91 research outputs found

    Metatranscriptome of human faecal microbial communities in a cohort of adult men

    Get PDF
    The gut microbiome is intimately related to human health, but it is not yet known which functional activities are driven by specific microorganisms\u27 ecological configurations or transcription. We report a large-scale investigation of 372 human faecal metatranscriptomes and 929 metagenomes from a subset of 308 men in the Health Professionals Follow-Up Study. We identified a metatranscriptomic \u27core\u27 universally transcribed over time and across participants, often by different microorganisms. In contrast to the housekeeping functions enriched in this core, a \u27variable\u27 metatranscriptome included specialized pathways that were differentially expressed both across participants and among microorganisms. Finally, longitudinal metagenomic profiles allowed ecological interaction network reconstruction, which remained stable over the six-month timespan, as did strain tracking within and between participants. These results provide an initial characterization of human faecal microbial ecology into core, subject-specific, microorganism-specific and temporally variable transcription, and they differentiate metagenomically versus metatranscriptomically informative aspects of the human faecal microbiome

    Stability of the human faecal microbiome in a cohort of adult men

    Get PDF
    Characterizing the stability of the gut microbiome is important to exploit it as a therapeutic target and diagnostic biomarker. We metagenomically and metatranscriptomically sequenced the faecal microbiomes of 308 participants in the Health Professionals Follow-Up Study. Participants provided four stool samples—one pair collected 24–72 h apart and a second pair ~6 months later. Within-person taxonomic and functional variation was consistently lower than between-person variation over time. In contrast, metatranscriptomic profiles were comparably variable within and between subjects due to higher within-subject longitudinal variation. Metagenomic instability accounted for ~74% of corresponding metatranscriptomic instability. The rest was probably attributable to sources such as regulation. Among the pathways that were differentially regulated, most were consistently over- or under-transcribed at each time point. Together, these results suggest that a single measurement of the faecal microbiome can provide long-term information regarding organismal composition and functional potential, but repeated or short-term measures may be necessary for dynamic features identified by metatranscriptomics

    Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling jeune syndrome

    No full text
    Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies

    The Kinetics and Mechanism of the Organo-Iridium-Catalysed Enantioselective Reduction of Imines

    Get PDF
    The iridium complex of pentamethylcyclopentadiene and (S,S)-1,2-diphenyl-N′-tosylethane- 1,2-diamine is an effective catalyst for the asymmetric transfer hydrogenation of imine substrates under acidic conditions. Using the Ir catalyst and a 5:2 ratio of formic acid: triethylamine as the hydride source for the asymmetric transfer hydrogenation of 1-methyl-3,4- dihydroisoquinoline and its 6,7-dimethoxy substituted derivative, in either acetonitrile or dichloromethane, shows unusual enantiomeric excess (ee) profiles for the product amines. The reactions initially give predominantly the (R) enantiomer of the chiral amine products with >90% ee but which then decreases significantly during the reaction. The decrease in ee is not due to racemisation of the product amine, but because the rate of formation of the (R)- enantiomer follows first-order kinetics whereas that for the (S)-enantiomer is zero-order. This difference in reaction order explains the change in selectivity as the reaction proceeds - the rate formation of the (R)-enantiomer decreases exponentially with time while that for the (S)- enantiomer remains constant. A reaction scheme is proposed which requires rate-limiting hydride transfer from the iridium hydride to the iminium ion for the first-order rate of formation of the (R)-enantiomer amine and rate-limiting dissociation of the product for the zero-order rate of formation of the (S)-enantiomer

    Intense exercise for survival among men with metastatic castrate-resistant prostate cancer (INTERVAL-GAP4): A multicentre, randomized, controlled phase III study protocol

