23 research outputs found

    The XMM deep survey in the CDF-S III. Point source catalogue and number counts in the hard X-rays

    Get PDF
    Nuclear obscuration plays a key role in the initial phases of AGN growth, yet not many highly obscured active galactic nuclei (AGN) are currently known beyond the local Universe, and their search is an active topic of research. The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick (NH ≳ 1024 cm-2) AGN. The large effective area of XMM-Newton in the 2–10 and 5–10 keV bands, coupled with a 3.45 Ms nominal exposure time (2.82 and 2.45 Ms after light curve cleaning for MOS and PN, respectively), allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM-Newton survey currently published in the 5–10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. In this paper, we present the data reduction of the XMM-CDFS observations, the method for source detection in the 2–10 and 5–10 keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6 × 10-16 and 9.5 × 10-16 erg s-1 cm-2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8 × 10-15 and 4.0 × 10-15 erg s-1 cm-2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~ 95% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial properties. For this reason, we present a detailed decomposition of the XMM-Newton background into its components: cosmic, particle, and residual soft protons.The three components have different spatial distributions. The importance of these three components depends on the band and on the camera; the particle background is the most important one (80–90% of the background counts), followed by the soft protons (4–20%)

    Nuclear Recoil Identification in a Scientific Charge-Coupled Device

    Full text link
    Charge-coupled devices (CCDs) are a leading technology in direct dark matter searches because of their eV-scale energy threshold and high spatial resolution. The sensitivity of future CCD experiments could be enhanced by distinguishing nuclear recoil signals from electronic recoil backgrounds in the CCD silicon target. We present a technique for event-by-event identification of nuclear recoils based on the spatial correlation between the primary ionization event and the lattice defect left behind by the recoiling atom, later identified as a localized excess of leakage current under thermal stimulation. By irradiating a CCD with an 241^{241}Am9^{9}Be neutron source, we demonstrate >93%>93\% identification efficiency for nuclear recoils with energies >150>150 keV, where the ionization events were confirmed to be nuclear recoils from topology. The technique remains fully efficient down to 90 keV, decreasing to 50%\% at 8 keV, and reaching (6±26\pm2)%\% at 1.5--3.5 keV. Irradiation with a 24^{24}Na γ\gamma-ray source shows no evidence of defect generation by electronic recoils, with the fraction of electronic recoils with energies <85<85 keV that are spatially correlated with defects <0.1<0.1%\%.Comment: 9 pages, 7 figure

    Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M

    Full text link
    Dark Matter (DM) particles with sufficiently large cross sections may scatter as they travel through Earth's bulk. The corresponding changes in the DM flux give rise to a characteristic daily modulation signal in detectors sensitive to DM-electron interactions. Here, we report results obtained from the first underground operation of the DAMIC-M prototype detector searching for such a signal from DM with MeV-scale mass. A model-independent analysis finds no modulation in the rate of 1e−e^- events with periods in the range 1-48 h. We then use these data to place exclusion limits on DM in the mass range [0.53, 2.7] MeV/c2^2 interacting with electrons via a dark photon mediator. Taking advantage of the time-dependent signal we improve by ∌\sim2 orders of magnitude on our previous limit obtained from the total rate of 1e−e^- events, using the same data set. This daily modulation search represents the current strongest limit on DM-electron scattering via ultralight mediators for DM masses around 1 MeV/c2^2

    The XMM deep survey in the CDF-S IV. Compton-thick AGN candidates

    Get PDF
    The Chandra Deep Field is the region of the sky with the highest concentration of X-ray data available: 4 Ms of Chandra and 3 Ms of XMM-Newton data, allowing excellent quality spectra to be extracted even for faint sources. We took advantage of this to compile a sample of heavily obscured active galactic nuclei (AGN) using X-ray spectroscopy. We selected our sample among the 176 brightest XMM-Newton sources, searching for either flat X-ray spectra (Γ < 1.4 at the 90% confidence level) suggestive of a reflection dominated continuum or an absorption turn-over suggestive of a column density higher than ≈ 1024 cm-2. We found a sample of nine heavily-obscured sources satisfying the above criteria. Four of these show statistically significant FeKα lines with large equivalent widths (three out of four have equivalent widths consistent with 1 keV) suggesting that these are the most certain Compton-thick AGN candidates. Two of these sources are transmission dominated while the other two are most probably reflection dominated Compton-thick AGN. Although this sample of four sources is by no means statistically complete, it represents the best example of Compton-thick sources found at moderate-to-high redshift with three sources at z = 1.2–1.5 and one source at z = 3.7. Using Spitzer and Herschel observations, we estimate with good accuracy the X-ray to mid-IR (12 ÎŒm) luminosity ratio of our sources. These are well below the average AGN relation, independently suggesting that these four sources are heavily obscured

