68 research outputs found

    An Experimental Study of Storable Votes

    Get PDF
    The storable votes mechanism is a method of voting for committees that meet periodically to consider a series of binary decisions. Each member is allocated a fixed budget of votes to be cast as desired over the multiple decisions. Voters are induced to spend more votes on those decisions that matter to them most, shifting the ex ante probability of winning away from decisions they value less and towards decisions they value more, typically generating welfare gains over standard majority voting with non-storable votes. The equilibrium strategies have a very intuitive feature---the number of votes cast must be monotonic in the voter's intensity of preferences---but are otherwise difficult to calculate, raising questions of practical implementation. In our experiments, realized efficiency levels were remarkably close to theoretical equilibrium predictions, while subjects adopted monotonic but off-equilibrium strategies. We are lead to conclude that concerns about the complexity of the game may have limited practical relevance.

    Evidence of inverted-gravity driven variation in predictive sensorimotor function.

    Get PDF
    We move our eyes to place the fovea into the part of a viewed scene currently of interest. Recent evidence suggests that each human has signature patterns of eye movements like handwriting which depend on their sensitivity, allocation of attention and experience. Use of implicit knowledge of how earth's gravity influences object motion has been shown to aid dynamic perception. We used a projected ball tracking task with a plain background offering no context cues to probe the effect of acquired experience about physical laws of gravitation on performance differences of 44 participants under a simulated gravity and an atypical (upward) antigravity condition. Performance measured by the unsigned difference between instantaneous eye and stimulus positions (RMSE) was consistently worse in the antigravity condition. In the vertical RMSE, participants took about 200ms longer to improve to the best performance for antigravity compared to gravity trials. The antigravity condition produced a divergence of individual performance which was correlated with levels of questionnaire based quantified traits of schizotypy but not control traits. Grouping participants by high or low traits revealed a negative relationship between schizotypy traits level and both initiation and maintenance of tracking, a result consistent with trait related impoverished sensory prediction. The findings confirm for the first time that where cues enabling exact estimation of acceleration are unavailable, knowledge of gravity contributes to dynamic prediction improving motion processing. With acceleration expectations violated, we demonstrate that antigravity tracking could act as a multivariate diagnostic window into predictive brain function

    Lead Slowing Down Spectrometer Status Report

    Full text link
    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    Get PDF
    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Security of Energy Supply: Comparing Scenarios from a European Perspective

    Full text link
    corecore