each clade. The apurinic/apyrimidinic endonuclease and nucleic-acid-binding domains encoded upstream of the reverse transcriptase, and the RNase H and the restriction enzyme-like endonuclease motifs encoded downstream of the reverse transcriptase were identified in the corresponding Ciona families. Conclusions: The genome of C. intestinalis harbors representatives of at least five clades of non-LTR retrotransposons. The copy number per haploid genome of each element is low, less than 100, far below the values reported for vertebrate counterparts but within the range for protostomes. Genomic and sequence analysis shows that the ascidian non-LTR elements are unmethylated and flanked by genomic segments with a gene density lower than average for the genome. The analysis provides valuable data for understanding the evolution of early chordate genomes and enlarges the view on the distribution of the non-LTR retrotransposons in eukaryotes

    Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    Get PDF
    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network

    Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    Get PDF
    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs)

    No full text
    Analysis of the human and mouse genomes identified an abundance of conserved non-genic sequences (CNGs). The significance and evolutionary depth of their conservation remain unanswered. We have quantified levels and patterns of conservation of 191 CNGs of human chromosome 21 in 14 mammalian species. We found that CNGs are significantly more conserved than protein-coding genes and noncoding RNAS (ncRNAs) within the mammalian class from primates to monotremes to marsupials. The pattern of substitutions in CNGs differed from that seen in protein-coding and ncRNA genes and resembled that of protein-binding regions. About 0.3% to 1% of the human genome corresponds to a previously unknown class of extremely constrained CNGs shared among mammals

    Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds

    Get PDF
    The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks
    corecore