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81&nbsp;years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Nuclear Recoil Identification in a Scientific Charge-Coupled Device

    No full text
    International audienceCharge-coupled devices (CCDs) are a leading technology in direct dark matter searches because of their eV-scale energy threshold and high spatial resolution. The sensitivity of future CCD experiments could be enhanced by distinguishing nuclear recoil signals from electronic recoil backgrounds in the CCD silicon target. We present a technique for event-by-event identification of nuclear recoils based on the spatial correlation between the primary ionization event and the lattice defect left behind by the recoiling atom, later identified as a localized excess of leakage current under thermal stimulation. By irradiating a CCD with an 241^{241}Am9^{9}Be neutron source, we demonstrate >93%>93\% identification efficiency for nuclear recoils with energies >150>150 keV, where the ionization events were confirmed to be nuclear recoils from topology. The technique remains fully efficient down to 90 keV, decreasing to 50%\% at 8 keV, and reaching (6±26\pm2)%\% at 1.5--3.5 keV. Irradiation with a 24^{24}Na γ\gamma-ray source shows no evidence of defect generation by electronic recoils, with the fraction of electronic recoils with energies <85<85 keV that are spatially correlated with defects <0.1<0.1%\%

    Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M

    No full text
    International audienceDark Matter (DM) particles with sufficiently large cross sections may scatter as they travel through Earth's bulk. The corresponding changes in the DM flux give rise to a characteristic daily modulation signal in detectors sensitive to DM-electron interactions. Here, we report results obtained from the first underground operation of the DAMIC-M prototype detector searching for such a signal from DM with MeV-scale mass. A model-independent analysis finds no modulation in the rate of 1e−e^- events with periods in the range 1-48 h. We then use these data to place exclusion limits on DM in the mass range [0.53, 2.7] MeV/c2^2 interacting with electrons via a dark photon mediator. Taking advantage of the time-dependent signal we improve by ∌\sim2 orders of magnitude on our previous limit obtained from the total rate of 1e−e^- events, using the same data set. This daily modulation search represents the current strongest limit on DM-electron scattering via ultralight mediators for DM masses around 1 MeV/c2^2

    Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M

    No full text
    International audienceDark Matter (DM) particles with sufficiently large cross sections may scatter as they travel through Earth's bulk. The corresponding changes in the DM flux give rise to a characteristic daily modulation signal in detectors sensitive to DM-electron interactions. Here, we report results obtained from the first underground operation of the DAMIC-M prototype detector searching for such a signal from DM with MeV-scale mass. A model-independent analysis finds no modulation in the rate of 1e−e^- events with periods in the range 1-48 h. We then use these data to place exclusion limits on DM in the mass range [0.53, 2.7] MeV/c2^2 interacting with electrons via a dark photon mediator. Taking advantage of the time-dependent signal we improve by ∌\sim2 orders of magnitude on our previous limit obtained from the total rate of 1e−e^- events, using the same data set. This daily modulation search represents the current strongest limit on DM-electron scattering via ultralight mediators for DM masses around 1 MeV/c2^2

    Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M

    No full text
    International audienceDark Matter (DM) particles with sufficiently large cross sections may scatter as they travel through Earth's bulk. The corresponding changes in the DM flux give rise to a characteristic daily modulation signal in detectors sensitive to DM-electron interactions. Here, we report results obtained from the first underground operation of the DAMIC-M prototype detector searching for such a signal from DM with MeV-scale mass. A model-independent analysis finds no modulation in the rate of 1e−e^- events with periods in the range 1-48 h. We then use these data to place exclusion limits on DM in the mass range [0.53, 2.7] MeV/c2^2 interacting with electrons via a dark photon mediator. Taking advantage of the time-dependent signal we improve by ∌\sim2 orders of magnitude on our previous limit obtained from the total rate of 1e−e^- events, using the same data set. This daily modulation search represents the current strongest limit on DM-electron scattering via ultralight mediators for DM masses around 1 MeV/c2^2
    corecore