    Get PDF
    Introduction: Preliminary evidence supports the beneficial role of physical activity on prostate cancer outcomes. This phase III randomised controlled trial (RCT) is designed to determine if supervised high-intensity aerobic and resistance exercise increases overall survival (OS) in patients with metastatic castrate-resistant prostate cancer (mCRPC). Methods and analysis: Participants (n=866) must have histologically documented metastatic prostate cancer with evidence of progressive disease on androgen deprivation therapy (defined as mCRPC). Patients can be treatmentnaive for mCRPC or on first-line androgen receptor-targeted therapy for mCRPC (ie, abiraterone or enzalutamide) without evidence of progression at enrolment, and with no prior chemotherapy for mCRPC. Patients will receive psychosocial support and will be randomly assigned (1:1) to either supervised exercise (high-intensity aerobic and resistance training) or self-directed exercise (provision of guidelines), stratified by treatment status and site. Exercise prescriptions will be tailored to each participant’s fitness and morbidities. The primary endpoint is OS. Secondary endpoints include time to disease progression, occurrence of a skeletal-related event or progression of pain, and degree of pain, opiate use, physical and emotional quality of life, and changes in metabolic biomarkers. An assessment of whether immune function, inflammation, dysregulation of insulin and energy metabolism, and androgen biomarkers are associated with OS will be performed, and whether they mediate the primary association between exercise and OS will also be investigated. This study will also establish a biobank for future biomarker discovery or validation. Ethics and dissemination: Validation of exercise as medicine and its mechanisms of action will create evidence to change clinical practice. Accordingly, outcomes of this RCT will be published in international, peer-reviewed journals, and presented at national and international conferences. Ethics approval was first obtained at Edith Cowan University (ID: 13236 NEWTON), with a further 10 investigator sites since receiving ethics approval, prior to activation. Trial registration number: NCT02730338

    Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men

    Get PDF
    Background & Aims: Sulfur-metabolizing microbes, which convert dietary sources of sulfur into genotoxic hydrogen sulfide (H2S), have been associated with development of colorectal cancer (CRC). We identified a dietary pattern associated with sulfur-metabolizing bacteria in stool and then investigated its association with risk of incident CRC using data from a large prospective study of men. Methods: We collected data from 51,529 men enrolled in the Health Professionals Follow-up Study since 1986 to determine the association between sulfur-metabolizing bacteria in stool and risk of CRC over 26 years of follow-up. First, in a subcohort of 307 healthy men, we profiled serial stool metagenomes and metatranscriptomes and assessed diet using semiquantitative food frequency questionnaires to identify food groups associated with 43 bacterial species involved in sulfur metabolism. We used these data to develop a sulfur microbial dietary score. We then used Cox proportional hazards modeling to evaluate adherence to this pattern among eligible individuals (n = 48,246) from 1986 through 2012 with risk for incident CRC. Results: Foods associated with higher sulfur microbial diet scores included increased consumption of processed meats and low-calorie drinks and lower consumption of vegetables and legumes. Increased sulfur microbial diet scores were associated with risk of distal colon and rectal cancers, after adjusting for other risk factors (multivariable relative risk, highest vs lowest quartile, 1.43; 95% confidence interval 1.14–1.81; P-trend = .002). In contrast, sulfur microbial diet scores were not associated with risk of proximal colon cancer (multivariable relative risk 0.86; 95% CI 0.65–1.14; P-trend = .31). Conclusions: In an analysis of participants in the Health Professionals Follow-up Study, we found that long-term adherence to a dietary pattern associated with sulfur-metabolizing bacteria in stool was associated with an increased risk of distal CRC. Further studies are needed to determine how sulfur-metabolizing bacteria might contribute to CRC pathogenesis

    Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 632-645, doi:10.4056/sigs.4998989.Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.We gratefully acknowledge the support of the Gordon and Betty Moore Foundation, which funded the sequencing of this genome. Annotation was performed as part of the 2011 C-MORE Summer Course in Microbial Oceanography (http://cmore.soest.hawaii.edu/summercourse/2011/index.htm), with support by the Agouron Institute, the Gordon and Betty Moore Foundation, the University of Hawaii and Manoa School of Ocean and Earth Science and Technology (SOEST), and the Center for Microbial Oceanography: Research and Education (C-MORE), a National Science Foundation-funded Science and Technology Center (award No. EF0424599)
    • …
    corecore