137 research outputs found

    Status of HVCMOS developments for ATLAS

    Get PDF
    This paper describes the status of the developments made by ATLAS HVCMOS and HVMAPS collaborations. We have proposed two HVCMOS sensor concepts for ATLAS pixels—the capacitive coupled pixel detector (CCPD) and the monolithic detector. The sensors have been implemented in three semiconductor processes AMS H18, AMS H35 and LFoundry LFA15. Efficiency of 99.7% after neutron irradiation to 1015 neq/cm2W has been measured with the small area CCPD prototype in AMS H18 technology. About 84% of the particles are detected with a time resolution better than 25 ns. The sensor was implemented on a low resistivity substrate. The large area demonstrator sensor in AMS H35 process has been designed, produced and successfully tested. The sensor has been produced on different high resistivity substrates ranging from 80 Ωcm to more than 1 kΩ. Monolithic- and hybrid readout are both possible. In August 2016, six different monolithic pixel matrices for ATLAS with a total area of 1 cm2 have been submitted in LFoundry LFA15 process. The matrices implement column drain and triggered readout as well as waveform sampling capability on pixel level. Design details will be presented

    Observation of the B0 →ρ0ρ0 decay from an amplitude analysis of B0 → (π+π-) (π+π-) decays

    Full text link
    Proton-proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0 → ρ 0ρ 0 decay. More than 600 B0 → (π +π −)(π +π −) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0 → ρ 0ρ 0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0 → ρ 0ρ 0 decays yielding a longitudinally polarised final state is measured to be fL = 0.745+0.048 −0.058(stat) ± 0.034(syst). The B0 → ρ 0ρ 0 branching fraction, using the B0 → φK∗ (892)0 decay as reference, is also reported as B(B0 → ρ 0ρ 0 ) = (0.94 ± 0.17(stat) ± 0.09(syst) ± 0.06(BF)) × 10−6

    Quantum numbers of the X (3872 ) state and orbital angular momentum in its ρ0J /ψ decay

    Full text link
    Angular correlations in B+ → X(3872)K+ decays, with X(3872) → ρ 0J/ψ, ρ 0 → π +π − and J/ψ → µ +µ −, are used to measure orbital angular momentum contributions and to determine the J P C value of the X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb−1 of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be J P C = 1++. The X(3872) is found to decay predominantly through S wave and an upper limit of 4% at 95% C.L. is set on the D-wave contribution

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Study of BDKπ+πB^{-}\to DK^-\pi^+\pi^- and BDππ+πB^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle γ\gamma

    Get PDF
    We report a study of the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the Kπ±K^{\mp}\pi^{\pm} and CP-even K+KK^+K^- and π+π\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed DK+πD\to K^+\pi^- final state of the BDππ+πB^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay BDKπ+πB^{-}\to DK^-\pi^+\pi^-, with DK+πD\to K^+\pi^-, is also presented. From the observed yields in the BDKπ+πB^-\to DK^-\pi^+\pi^-, BDππ+πB^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be γ=(7419+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of γ\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    Observation of the Bs0ηηB^0_s\to\eta'\eta' decay

    Get PDF
    The first observation of the Bs0ηηB^0_s\to\eta'\eta' decay is reported. The study is based on a sample of proton-proton collisions corresponding to 3.03.0 fb1{\rm fb^{-1}} of integrated luminosity collected with the LHCb detector. The significance of the signal is 6.46.4 standard deviations. The branching fraction is measured to be [3.31±0.64(stat)±0.28(syst)±0.12(norm)]×105[3.31 \pm 0.64\,{\rm (stat)} \pm 0.28\,{\rm (syst)} \pm 0.12\,{\rm (norm)}]\times10^{-5}, where the third uncertainty comes from the B±ηK±B^{\pm}\to\eta' K^{\pm} branching fraction that is used as a normalisation. In addition, the charge asymmetries of B±ηK±B^{\pm}\to\eta' K^{\pm} and B±ϕK±B^{\pm}\to\phi K^{\pm}, which are control channels, are measured to be (0.2±1.3)%(-0.2 \pm1.3)\% and (+1.7±1.3)%(+1.7\pm1.3)\%, respectively. All results are consistent with theoretical expectations

    Differential branching fraction and angular analysis of Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- decays

    Get PDF
    The differential branching fraction of the rare decay Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- is measured as a function of q2q^{2}, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 \mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is observed in the q2q^2 region below the square of the J/ψJ/\psi mass. Integrating over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λb0J/ψΛ\Lambda^{0}_{b} \rightarrow J/\psi \Lambda, respectively. In the q2q^2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (AFBlA^{l}_{\rm FB}) and hadron (AFBhA^{h}_{\rm FB}) systems are measured for the first time. In the range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} = -0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} = -0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde

    First observation and amplitude analysis of the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay

    Get PDF
    The BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay is observed in a data sample corresponding to 3.0 fb13.0~\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(BD+Kπ)=(7.31±0.19±0.22±0.39)×105{\cal B}(B^{-}\to D^{+}K^{-}\pi^{-}) = (7.31 \pm 0.19 \pm 0.22 \pm 0.39) \times 10^{-5} where the uncertainties are statistical, systematic and from the branching fraction of the normalisation channel BD+ππB^{-}\to D^{+}\pi^{-}\pi^{-}, respectively. An amplitude analysis of the resonant structure of the BD+KπB^{-}\to D^{+}K^{-}\pi^{-} decay is used to measure the contributions from quasi-two-body BD0(2400)0KB^{-}\to D_{0}^{*}(2400)^{0}K^{-}, BD2(2460)0KB^{-}\to D_{2}^{*}(2460)^{0}K^{-}, and BDJ(2760)0KB^{-}\to D_{J}^{*}(2760)^{0}K^{-} decays, as well as from nonresonant sources. The DJ(2760)0D_{J}^{*}(2760)^{0} resonance is determined to have spin~1.Comment: 39 pages, 10 figures, submitted to Phys. Rev. D. Updated following erratum 10.1103/PhysRevD.93.11990

    Precision measurement of CPCP violation in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays

    Get PDF
    The time-dependent CPCP asymmetry in Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays is measured using pppp collision data, corresponding to an integrated luminosity of 3.03.0fb1^{-1}, collected with the LHCb detector at centre-of-mass energies of 77 and 88TeV. In a sample of 96 000 Bs0J/ψK+KB_s^0 \to J/\psi K^+K^- decays, the CPCP-violating phase ϕs\phi_s is measured, as well as the decay widths ΓL\Gamma_{L} and ΓH\Gamma_{H} of the light and heavy mass eigenstates of the Bs0Bˉs0B_s^0-\bar{B}_s^0 system. The values obtained are ϕs=0.058±0.049±0.006\phi_s = -0.058 \pm 0.049 \pm 0.006 rad, Γs(ΓL+ΓH)/2=0.6603±0.0027±0.0015\Gamma_s \equiv (\Gamma_{L}+\Gamma_{H})/2 = 0.6603 \pm 0.0027 \pm 0.0015ps1^{-1}, andΔΓsΓLΓH=0.0805±0.0091±0.0032\Delta\Gamma_s \equiv \Gamma_{L} - \Gamma_{H} = 0.0805 \pm 0.0091 \pm 0.0032ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0J/ψπ+πB_s^{0} \to J/\psi \pi^+\pi^- decays gives ϕs=0.010±0.039\phi_s = -0.010 \pm 0.039 rad. All measurements are in agreement with the Standard Model predictions. For the first time the phase ϕs\phi_s is measured independently for each polarisation state of the K+KK^+K^- system and shows no evidence for polarisation dependence.Comment: 6 figure
    corecore