32 research outputs found

    Arbuscular mycorrhizal fungi enhance tolerance to bicarbonate in Rosa multiflora cv. burr

    Get PDF
    High bicarbonate (HCO3-) content and associated high pH of irrigation water is detrimental to plant growth. Sustain ableagricultural/horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to the problems associated with high levels of HCO3- in irrigation water. The ability of a mixed Glomus Tulasne & Tulasne species inoculum of arbuscular mycorrhizal fungi (AMF), Glomus ZAC-19 (containing Glomus albidum Walker & Rhodes, Glomus claroideum Schenck & Smith, and Glomus diaphanum Morton & Walker), to enhance plant tolerance to HCO3- was tested on the growth and nutrient uptake of Rosa multiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and non-inoculated (non-AMF) R. multiflora cv. Burr were treated with 0, 2.5, 5, and 10 mM HCO3-. Increasing HCO3- concentration and associated high pH reduced R. multiflora cv. Burr growth, nutrient uptake, and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO3- as indicated by greater growth, nutrient uptake, leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower soluble and wall-bound ALP activity. While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO3- concentration, colonization still occurred at high HCO3- concentration. At 2.5 mM HCO3-, AMF plant growth was comparable to plants at 0 mM HCO3-, further indicating the beneficial effect of AMF for alleviation of HCO3- plant stress

    Effect of Warming and Precipitation Distribution on Soil Respiration and Mycorrhizal Abundance in Post Oak Savannah

    Get PDF
    Projected climate change may alter soil carbon dioxide (CO2) efflux from terrestrial ecosystems; yet disentangling effect of plant species from climate drivers remains a key challenge. We explored the effects of the dominant plant species, warming, and precipitation distribution on soil CO2 efflux, its underlying components, and mycorrhizal abundance in southern post oak savannah. Post oak savannah in the south-central US are dominated by three contrasting plant functional types: Schizachyrium scoparium (Michx.) Nash. (little bluestem) a C4 grass, Quercus stellata Wangenh.(post oak)a C3 deciduous tree, and Juniperus virginiana L. (eastern redcedar) a C3 evergreen tree. Monocultures and tree-grass plots were warmed using infrared heaters and precipitation events were manipulated to intensify summer drought and augment cool season precipitation. Soil CO2 efflux, the root, bacterial and hyphal components of CO2 efflux, and mycorrhizal abundance were measured. Soil CO2 efflux varied with seasonal changes in soil VWC and temperature, with higher soil CO2 efflux rates in the spring and lower rates in both the cooler winter season and at the end of the dry summer period. There was no relationship between root length density or root mass density and soil CO2 efflux during the short term precipitation distribution campaigns. Partitioning of root, fungal, and bacterial component contribution to soil CO2 efflux indicated a substantial contribution of bacterial respiration to soil CO2 efflux within this system. There was no relationship between microbial biomass [microbial dissolved organic carbon (DOC)] and soil CO2 efflux, or root length (or mass) density and microbial biomass. This suggests that species and climatic effects on root and microbial activity drive soil CO2 efflux. As plant species within this system differed in their association with mycorrhizal fungi and had a strong effect on the individual components of soil CO2 efflux, we conclude that shifts in vegetation cover and growth and the response of vegetation to long term warming and potential future extreme precipitation events (e.g., large preciptation events, prolonged drought) will be major drivers of changes in soil carbon (C) dynamics and associated soil CO2 efflux

    Fish and complementary feeding practices for young children: Qualitative research findings from coastal Kenya

    Get PDF
    This study examines barriers to fish consumption during the complementary feeding period in two coastal counties of Kenya with high rates of child malnutrition. Study findings indicate that young child fish consumption is impacted by factors related to accessibility, food preferences, and caregiver’s knowledge and beliefs about fish during the complementary feeding period. These factors are influenced by prominent community figures such as elder women and health workers, whose own beliefs and understandings are impacted by underlying cultural norms, potentially limiting fish consumption. To our knowledge, this is the first study conducted in the coastal region of Kenya to focus on understanding fish consumption attitudes and beliefs during the complementary feeding phase. Our findings represent a critical first step towards the creation of more effective policies and interventions to address the significant nutritional disparities that exist in the study population

    Samaki Salama - Promoting healthy child growth and sustainable fisheries in coastal Kenya: A study protocol

    Get PDF
    Background: One in five young children globally suffer the consequences of stunted growth and development and millions experience deficiencies in zinc, iron, iodine, vitamins A and B12, nutrients found bioavailable in fish foods. Small-scale fisheries have the potential to generate income and augment fish consumption while being environmentally sustainable if appropriately managed. However, those engaged in small-scale fisheries are often marginalized, poor, and malnourished. The Samaki Salama project seeks to better understand and address these challenges through a three-arm, longitudinal matched cluster study which evaluates the impact of an integrated nutrition social marketing and modified fishing trap intervention. Methods: here will be 400 small-scale fisher households enrolled from Kilifi County, Kenya and residing in communities matched on location (rural), livelihoods, and child nutritional status. The sample will include mothers and other caregivers, children 6–60 months, and fishers in the family. Applying a cluster design, the matched communities will be divided into three groups: (1) control (n = 200); (2) multi-component nutrition social marketing intervention to fishers, mothers, and health workers (n = 100); and (3) multi-component nutrition social marketing intervention plus modified fishing traps and training (n = 100). Primary outcomes include child growth, fish food intakes, and fisheries yield of mature fish. Secondary outcomes are diet diversity, child diarrheal morbidity, and fisheries revenue. A process evaluation will be used to monitor and ensure fidelity of intervention delivery. Discussion: This study builds on a growing body of literature illustrating the effectiveness of nutrition focused social marketing campaigns to promote active engagement of participants, high compliance to the intervention, and sustained behavior change. The second intervention element of modified fishing traps that allow immature fish to escape enables participants to act on the messaging they receive and promotes sustainable fishing through increased harvest efficiency and reduced catch of immature fish. The integrated approach of the Samaki Salama intervention provides an example of how to leverage multiple disciplines to address key challenges to human and environmental health and illustrates a pathway for scaling study innovations to other small-scale fisheries systems

    Whole Body Mechanics of Stealthy Walking in Cats

    Get PDF
    The metabolic cost associated with locomotion represents a significant part of an animal's metabolic energy budget. Therefore understanding the ways in which animals manage the energy required for locomotion by controlling muscular effort is critical to understanding limb design and the evolution of locomotor behavior. The assumption that energetic economy is the most important target of natural selection underlies many analyses of steady animal locomotion, leading to the prediction that animals will choose gaits and postures that maximize energetic efficiency. Many quadrupedal animals, particularly those that specialize in long distance steady locomotion, do in fact reduce the muscular contribution required for walking by adopting pendulum-like center of mass movements that facilitate exchange between kinetic energy (KE) and potential energy (PE) [1]–[4]. However, animals that are not specialized for long distance steady locomotion may face a more complex set of requirements, some of which may conflict with the efficient exchange of mechanical energy. For example, the “stealthy” walking style of cats may demand slow movements performed with the center of mass close to the ground. Force plate and video data show that domestic cats (Felis catus, Linnaeus, 1758) have lower mechanical energy recovery than mammals specialized for distance. A strong negative correlation was found between mechanical energy recovery and diagonality in the footfalls and there was also a negative correlation between limb compression and diagonality of footfalls such that more crouched postures tended to have greater diagonality. These data show a previously unrecognized mechanical relationship in which crouched postures are associated with changes in footfall pattern which are in turn related to reduced mechanical energy recovery. Low energy recovery was not associated with decreased vertical oscillations of the center of mass as theoretically predicted, but rather with posture and footfall pattern on the phase relationship between potential and kinetic energy. An important implication of these results is the possibility of a tradeoff between stealthy walking and economy of locomotion. This potential tradeoff highlights the complex and conflicting pressures that may govern the locomotor choices that animals make

    Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms

    Get PDF
    Ruminant livestock are raised under diverse cultural and environmental production systems around the globe. Ruminant livestock can play a critical role in food security by supplying high-quality, nutrient-dense food with little or no competition for arable land while simultaneously improving soil health through vital returns of organic matter. However, in the context of climate change and limited land resources, the role of ruminant-based systems is uncertain because of their reputed low efficiency of feed conversion (kilogram of feed required per kilogram of product) and the production of methane as a by-product of enteric fermentation. A growing human population will demand more animal protein, which will put greater pressure on the Earth’s planetary boundaries and contribute further to climate change. Therefore, livestock production globally faces the dual challenges of mitigating emissions and adapting to a changing climate. This requires research-led animal and plant breeding and feeding strategies to optimise ruminant systems. This study collated information from a global network of research farms reflecting a variety of ruminant production systems in diverse regions of the globe. Using this information, key changes in the genetic and nutritional approaches relevant to each system were drawn that, if implemented, would help shape more sustainable future ruminant livestock systems

    Taking the steps towards sustainable livestock: our multidisciplinary global farm platform journey

    Get PDF
    Implications The Global Farm Platform was conceived and established to explore multidisciplinary strategies for optimising the sustainability of ruminant livestock systems around the world. International sustainability issues are common, but the solutions are often region-specific; therefore, our farms, situated across all major agroclimatic zones, are a unique resource worldwide. Each farm is following ?steps to sustainable livestock? to improve their production system(s), thereby developing robust metrics to progress economic, environmental and social viability. The consortium works collaboratively to improve the sustainability of ruminants, which we argue are a vital component of global food systems, delivering both human and planetary health

    Does dysfunction of the mirror neuron system contribute to symptoms in amyotrophic lateral sclerosis?

    Get PDF
    There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy
    corecore