2,059 research outputs found

    One-Step Laser Nanostructuration of Reduced Graphene Oxide Films Embedding Metal Nanoparticles for Sensing Applications

    Get PDF
    The combination of two-dimensional materials and metal nanoparticles (MNPs) allows the fabrication of novel nanocomposites with unique physical/chemical properties exploitable in high-performance smart devices and biosensing strategies. Current methods to obtain graphene-based films decorated with noble MNPs are cumbersome, poorly reproducible, and difficult to scale up. Herein, we propose a straightforward, versatile, surfactant-free, and single-step technique to produce reduced graphene oxide (rGO) conductive films integrating "naked" noble MNPs. This method relies on the instantaneous laser-induced co-reduction of graphene oxide and metal cations, resulting in highly exfoliated rGO nanosheets embedding gold, silver, and platinum NPs. The production procedure has been optimized, and the obtained nanomaterials are fully characterized; the hybrid nanosheets have been easily transferred onto lab-made screen-printed electrodes preserving their nanoarchitecture. The Au@rGO-, Ag@rGO-, and Pt@rGO-based electrodes have been challenged to detect caffeic acid, nitrite, and hydrogen peroxide in model solutions and real samples. The sensors yielded quantitative responses (R 2 ≥ 0.997) with sub-micromolar limits of detections (LODs ≤ 0.6 μM) for all the analytes, allowing accurate quantification in samples (recoveries ≥ 90%; RSD ≤ 14.8%, n = 3). This single-step protocol which requires low cost and minimal equipment will allow the fabrication of free-standing, MNP-embedded rGO films integrable into a variety of scalable smart devices and biosensors

    PARTICIPAÇÃO NO PROCESSO DECISÓRIO DO APL DE VESTUÁRIO DE MURIAÉ-MG

    Get PDF
    A governança permite superar os desafios dos Arranjos Produtivos Locais (APLs) quanto às formas de cooperação e coordenação de ações conjuntas. A participação dos atores no processo decisório do APL é um elemento importante para caracterizar a governança, pois algumas investigações sugerem que o desenvolvimento do APL tem relação direta com essa participação. Nesse contexto, o objetivo deste estudo foi compreender a participação dos atores no processo decisório do APL de Vestuário de Muriaé-MG. Foi feita uma pesquisa qualitativa de caráter descritivo. Os dados primários foram coletados por meio de entrevistas semiestruturadas com 19 atores do APL, em julho de 2014, e analisados pela técnica de análise de conteúdo, com suporte do software NVivo®. Com a pesquisa constatou-se que os representantes das empresas não participam do processo decisório. Ao contrário do que ocorre com os representantes das entidades, dentre os quais se percebeu um maior envolvimento no processo decisório do APL. Conclui-se que no APL de Vestuário de Muriaé-MG o processo decisório é centralizado nas entidades, o que caracteriza a participação no processo decisório como incipiente. Resultado que faz surgir o interesse em investigar outros elementos, como os mecanismos que podem ser indicados, sugeridos ou criados para que a participação dos atores ocorra de forma efetiva

    Nanodiagnostics to face SARS-CoV-2 and future pandemics : from an idea to the market and beyond

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaAltres ajuts: Consejo Superior de Investigaciones Científicas (CSIC) for the project "COVID19-122"The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice

    Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and beyond

    Get PDF
    The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.We acknowledge funding from the European Union Horizon2020 Programme under Grant No. 881603 (Graphene Flagship Core 3). We acknowledge Consejo Superior de Investigaciones Científicas (CSIC) for the project “COVID19-122” granted in the call “Nuevas ayudas extraordinarias a proyectos de investigación en el marco de las medidas urgentes extraordinarias para hacer frente al impacto económico y social del COVID-19 (Ayudas CSIC–COVID-19)”. We acknowledge the MICROB-PREDICT Project for partially supporting the work. The MICROB-PREDICT project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant No. 825694. This reflects only the author’s view, and the European Commission is not responsible for any use that may be made of the information it contains. We also acknowledge Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) for the project MAT2017-87202-P. A.I. was supported by a PROBIST postdoctoral fellowship funded by European Research Council (Marie Skłodowska-Curie Grant No. 754510). C.C.C.S. acknowledges funding through CAPES–PRINT (Programa Institucional de Internacionalização; Grant Nos. 88887.310281/2018-00 and 88887.467442/2019-00) and Mackpesquisa-UPM. L.H. acknowledges funding through the China Scholarship Council. ICN2 is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa programme (MINECO Grant No. SEV-2017-0706)

    O Serviço de documentação textual e iconografia do Museu Paulista

    Get PDF
    The essay compares the curatorship's works realized during the decade of 1990 by the actual Department of Textual and Iconographical Documentation of Museu Paulista, responsible for the MP Fund / Permanent File (Fundo MP/Arquivo Permanente), hundreds of collections and textual funds and 50.000 iconography pieces, great part of which are gathered in photographic collections. It shows how the documentation work extrapolates the limits of SVDHICO in order to integrate itself with the group activities of the museum and with other research groups. It also points towards new work methodologies which allow to perform the curatorship in an integrated way with the interdisciplinary research and the culture diffusion.O artigo faz um balanço dos trabalhos de curadoria realizados durante a década de 1990 pelo atual Serviço de Documentação Textual e Iconografia do Museu Paulista, responsável pelo Fundo MP/Arquivo Permanente, centenas de coleções e fundos textuais e 50.000 peças de iconografia, grande parte delas reunidas em coleções fotográficas. Mostra como o trabalho de documentação extrapola os limites do SVDHICO para integrar-se com as atividades de conjunto do Museu e com outros grupos de pesquisa. Aponta também para novas metodologias de trabalho com imagens que permitem realizar a curadoria de forma integrada à pesquisa interdisciplinar e à difusão cultural

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Genotype and phenotype landscape of MEN2 in 554 medullary thyroid cancer patients: the BrasMEN study

    Get PDF
    Multiple endocrine neoplasia type 2 (MEN2) is an autosomal dominant genetic disease caused by RET gene germline mutations that is characterized by medullary thyroid carcinoma (MTC) associated with other endocrine tumors. Several reports have demonstrated that the RET mutation profile may vary according to the geographical area. In this study, we collected clinical and molecular data from 554 patients with surgically confirmed MTC from 176 families with MEN2 in 18 different Brazili an centers to compare the type and prevalence of RET mutations with those from other countries. The most frequent mutations, classified by the number of families affected, occur in codon 634, exon 11 (76 families), followed by codon 918, exon 16 (34 families: 26 with M918T and 8 with M918V) and codon 804, exon 14 (22 families: 15 with V804M and 7 with V804L). When compared with other major published series from Europe, there are several similarities and some differences. While the mutations in codons C618, C620, C630, E768 and S891 present a similar prevalence, some mutations have a lower prevalence in Brazil, and others are found mainly in Brazil (G533C and M918V). These results reflect the singular proportion of European, Amerindian and African ancestries in the Brazilian mosaic genome83289298CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO GRANDE DO SUL - FAPERGSSem informaçãoSem informação2006/60402-1; 2010/51547-1; 2013/01476-9; 2014/06570-6; 2009/50575-4; 2010/51546-5; 2012/21942-116/2551-0000482-

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore