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ABSTRACT 
 

Arbuscular Mycorrhizal Fungi Enhance Tolerance to Bicarbonate  

in Rosa multiflora cv. Burr. (August 2004) 

Andrew David Cartmill, BTEC HND, University of Central Lancashire, UK;  

BSc. (Hons.), University of Central Lancashire, UK  

Chair of Advisory Committee:  Dr. Frederick T. Davies, Jr. 

 

 High bicarbonate (HCO3
-) content and associated high pH of irrigation water is 

detrimental to plant growth.  Sustainable agricultural/horticultural production will 

increasingly have to rely on economically feasible and environmentally sound solutions 

to the problems associated with high levels of HCO3
- in irrigation water.  The ability of a 

mixed Glomus Tulasne & Tulasne species inoculum of arbuscular mycorrhizal fungi 

(AMF), Glomus ZAC-19 (containing Glomus albidum Walker & Rhodes, Glomus 

claroideum Schenck & Smith, and Glomus diaphanum Morton & Walker), to enhance 

plant tolerance to HCO3
- was tested on the growth and nutrient uptake of Rosa multiflora 

Thunb. ex J. Murr. cv. Burr (rose).  Arbuscular mycorrhizal colonized and non-

inoculated (non-AMF) R. multiflora cv. Burr were treated with 0, 2.5, 5, and 10 mM 

HCO3
-.  Increasing HCO3

- concentration and associated high pH reduced R. multiflora 

cv. Burr growth, nutrient uptake, and acid phosphatase activity (ACP), while increasing 

alkaline phosphatase activity (ALP).  Inoculation with AMF enhanced plant tolerance to 

HCO3
- as indicated by greater growth, nutrient uptake, leaf chlorophyll content, higher 

mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally 

lower soluble and wall-bound ALP activity.  While AMF colonization (arbuscules, 

vesicles, and hyphae formation) was reduced by increasing HCO3
- concentration, 

colonization still occurred at high HCO3
- concentration.  At 2.5 mM HCO3

-, AMF plant 

growth was comparable to plants at 0 mM HCO3
-, further indicating the beneficial effect 

of AMF for alleviation of HCO3
- plant stress. 
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CHAPTER I 

INTRODUCTION 
 

Water is a finite yet renewable resource (Ripl, 2003), which is essential for 

socioeconomic development and a critical requirement for the maintenance of viable and 

productive (sustainable) ecosystems (Wallace et al., 2003).  Population growth, 

infrastructure inadequacies, resource mismanagement (massive governmental subsidies 

and distorting incentives), fragmentation of legislation and regulation, and the inability 

to adequately quantify the effects of extraction, irrigation, and drainage projects, threaten 

the long-term sustainability of global water resources (Schultz and De Wrachien, 2002).  

New sources of water are increasingly expensive to exploit and decreasing in availability 

and quality (Wolff and Hübener, 1996).  Environmental concerns and intensifying 

competition for municipal and industrial water will reduce the availability of good 

quality water resources for agricultural/horticultural production (Hamdy et al., 2003; 

Rosegrant and Ringler, 1998). 

Agricultural/horticultural production will increasingly have to preserve and 

augment good quality water resources through enhanced water efficiency and utilization 

of non-conventional water resources.  This may include utilization of water of marginal 

quality, high in total dissolved solids (non-volatile solutes) (Oster, 1994; Shalhevert, 

1994).  The potential bicarbonate (HCO3
-) content and associated high pH of this 

irrigation water may be detrimental/limiting to plant growth, due to its adverse effects on 

availability and solubility of nutrients (P, N, Mg, Fe, Mn, Zn, Cu, and other ions) 

(Bailey, 1996; Marschner, 1995).  Prolonged nutrient deficiency results in significant 

reductions in growth, yield, and marketability of plant material.  Thus sustainable 

agricultural/horticultural production will increasingly have to rely on economically 

feasible and environmentally sound solutions to the problems associated with high levels 

of HCO3
- in irrigation water. 

Arbuscular mycorrhizal fungi [(AMF); Division Zygomycota/Glomeromycota, 
                                                           
  This thesis follows the format and style of the Journal of the American Society for Horticultural Science. 
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Order Glomales/Glomerales (Morton and Benny, 1990; Schüßler et al., 2001)] exist in 

symbiotic (mutually beneficial) associations with the fine young roots of higher plants 

(Smith and Read, 1997).  Studies have demonstrated that AMF enhance plant nutrient 

acquisition (P, N, Zn, Cu, and other ions) (Clark and Zeto, 2000), improve water 

relations (Augé, 2001), and alleviate cultural and environmental stresses (Jeffries et al., 

2003) through greater effective root area and penetration of substrate(s) (direct access to 

nutrients outside the zone of nutrient depletion that develop close to roots and to 

nutrients in inaccessible microsites), and activation and excretion of various enzymes by 

AMF roots and/or hyphae (Marschner, 1995; Smith and Read, 1997). 

Therefore, we proposed a model study to determine if inoculation of plant 

material with AMF would enhance plant growth, nutrient acquisition, and survivability 

under high levels of HCO3
- in irrigation water. 

 This research was conducted with the following objectives: 

1. To determine the effects of high levels of HCO3
- in irrigation water on plant nutrient 

acquisition and growth. 

Hypothesis: High levels of HCO3
- in irrigation water adversely affect plant nutrient 

acquisition and reduce growth. 

2. To determine if the application of AMF enhance nutrient acquisition and growth of 

plants irrigated with water high in HCO3
-. 

Hypothesis: Arbuscular mycorrhizal fungi enhance the nutrient acquisition and growth 

of plants irrigated with water high in HCO3
-. 
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CHAPTER II 

LITERATURE REVIEW 
 

Water 

 

Population growth, infrastructure inadequacies, resource mismanagement 

(massive governmental subsidies and distorting incentives), fragmentation of legislation 

and regulation, and the inability to adequately quantify the effects of extraction, 

irrigation, and drainage projects, threaten the long-term sustainability of global water 

resources (Schultz and De Wrachien, 2002).  New sources of water are increasingly 

expensive to exploit and decreasing in availability and quality (Wolff and Hübener, 

1996).  Environmental concerns and intensifying competition for municipal and 

industrial water will reduce the availability of good quality water resources for 

agricultural/horticultural production (Hamdy et al., 2003; Rosegrant and Ringler, 1998). 

 

AGRICULTURAL/HORTICULTURAL SECTOR 

The agricultural/horticultural sector currently accounts for approximately 80% 

(1870 km3·yr-1) of global water consumption (Postel, 1996).  Agricultural/horticultural 

production does not consume water in the conventional sense, since globally 

insignificant amounts are bound up in the products produced (Wallace and Batchelor, 

1997).  Approximately 30% (561 km3·yr-1) of global irrigation water is lost in storage 

and conveyance through evaporation, runoff, and seepage/drainage (Boss, 1985), and 

approximately 63% (825 km3·yr-1) of irrigation water delivered to the plant material is 

lost through evaporation, runoff, and seepage/drainage (Postel, 1996).   

By 2025 the global demand for water by agricultural/horticultural production is 

projected to increase by approximately 20% (374 km3·yr-1) (Dirksen, 2002).  The 

prohibitively high economic, social, and environmental cost of civil engineering works 

required for large scale extraction, irrigation, and drainage projects limits the scope for 

increasing the amount of good quality water resources available to 
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agriculture/horticultural production (Wolff and Hübener, 1996).  Thus, the portion of 

water available to agricultural/horticultural production is projected to decrease by 

approximately 15% (281 km3·yr-1) by 2025 (Dirksen, 2002). 

Agricultural/horticultural production will increasingly have to preserve and 

augment good quality water resources through enhanced water efficiency and utilization 

of non-conventional water resources.  This may include utilization of water of marginal 

quality, high in total dissolved solids (Al+3, HCO3
-, H2BO3

-, Ca+2, Cl-, Cu+2, F-, Fe+3, 

Fe+2, Mg+2, Mn+3,4, NO3
-, Na+, SO4

-2, Zn+2) (Malina, 1996; Oster, 1994; Reed, 1996a; 

Shalhevert, 1994). 

 

Bicarbonate 

 

BICARBONATE CHEMISTRY 

Bicarbonate (HCO3
-) is one of the major contributors to alkalinity in irrigation 

water (Petersen, 1996).  Carbonate (CO3
2-) is also a contributor to alkalinity; hydroxides, 

ammonia, borates, organic bases, phosphates, and silicates are minor contributors 

(Petersen, 1996).  Carbonate and HCO3
- are buffers which impart water with the capacity 

to resist sudden changes in pH (Bailey, 1996).  Therefore, alkalinity is a measurement of 

the concentration of the carbonates and buffering capacity (Bailey, 1996).  Bicarbonate 

and CO3
2- react with H+, increasing solution pH (Lindsay, 1979).  Slight alkalinity in 

water may be beneficial in production systems, because it will buffer the substrate 

solution, and thus permit limited pH variation (Argo and Fisher, 2002).  However, high 

alkalinity may be detrimental to plant growth due to the associated high pH (Bailey, 

1996). 

Solution pH influences alkalinity by determining the reaction direction of 

carbonates, and thus the proportion of the carbonate species present in the solution 

(Lindsay, 1979).  The prevalent form of carbonates at pH ≤6.36 is H2CO3, at pH between 

6.36 and 10.33, HCO3
- is the predominate form, and CO3

2- is predominate at pH >10.33 

(Lindsay, 1979). 
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The origin of alkalinity in irrigation water is from limestone or dolomitic 

deposits in aquifers (saturated hydrogeologic unit that contains significant quantity of 

water, with sufficient permeability to transmit that water) (Chaudhry, 1996; Kidder and 

Hanlon, 1997; Malina, 1996; Oetting et al., 1996).  High content of certain types of 

organic matter in the substrate and standing water (over irrigation) and/or soil 

compaction may also induce high alkalinity (Argo and Fisher, 2003; Marschner, 1995).  

Carbon dioxide released from organic matter through microbial respiration accumulates 

and reacts with water to produce H2CO3 (Lindsay, 1979; Lucena, 2000; Marschner, 

1995).  As previously stated H2CO3 may be converted to HCO3
- depending on solution 

pH. 

 

EFFECT OF BICARBONATE ON IRON NUTRITION 

Irrigation water and substrates high in HCO3
- have been shown to be a direct or 

indirect cause for Fe deficiency chlorosis in many plant species, both agronomic and 

horticultural (Wallace and Wallace, 1986; Welkie, 2000).  Iron chlorosis has been 

defined as the yellowing occurring in young leaves caused by inhibited chloroplast 

chlorophyll synthesis as a consequence of low iron nutritional status in the plant 

(Lucena, 2000).  It is well known that Fe compounds are very insoluble (Lindsay, 1979).  

Iron deficiency may be due to low Fe availability as a result of high carbonates and 

associated high pH (at pH 4 increases of 1 unit result in a 1000-fold decrease in Fe3+ 

solubility) (Lucena, 2000). 

Various mechanisms have been suggested to account for HCO3
- induced Fe 

chlorosis, for example the inhibition of Fe absorption and translocation to leaves 

(Alcántara et al., 2000; Bertoni et al., 1992; Romera et al., 1997), and immobilization of 

Fe in leaves (Bavaresco et al., 1999; Mengel, 1994; Römheld, 2000).  It has been 

demonstrated that HCO3
- induces a decreased Fe concentration in leaf dry matter, as 

indicated by a positive relationship between chlorophyll and total Fe concentration in the 

upper leaves.  However, in many cases this correlation can not/has not been observed, 

and a higher Fe concentration can be found in young chlorotic leaves compared to green 
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leaves.  This phenomena is called chlorosis paradox (Römheld, 2000).  This is suggested 

to be a result of Fe inactivation in leaf apoplast (Römheld, 2000).  The higher Fe content 

in chlorotic leaves may also be a result of a dilution factor (due to diminished leaf 

expansion compared to non-chlorotic plants) (Bavaresco et al., 1999; Römheld, 2000). 

There are at least two root response mechanisms (strategies) to Fe chlorosis in 

higher plants (Jolley et al., 1996; Marschner and Römheld, 1994).  Plant species and 

cultivars within species exhibiting any response to Fe deficiency are considered Fe 

efficient (Marschner, 1995).  Dicots and non-graminaceous monocots exhibit Strategy I 

mechanisms characterized by three components; a plasma membrane bound inducible 

reductase, enhanced net excretion of H+, and an enhanced release of reductants/chelators 

(Jolley et al., 1996; Marschner and Römheld, 1994).  In addition to HCO3
- induced 

decreased Fe solubility, it also impairs the effectivity of H+ efflux pump by 

neutralization of H+ (Jolley et al., 1996; Marschner, 1995).  Bicarbonate also lowers the 

release of phenolics and Fe reduction at the plasma membrane (Moog and Brüggemann, 

1994).  The relative importance of the three components seems to differ considerably 

between plant species and genotypes (Jolley et al., 1996; Marschner, 1995). 

Strategy II is confined to grasses and is characterized by two components, release 

of phytosiderophores (Fe deficiency-induced release of non-proteinogenic amino acids), 

and a high affinity transport system in the plasma membrane of root cells for Fe 

phytosiderophores (Jolley et al., 1996; Marschner and Römheld, 1994).  The release of 

phytosiderophores is not affected by the external pH. 

 

EFFECT OF BICARBONATE ON PLANT GROWTH 

Plant species and cultivars within species vary in their response to HCO3
- stress.  

Substrate, irrigation method, and fertilizer type can influence the tolerance of plant 

species to HCO3
- (Bailey, 1996).  Length of crop period and plant to substrate ratio can 

also influence plant tolerance to HCO3
- (Nelson, 1998).  Recommended levels of 

alkalinity in irrigation water range from 0.75 meq·L-1 to 1.3 meq·L-1 for plug production 

and 1.25 meq·L-1 to 2.6 meq·L-1 for greenhouse container production (Bailey, 1996).  
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Under experimental conditions, significantly inhibited growth and chlorosis has been 

reported in Nicotiana tabacum L. cv. KY-907 (tobacco) in nutrient solution culture with 

≥2 mM HCO3
- (supplied as NaHCO3

-) (Pearce et al., 1999).  Zhou et al. (1984) reported 

HCO3
- concentrations as low as 1 mM (supplied as KHCO3

-) caused significantly 

inhibited growth and chlorosis in Malus domestica Borkh cv. York Imperial (apple) 

seedlings grown in nutrient solution culture.  Significant growth inhibition and chlorosis 

has also been reported in pot grown Viola x wittrockiana Gams. cv. Bingo Yellow 

(pansy) and Impatiens wallerana Hook.f. cv. Dazzler White (impatiens) irrigated with 

≥2.38 mM HCO3
- (supplied as NaHCO3

-) (Kuehny and Morales, 1998), and 

Chrysanthemum x morifolium Ramat. cv. Bright Golden Anne irrigated with ≥8.2 mM 

HCO3
- (supplied as NaHCO3

-) (Kramer and Peterson, 1990).  In general, the effect of 

HCO3
- on plant growth appears to be more severe on plants grown in solution culture 

than in container substrates due to the buffering capacity of the substrates (Kramer and 

Peterson, 1990; Kuehny and Morales, 1998). 

 

EFFECT OF BICARBONATE ON PLANT NUTRITION 

Nutritional responses of plant species and cultivars may differ in response to 

HCO3
- stress.  Increased concentrations of N, P, K, Mg, and B have been reported in the 

upper leaves of M. domestica cv. York Imperial seedlings with increasing concentrations 

of HCO3
- (Zhou et al., 1984).  Concentrations of Ca, Mn, Zn, and Cu were unaffected by 

HCO3
- concentration.  Decreased concentration of Fe was reported with increasing 

HCO3
- concentrations.  Decreased concentrations of P, Ca, and Mn have been reported 

with increasing HCO3
- concentrations in whole plant tissue samples of C. x morifolium 

cv. Bright Golden Anne (Kramer and Peterson, 1990).  Concentrations of N, K, Mg, Fe, 

B, Cu, Zn, Al, Mo, and S were unaffected by HCO3
- concentration.  Decreased 

concentrations of N, P, K, and Zn have been reported with increasing HCO3
- 

concentrations in N. tabacum cv. KY-907 shoots (Pearce et al., 1999).  Concentrations of 

Ca, Mg, and S were unaffected by HCO3
- concentration.  Shoot Fe concentration 

increased linearly with increased HCO3
- concentration; this was attributed to the Fe 
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source [Fe was supplied as Fe-EDTA (ferric ethylenediaminetetraacetic acid) which is 

more stable at high pH] which may have made Fe more available to the plant at high 

HCO3
- concentrations (Álvarez-Fernández et al., 1996; Lucena, 2003; Reed, 1996b). 

 Bicarbonate is regarded as a major causal factor for Zn deficiency in Oryza 

sativa L. (rice) grown in calcareous soil.  Bicarbonate inhibits root absorption of Zn, 

immobilizes Zn in roots, and inhibits translocation to shoots (Yang et al., 1993).  It is 

suggested that Zn efficient O. sativa cv. IR 8292-31-2 and Shanyou 10 may have 

enhanced tolerance to HCO3
-.  The effect of HCO3

- on Zn inefficient O. sativa cv. IR 26 

and Che 64-7 was shown not to be associated with high pH (Yang et al., 2003). 

 

MITIGATION OF BICARBONATE STRESS AND IRON DEFICIENCY 

 In nursery and greenhouse production systems it is possible to mitigate low 

alkalinity levels in irrigation water between 1.5-3.0 meq·L-1 by use of acid reacting 

fertilizers and/or reduced application of limestone to the substrate (Nelson, 1998).  The 

acidifying effect of acid reacting fertilizers is due to the ammonium, ammonia, and urea 

nitrogen content (Bailey, 1996).  Other principal acid reaction nutrients are S, Cl, and 

P2O5.  Limestone is added to some commercial substrates to buffer the acidity of 

substrates such as, peat and pine bark (Bunt, 1988).  Less limestone is used to 

compensate for the carbonates applied in irrigation water (Nelson, 1998). 

Alkalinity levels >3.0 meq·L-1 can be controlled by the injection of acids into the 

irrigation water.  Injection of sulfuric, phosphoric, or nitric acid to holding tanks and/or 

flow lines reduces the amount of HCO3
- and CO3

2- in irrigation water by combining the 

H+ from the acid to HCO3
- or CO3

2- to form H2CO3 which is then converted to H2O and 

CO2 (Bailey, 1996; Matkin and Petersen, 1971; Nelson, 1998).  Alkalinity levels >8.0 

meq·L-1 require a large amount of acid to achieve neutralization, which may result in the 

formation of new salts and increased salinity which is detrimental to plant growth 

(Nelson, 1998; Tagliavini et al., 2000).  Acid injection also poses a potential health and 

safety risk (Matkin and Petersen, 1971; Nelson, 1998).  Therefore, under said conditions 

reverse osmosis (RO) treatment is necessary, even though this technology is currently 
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very expensive (Nelson, 1998, Reed, 1996a).  The economic cost of RO water limits its 

application to nursery/greenhouse production systems, and is frequently only used in 

tissue culture and subsequent acclimatization of plant material (F.T. Davies, Jr., personal 

communication, May 2004). 

Under field conditions, dealing with high alkalinity is both difficult and 

expensive (Wallace and Wallace, 1986).  Bicarbonate induced Fe chlorosis may be 

treated with varying success by injecting Fe solutions into the trunk of trees and/or using 

Fe chelates and/or acid reaction fertilizers (Mortvedt, 1991, Reed et al., 1988; Tagliavini 

et al., 2000; Wallace and Wallace, 1986).  Iron sulfate application has been reported to 

be ineffective in field production systems unless application exceeds 200-560 kg·ha-1 

(Mortvedt, 1991).  Other potential means of alleviating HCO3
- induced Fe chlorosis, 

include application of acidic solutions to the foliage (Tagliavini et al., 2000) and/or 

application of vivianite (a synthetic Fe3(PO4)2·8H2O) to calcareous soils (Rombolà et al., 

2003). 

The development and use of Fe-efficient/HCO3
- resistant genotypes and 

rootstocks are currently the only economically feasible solution to the problems 

associated with high HCO3
- in irrigation water and substrates (Jolley et al., 1996; 

Mortvedt, 1991).  However, priority has not been given to conduct this research and/or 

development (Mortvedt, 1991).  Therefore agricultural/horticultural production will have 

to increasingly rely on other economically and environmentally sound solutions to the 

problems associated with high HCO3
- in irrigation water and substrates. 

 

Arbuscular Mycorrhizal Fungi 

 

Arbuscular mycorrhizal fungi [AMF; Division Zygomycota/Glomeromycota, 

Order Glomales/Glomerales (Morton and Benny, 1990; Schüßler et al., 2001)] exist in 

symbiotic (mutually beneficial) associations with the fine young roots of higher plants 

(Smith and Read, 1997).  The plant supplies the fungus with carbon (from 

photosynthesis) (Douds et al., 2000), while AMF enhances the plant nutrient and water 
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uptake, and helps alleviate cultural and environmental stresses (Smith and Read, 1997).  

These AMF associations evolved concurrently with the first colonization of land by 

plants, some 400-500 million years ago (Paleozoic Era, Ordovician period) (Cairney, 

2000; Heckman et al., 2001; Taylor et al., 1995), and persist in 80-90% of all extant (not 

extinct) terrestrial plants (angiosperms, gymnosperms, pteridophytes, gametophytes of 

some mosses, lycopods, and Psilotales) (Cairney, 2000; Clapp et al., 2002). 

 

NUTRIENT UPTAKE 

Studies have demonstrated that AMF associations play an important role in plant 

nutrition, specifically the enhanced acquisition of P, N, Zn, Cu, and other ions (Clark 

and Zeto, 2000; Marschner and Dell, 1994).  Arbuscular mycorrhizal fungi associations 

are thought to utilize nutrient cycles through greater effective root area/penetration 

provided by AMF roots and/or hyphae and through the activation and excretion of 

various enzymes by the hyphae to enhance nutrient acquisition (Aerts, 2002; Kodie, 

1991; Miller and Jastrow, 2000; Smith et al., 2001; Saito, 2000; George, 2000).  Hyphal 

nutrient uptake may be just as efficient as the uptake of roots and hyphae together 

(Pearson and Jakobsen, 1993).  However, the presence of hyphae does not necessarily 

imply effective nutrient uptake (Jakobsen et al., 1992a, 1992b; Pearson and Jakobsen, 

1993). 

While, inorganic nutrients in the substrate solution constitute the primary nutrient 

source for the AMF, the fungi also appear to have some influence on availability of 

nutrients from organic sources.  Extracellular phosphatase activity has been detected in 

excised mycelium of Glomus intraradices Schenck & Smith (Danish isolate 28A, BEG 

87) and Glomus claroideum Schenck & Smith (Danish isolate SC09, BEG 14) extracted 

from root free sand of two compartmental pot cultures of Trifolium subterraneum L. cv. 

Mount Baker (subterranean clover) (Joner and Johansen, 2000).  Glomus intraradices 

has been shown to take up P from adenosine monophosphate (32P-labelled AMP) in 

compartmented monoxenic cultures (system void of organisms other than the two 

symbionts; AMF and plant) of root inducing transferred (RiT)-DNA transformed 
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Daucus carota L. (carrot) root (Joner et al., 2000a).  Hawkins et al. (2000) demonstrated 

that G. intraradices transported N from glycine and glumate in compartmented 

monoxenic cultures RiT-DNA transformed D. carota roots.  However, this uptake did 

not contribute significantly to N uptake by the roots, but may be important for fungal 

nutrition.  Irrespective of N form, little is known about N transfer mechanisms 

(transporter) at the biotrophic interface between plants and AMF and/or whether new 

transport mechanisms are switched on as a result of this association (Smith et al., 1994).  

The N form translocated within the extraradical hyphae is also unclear, although Smith 

et al. (1994) suggest that N-rich amides (Asn or Gln) are the major form in which N is 

transported. 

 

ADDITIONAL BENEFITS 

Arbuscular mycorrhizal associations alter the biosynthesis of phytohormones 

(Ludwig-Müller, 2000), increase rates of photosynthesis and stomatal conductance 

(Estrada-Luna et al., 2000), and improve resistance to drought (Augé, 2001; Davies et 

al., 2002a; Estrada-Luna and Davies, 2003; Estrada-Luna et al., 2000).  Arbuscular 

mycorrhizal associations contribute to the sustainable maintenance of plant health and 

soil fertility (Jeffries et al., 2003) and play an important role in soil aggregation and soil 

structure (Rillig et al., 2002).  Arbuscular mycorrhizal associations may tolerate adverse 

external pH conditions by modifying the pH of the mycorrhizosphere (Pacovsky, 1986).  

Arbuscular mycorrhizal associations may enhance plant tolerance under alkaline 

conditions (calcareous soils) (Bavaresco et al., 2000; Bavaresco and Fogher, 1992).  

Arbuscular mycorrhizal associations improve resistance to some root pathogens (Azcón-

Aguilar and Barea, 1997; Kasiamdari et al., 2002), and reduce stunting on fumigated 

soils (Azćon-Aguilar and Barea, 1997; Munyanziza et al., 1997; Ryan and Graham, 

2002).  Arbuscular mycorrhizal associations improve transplant establishment and 

growth (Estrada-Luna et al., 2000), biomass production (Mathur and Vyas, 1999), and 

may be essential for the survival of many plant species in natural competitive situations 

(Hart and Klironomos, 2002). 
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 In addition, AMF associations have been reported to play an important role in the 

establishment and growth of plant material under saline conditions (Al-Karaki and 

Hammad, 2001; Copeman et al., 1996; Mohammad et al., 2003) and in industrial waste 

substrates/pollutants (Malcová et al., 2001), including hydrocarbon-polluted soil 

(Cabello, 2001) stimulated acid-rain and aluminum (Vosátka et al., 1999), arsenate 

(Gonzalez-Chavez et al., 2002), chromium (Davies et al., 2002b), and uranium 

(Rufyikiri et al., 2002; Rufyikiri et al., 2003) toxicity. 

 

AGRICULTURAL/HORTICULTURAL PRODUCTION 

The potential beneficial application of AMF to numerous plants of economic 

importance in agricultural/horticultural production systems has been demonstrated 

(Azćon-Aguilar and Barea, 1997; Davies, 2000; Davies et al., 2000; Munyanziza et al., 

1997; Ryan and Graham, 2002).  However, current commercial production practices, 

high economic cost, and variable results limit their application (Azćon-Aguilar and 

Barea, 1997; Davies, 2000; Munyanziza et al., 1997; Ryan and Graham, 2002). 

 

ARBUSCULAR MYCORRHIZAL-HOST PLANT RESPONSES 

Plant species and cultivars within species can differ markedly in their response to 

AMF species (Parke and Kaeppler, 2000; Sanders, 2002).  Efficiencies among AMF 

species may vary (Jakobsen et al., 2002; Parke and Kaeppler, 2000) and each AMF 

isolate originating from a specific environment may represent an ecotype adapted to that 

particular environment (Entry et al., 2002).  Therefore, the beneficial application of 

AMF may depend on plant species and/or cultivars within species used, plant interaction 

with the AMF species, and the difference between the environment from which the AMF 

isolate was obtained and the experimental system under study. 

 

Rosa 
 
MORPHOLOGICAL DESCRIPTION 

The genus Rosa L. (rose) belongs to the family Rosaceae Juss. and includes 
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approximately 100 species, which can be divided into four subgenera [Platyrhodon, 

Hesperhodos, Hulthemia, and Eurosa (Lynch, 2002)], of prickly shrubs, which 

sometimes trail and/or climb, and have a natural distribution throughout the temperate 

parts of the Northern Hemisphere (Bailey, 1960; Bailey and Bailey, 1976).  The modern 

rose is within the subgenera Eurosa (the remaining subgenera have contributed little to 

the history of the cultivated rose) (Lynch, 2002). 

Rosa spp. have alternate leaves which are mostly odd-pinnately compound (5-7 

oval leaflets with rounded or pointed tips, which are sometimes toothed), deciduous or 

persistent, with stipule fused to the petiole (Bailey, 1960; Bailey and Bailey, 1976). 

Leaves are often aromatic-glandular (Bailey, 1960).  Stems usually bear thorns and/or 

prickles (Brickell and Cole, 2002).  Their flowers range in color (rarely blue) and are 

commonly solitary or corymbose or paniculate (Heywood, 1993).  Flowers have petals 

in multiples of 5, petals are broad and mostly rounded at the end (Bailey, 1960).  

Whorled stamens and pistils are indefinite and numerous (Bailey, 1960; Bailey and 

Bailey, 1976).  Petals and stamens are inserted on a disk at the edge of the hypanthium, 

and pistils are borne in the inside of the hypanthium (Bailey, 1960).  Fruits are fleshy 

hips (ripened hypanthium), containing hairy achenes as if they were seeds (Bailey, 1960; 

Bailey and Bailey, 1976).  Their typical chromosome number is 2n=14 (Darlington and 

Wylie, 1956). 

 

AGRONOMIC/HORTICULTURAL VALUE 

Rosa spp. have high landscape and ornamental value, and are an important 

field/greenhouse cut flower crop (Bailey and Bailey, 1976; Heywood, 1993).  Rosa spp. 

are also an important source of essential oils used in perfumes and aromatherapy (Cutler, 

2003).  Rosa petals and/or hips contain malic acid which is used as a pH adjuster in 

cosmetics (Culter, 2003). 

Rosa extracts also have a wide variety of medicinal uses, including the 

prevention and/or cure of depression, insomnia, fatigue, hangovers, headaches, 

dizziness, stomach-ache, indigestion, diarrhea, and constipation (Cutler, 2003).  Extracts 
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have also been used as purgatives, astringents, anti-inflammitories, and for the treatment 

of wounds and scars (Cutler, 2003).  Rosa petals and/or hips contain quercitrin which 

may be beneficial for individuals suffering from hepatitis, cirrhosis, and hepatic cancers 

(Cutler, 2003).  Quercitrin is also thought to prevent build up of arterial plaque, and may 

also regulate cell growth (Cutler, 2003).  Rosa hips also contain leucoanthocyanins 

which is an antioxidant which may increase tone and elasticity of capillary walls, 

improving resistance to haemorrhages and infections (Cutler, 2003). 

Rosa hips can be used as a nutritional supplement, as they are a good source of 

vitamin C, B, carotenoids, folic acid, pectins, and also contain small amounts of vitamins 

A, B3, D, E, and Fe, K, and Zn, which may be lost in processing (Cutler, 2003).  Rosa 

petals and hips are also used as flavorings and coloring in confectionery (sweets, cakes, 

jams, and jellies), and beverages (wine, tea, and juices) (Culter, 2003). 

Thus, Rosa spp. are an important horticultural/agricultural crop, and it is 

estimated that there are approximately 5000 named Rosa cultivars in cultivation 

(Heywood, 1993), with a global retail market value of approximately $720 million 

(Lynch, 2002).  Rosa multiflora Thunb. ex J. Murr. are an important commercial 

rootstock and have been demonstrated to be susceptible to physiological stress on 

alkaline soil, although some resistance was reported for some cultivars (Reed et al., 

1992).  Rosa multiflora have also been reported to form AMF associations (Davies, 

1987; Davies et al., 1987). 
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CHAPTER III
 

ARBUSCULAR MYCORRHIZAL FUNGI ENHANCE TOLERANCE 

TO BICARBONATE IN Rosa multiflora cv. Burr 
 

Introduction 

 

Water is a finite yet renewable resource (Ripl, 2003), which is essential for 

socioeconomic development and a critical requirement for the maintenance of viable and 

productive (sustainable) ecosystems (Wallace et al., 2003).  Population growth, 

infrastructure inadequacies, resource mismanagement (massive governmental subsidies 

and distorting incentives), fragmentation of legislation and regulation, and the inability 

to adequately quantify the effects of extraction, irrigation, and drainage projects, threaten 

the long-term sustainability of global water resources (Schultz and De Wrachien, 2002).  

New sources of water are increasingly expensive to exploit and decreasing in availability 

and quality (Wolff and Hübener, 1996).  Environmental concerns and intensifying 

competition for municipal and industrial water will reduce the availability of good 

quality water for agricultural/horticultural production (Hamdy et al., 2003; Rosegrant 

and Ringler, 1998). 

Agricultural/horticultural production will increasingly have to preserve and 

augment good quality water resources through enhanced water efficiency and utilization 

of non-conventional water resources.  This may include utilization of water of marginal 

quality, high in total dissolved solids (non-volatile solutes) (Oster, 1994; Shalhevert, 

1994).  The potential bicarbonate (HCO3
-) content and associated high pH of this 

irrigation water may be detrimental/limiting to plant growth, due to its adverse effects on 

availability and solubility of nutrients (P, N, Mg, Fe, Mn, Zn, Cu, and other ions) 

(Bailey, 1996; Marschner, 1995).  Prolonged nutrient deficiency results in significant 

reductions in growth, yield, and marketability of plant material.  Thus, sustainable 

agricultural/horticultural production will increasingly have to rely on economically 
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feasible and environmentally sound solutions to the problems associated with high levels 

of HCO3
- in irrigation water. 

Arbuscular mycorrhizal fungi [(AMF); Division Zygomycota/Glomeromycota, 

Order Glomales/Glomerales (Morton and Benny, 1990; Schüßler et al., 2001)] exist in 

symbiotic (mutually beneficial) associations with the fine young roots of higher plants 

(Smith and Read, 1997).  Studies have demonstrated that AMF enhance plant nutrient 

acquisition (P, N, Zn, Cu, and other ions) (Clark and Zeto, 2000), water relations (Augé, 

2001), and alleviate cultural and environmental stresses (Jeffries et al., 2003) through 

greater effective root area and penetration of substrate(s) (direct access to nutrients 

outside the zone of nutrient depletion that develop close to roots and to nutrients in 

inaccessible microsites), and activation and excretion of various enzymes by AMF roots 

and/or hyphae (Marschner, 1995; Smith and Read, 1997). 

Therefore, we proposed a model study to determine if inoculation of plant 

material with AMF would enhance plant growth and nutrient acquisition under high 

levels of HCO3
- in irrigation water.  An important arbuscular mycorrhiza genus is 

Glomus Tulasne & Tulasne, which colonize a variety of host species (Marschner, 1995; 

Smith and Read, 1997), including Rosa multiflora Thunb. ex J. Murr. (Davies, 1987; 

Davies et al., 1987).  Rootstocks of Rosa multiflora are susceptible to growth stress on 

alkaline soils (Reed et al., 1992).  Our hypothesis was that inoculation of R. multiflora 

cv. Burr stem cuttings with an AMF mixed Glomus species isolate (ZAC-19) would 

enhance plant growth and nutrient acquisition under high levels of HCO3
- in irrigation 

water.  Objectives of this research were to determine if ZAC-19 can enhance R. 

multiflora cv. Burr tolerance to HCO3
- stress as determined by plant growth and nutrient 

acquisition. 

 

Materials and Methods 

 

CULTURAL CONDITIONS 

This study was conducted under glasshouse (Rough Brothers, Inc., Cincinnati, 
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Ohio) conditions at Texas A&M University, College Station, Texas, lat. 30o36'02'N and 

long. 96o18'44'W, from 5 Mar. 2003 to 17 May 2003.  Temperature and relative 

humidity were measured and recorded hourly for the duration of this study (Model 150-

Temp/RH, WatchDog™ Data Logger, Spectrum Technologies, Inc., Plainfield, Ill.).  

Average day/night temperature and relative humidity were 28.1±0.2oC/23.4±0.1oC, and 

66.1±0.8%/83.1±0.5%, respectively.  Photosynthetic photon flux density (PPFD) was 

measured daily at approximately solar noon for the duration of the study (Model LI-189 

and LI-190SA, LI-COR® Quantum/Radiometer/Photometer and LI-COR® Quantum 

Sensor, LI-COR Biosciences, Lincoln, Nebr.).  Average PPFD was 403.6±28.0 µmol·m-

2·s-1.  Substrate temperature was measured daily at approximately solar noon for the 

duration of the study (Model 90900-00, TempTestr™, Cole Parmer Instrument Co., 

Vernon Hills, Ill.).  Average substrate temperature was 27.4±0.1oC. 

Rosa multiflora cv. Burr stem cuttings were obtained from stock plants at Texas 

A&M University Agricultural Research and Extension Center, Overton, Texas, lat. 

32o16' 32'N and long. 94o58'20'W, in late Feb. 2003.  Original virus indexed stock came 

from the University of California, Davis, Calif. lat. 30o33'18'N and long. 121o44'09'W 

(H.B. Pemberton, personal communication, June 2003).  Cuttings were stored in the dark 

in a cold room (Bally Case and Cooler, Inc., Bally, Pa.) at 2oC until used.  Cuttings with 

axillary buds intact were trimmed (Felco® 7 Sécateurs, Felco SA, Geneveys-sur-

Coffrane, Switzerland) to approximately 15 cm in length and treated with 0.3% indole-3-

butyric acid (Hormodin® 2, E.C. Geiger Inc., Harleysville, Pa.) and planted in 0.09 L 

black plastic cells (Landmark Plastic Corporation, Akron, Ohio).  The container 

substrate (Redi-Earth®, The Scotts Co., Marysville, Ohio) had high organic matter 

(15.6%), pH 4.8, electrical conductivity (EC) 1.14 dS·m-1, and nutrient levels with the 

following µg·g-1: 82 N, 8 P, 255 K, 717 Ca, 326 Mg, 0.38 Zn, 17.84 Fe, 6.64 Mn, 0.34 

Cu, 337 Na, 158 S, and 0.32 B (Soil, Water, and Forage Testing Laboratory, Texas 

A&M University, College Station, Texas).  Substrate was previously autoclaved (Model 

SSR-2A, Consolidated Stills & Sterilizers, Boston, Mass.) on 2 consecutive days for 20 

min·d-1 at 121oC (21psi). 
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Cuttings were fogged [Fogg-It Nozzle (3.785 L·min-1), Fogg-It Nozzel Co., San 

Francisco, Calif.] manually as required with reverse osmosis (RO) water.  The RO water 

had pH 7.2, EC 0.06 dS·m-1, and nutrient levels with the following µg·ml-1: 0.06 NO3-N, 

0.06 P, 0 K, <1 Ca, 12 SO4, <1 Mg, , <0.01 Fe, <0.01 Zn, <0.01 Mn, <0.01 Cu, 0.28 B, 9 

Cl- , 11 Na, 0 CO3, 38 HCO3, 37 TDS, and <0.010 As, 0.011 Ba, 0.028 Ni, 0.010 Cd, 

<0.010 Pb, and 0.020 Cr, (Soil, Water, and Forage Testing Laboratory, Texas A&M 

University, College Station, Texas).  Cuttings were irrigated 25 d after planting with a 

formulation of Long Ashton nutrient solution (LANS) (Hewitt, 1966) modified to supply 

P (NaH2PO4·H2O) (EM Science, Darmstadt, Germany) at 31 mg·L-1 P. 

Uniform rooted cuttings were selected 30 d after planting, their roots rinsed free 

of commercial propagation substrate with RO water, and transplanted into 1.4 L green 

plastic containers (Dillen Products, Middlefield, Ohio).  The container substrate 

(Landscapers Pride® Play Sand, Louisiana Pacific, New Waverly, Texas) had textural 

analysis of 92% sand, 4% silt, and 4% clay, low organic matter (0.08%), pH 6.9, EC 

0.12 dS·m-1, and nutrient levels with the following µg·g-1: 2 N, 1 P, 13 K, 267 Ca, 27 

Mg, 0.13 Zn, 2.79 Fe, 0.46 Mn, 0.05 Cu, 368 Na, 23 S, and 0.14 B (Soil, Water, and 

Forage Testing Laboratory, Texas A&M University, College Station, Texas).  The 

container substrate was previously steam pasteurized with aerated steam (Model SA150 

and TC-424, LINDIG Manufacturing Corporation, St. Paul, Minn.) on 2 consecutive 

days for 3 h·d-1 at 80oC. 

 

ARBUSCULAR MYCORRHIZAL INOCULATION 

Half the rooted cuttings were non-colonized (non-AMF).  Remaining rooted 

cuttings were inoculated at transplanting with approximately 700 spores of a mixed 

Glomus species isolate (ZAC-19): Glomus albidum Walker & Rhodes, Glomus 

claroideum Schenck & Smith, and Glomus diaphanum Morton & Walker (Chamizo et 

al., 1998).  The ZAC-19 inoculum was applied directly to the dibble hole at transplanting 

(approximately 10 g per pot) and included hyphae and colonized root segments of 

Carica papaya L. used for isolate multiplication.  The textural analysis of the inoculum 
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was 85% sand, 5% silt, and 10% clay, low organic matter (0.2%), pH 8.1, EC 0.45 dS·m-

1, and nutrient levels of the following µg·g-1: 4 N, 24 P, 125 K, 512 Ca, 38 Mg, 14.65 Zn, 

2.44 Fe, 3.7 Mn, 0.11 Cu, 393 Na, 26 S, and 0.22 B (Soil, Water, and Forage Testing 

Laboratory, Texas A&M University, College Station, Texas). 

The ZAC-19 isolate was originally collected from non-irrigated (annual 

precipitation of approximately 450 mm), low nutrient (16 µg·g-1 P), and low organic 

matter (1.1%) sandy-loam soil (pH 5.4) used for commercial Phaseolus vulgaris L. 

production in Zacatecas, Mexico, lat. 22o45’53'N and long. 102o33'25'W (A. Alarcón, 

personal communication, November 2003).  The ZAC-19 isolate was propagated under 

glasshouse conditions in C. papaya pot culture (Brundrett et al., 1996) in 1999 at Texas 

A&M University, College Station, Texas, and root balls were harvested and stored in the 

dark in a cold room at 2oC until used. 

Transplanted R. multiflora rooted cuttings were irrigated with approximately 150 

mL of a formulation of LANS, modified to supply P (NaH2PO4·H2O) at 31 mg·L-1 P and 

Fe [Fe-DTPA (ferric diethylenetriaminepentaacetic acid)] (Becker Underwood 

Incorporated, Ames, Iowa) at 5 mg·L-1 Fe, every 3 d for 12 d.  Plants were irrigated to 

achieve approximately 20% leachate fraction by volume. 

 

BICARBONATE APPLICATION 

Twelve days after transplanting, plants were irrigated with approximately 300 

mL of a formulation of LANS, modified to supply P (NaH2PO4·H2O) at 31 mg·L-1 P, Fe 

as (Fe-DTPA) at 5 mg·L-1 Fe, and HCO3
- [KHCO3 (Sigma, St. Louis Mo.), NaHCO3 

(Fisher Scientific, Pittsburgh, Pa.), and NH4HCO3 (Mallinckrodt Lab. Chemicals, 

Phillipsburgh, N.J.)] at 0, 2.5 (250 mg·L-1 KHCO3), 5 (500 mg·L-1 KHCO3), and 10 (600 

mg·L-1 KHCO3, 220 mg·L-1 NaHCO3, and 120 mg·L-1 NH4HCO3) mM HCO3
- every 4 d 

for 28 d (Table A1 and A2).  Average solution pH were 6.03±0.13, 7.10±0.08, 

7.34±0.07, and 7.59±0.12, and EC (dS·m-1) were 1.95±0.14, 2.08±0.10, 1.86±0.13, and 

2.38±0.16, respectively (Table A3).  Plants were treated to achieve approximately 20% 

leachate fraction by volume.  Leachate was collected at each irrigation (n=5) using the 
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pour through method apparatus (Wright, 1987), and pH and EC were analyzed (Model 

B-213, Compact pH Meter and Model B-173, Compact Conductivity Meter, HORBIA 

Ltd., Kyoto, Japan). 

 

ASSESSMENT OF PLANT GROWTH 

 Final growth measurements were recorded at harvest (n=9) 32 d after 

transplanting, and included leaf area (Model LI-3000, LI-COR® Portable Area Meter, 

LI-COR Biosciences, Lincoln, Nebr.), leaf, stem, root, and total fresh and dry mass 

(DM) (Model 1601A MP8-1, Sartorius Balances & Scales, Sartorius Corporation, 

Goettingen, Germany).  Tissue samples were dried (Model 214330, Tru-Temp Oven, 

Hotpack Corporation, Philadelphia, Pa.) for 7 d at 70oC and leaf, stem, root, and total 

DM were recorded.  Root/shoot ratio (g·g-1), leaf area ratio {(LAR) [leaf area 

(cm2)]/[plant DM (g-1)]}, and specific leaf area {(SLA) [leaf area (cm2)]/[leaf DM (g-1)]} 

were calculated.  The mycorrhizal inoculation effect (MIE) was calculated by the 

formula MIE (%) = (total DM of AMF plant – total DM of Non-AMF plant)/(total DM 

of Non-AMF plant)-1 x 100 (Plenchette et al., 1983; Sylvia, 1994). 

 

LEAF NUTRIENT ANALYSIS 

Physiologically mature leaves from nine randomly selected plants per treatment 

were collected at harvest, leaves were pooled (plants # 1, # 2, and # 3, plants # 4, # 5, 

and # 6, and plants # 7, # 8, and # 9) into three replicate samples (n=3) and ground 

(Wiley Mill, Arthur H. Thomas Co. Scientific Apparatus, Philadelphia, Pa.) to pass a 40-

mesh screen.  Complete tissue analysis (N, P, K, Mg, Ca, S, Na, Fe, Mn, Zn, Cu, Al, B, 

and Mo) was conducted on an inductively coupled plasma atomic emission 

spectrophotometer (Model Optima 4300V ICP-OES, PerkinElmer Life and Analytical 

Sciences, Inc., Boston, Mass.) (MDS Harris Laboratory Services, Lincoln, Nebr.). 

 

LEAF CHLOROPHYLL CONTENT 

Leaf chlorophyll content was determined at harvest (n=3), by extraction of 
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chlorophyll with acetone (Harborne, 1998).  Procedure was modified as follows, 

representative semi-mature leaflets were collected and surface area was determined.  

Leaflets were placed in 5 mL of 80% acetone (Mallinckrodt Lab. Chemicals, 

Phillipsburgh, N.J.) and stored in the dark for 7 d at 4oC.  Supernatant was quantified 

with a spectrophotometer (Beckman Coulter™ Du® Series 640 UV/Vis 

Spectrophotometer, Beckman Coulter, Inc. Fullertan, Calif.) at 645 and 663 nm, and 

compared to an 80% acetone blank standard.  Total chlorophyll content was expressed as 

mg·cm2 of leaflet area. 

 

ROOT IRON REDUCTASE ACTIVITY 

Root iron reductase enzymatic activity was determined at harvest (n=3), based on 

the formation of Fe(II)-BPDS (Bathophenanthroline-Disulfonic Acid) complex 

(Brüggemann and Moog, 1989; Rosenfield et al., 1991).  Procedure was modified as 

follows, roots were rinsed in nanopure water (Model D3700, Barnstead NANOpure II, 

Sybron Corporation/Barnstead Co., Boston, Mass.) and tips excised (approximately 0.5 

cm), 1.2 g of root tissue per sample were immersed in 40 mL of Fe3+ reductase assay 

solution containing 5 mM Mes (2-[N-Morpholino]ethanesulfonic acid) (Sigma St. Louis, 

Mo.) (pH 5.5), 0.5 mM CaSO4 (CaSO4·2H2O) (Sigma, St. Louis, Mo.) , 0.1 mM 

Fe3+EDTA, and 0.3 mM BPDS (4,7-Diphenyl-1,10-phenanthroline-disulfonic acid) 

(Sigma, St. Louis, Mo.).  Samples were aerated [Model 200 (160 L·h-1), 

Aquarian®/Rena Air Pump, Mars Inc., McLean, Va.] and incubated in the dark at 21oC 

for 4 h.  The appearance of Fe3+ BPDS was quantified with a spectrophotometer (Bausch 

& Lomb Spectronic® 21 UVD, Bausch & Lomb Instrument & System Division, 

Rochester, N.Y.) at 535 nm, and compared to a standard concentration series (0, 3.58, 

7.15, 21.45, 35.75, and 57.2 µM) of authentic Fe(II)-BPDS. 

 

ROOT PHOSPHATASE ACTIVITY 

Root acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymatic activity 

(soluble and extractable) were determined at harvest (n=3), based on the hydrolysis of p-
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nitrophenyl phosphate (p-NPP) substrate to yield p-nitrophenol (p-NP) and inorganic 

phosphatase (Eivazi and Tabatabai, 1977; Tabatabai and Bremner, 1969).  Procedure 

was modified as follows, roots were rinsed in nanopure water and tips were excised 

(approximately 0.5 cm), 100 mg of root tissue per sample were transferred into a 600 µL 

of extraction modified universal buffer (MUB) [100 mM THAM 

(Tris(hydroxymethyl)aminomethane) (Bio-Rad Lab., Hercules, Calif.), 100 mM maleic 

acid (Toxilic Acid; cis-Butenedioic Acid) (Fisher Scientific, Pittsburgh, Pa.), 5 mM citric 

acid (C6H8O7) (Sigma, St. Louis, Mo.), and 100 mM boric acid (H3BO3) (EM Science, 

Darmstadt, Germany)] pH 5.5 for ACP and pH 9.0 for ALP.  Extractable ACP and ALP 

root samples were macerated (Kontes Pellet Pestle®, Vineland, N.J.).  All root samples 

were centrifuged (Model 235B, Fisher® Micro-Centrifuge, Fisher Scientific Intl. Inc., 

Hampton, N.H.) at 13,000 gn for 15 min at 4oC.  The reaction mixture consisted of 400 

µL of supernatant, and 150 µL of 0.003 M p-NPP (C6H4NO6PNa2·6H2O) (Sigma, St. 

Louis, Mo.).  The mixture was then incubated (Precision® 180 Series Water Bath, 

Precision Scientific Inc., Chicago, Ill.) at 37oC for 45 min for ACP and ALP.  The 

reaction was stopped by the addition of 100 µL 500 mM CaCl2 (CaCl2·2H2O) (Sigma, St. 

Louis, Mo.) and 400 µL 500 mM NaOH (Sigma, St. Louis, Mo.).  Precipitate was 

recovered by centrifugation at 13,000 gn for 15 min.  The p-NP content of the 

supernatant was quantified with a spectrophotometer (Beckman Coulter™ Du® Series 

640 UV/Vis Spectrophotometer, Beckman Coulter, Inc. Fullertan, Calif.) at 420 nm, and 

compared to a standard concentration series (0, 1.4, 2.8, 4.2, 5.6, and 7.0 mM) of 

authentic p-NP (C6H5NO3) (Sigma, St. Louis, Mo.). 

 

ASSESSMENT OF ARBUSCULAR MYCORRRHIZAL DEVELOPMENT 

For AMF analysis of roots, 1-cm root segments from three randomly selected 

plants per treatment were sampled at harvest and pooled to assess colonization 

percentage through clearing with KOH and staining of root samples with trypan blue 

(Philips and Hayman, 1970).  Twenty five 1-cm stained root pieces were placed on each 

slide and three observations (the top, the middle, and the bottom) per 1-cm root piece 
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were made with a microscope (Nikon Alphaphot YS, Nikon Inc., Instrument Division, 

Garden City, N.Y.) at 40X.  The presence of arbuscules, vesicles, and hyphae was 

determined (Biermann and Linderman, 1981).  There were nine slides per treatment 

(n=675 observations per treatment from 225 1-cm root pieces). 

 

STATISTICAL DESIGN 

The experiment was a 2 x 4 factorial in a completely randomized design with two 

AMF levels (AMF and Non-AMF) and four levels of HCO3
-: 0, 2.5, 5, and 10 mM 

HCO3
-.  There was one rooted R. multiflora cv. Burr cutting per container, with each 

container as a single replicate.  Data were analyzed using Analysis of Variance 

(ANOVA) and LSD multiple comparison test (SAS Institute Inc., 2000) and regression 

models were also determined (SPSS, Inc., 2003).  The number of replications were: 

leachate analysis (n=5), growth data (n=9), nutrient analysis (n=3), chlorophyll content 

(n=3), iron reductase activity (n=3), phosphatase activity (n=3), and AMF observations 

(n=675). 

 

Results 

 

LEACHATE ANALYSIS 

 Bicarbonate caused a significant (P≤0.001) increase in leachate pH (Fig. 1).  In 

general HCO3
- caused a significant increase in leachate EC (Fig. 2).  In general, pH and 

EC increased over the duration of the study regardless of AMF treatment. 

 

PLANT GROWTH 

 Bicarbonate caused a significant (P≤0.01) reduction in all plant growth 

parameters (Tables 1 and 2).  In general, most growth parameters were significantly 

(P≤0.05) affected by AMF, except for root DM, root/shoot ratio, and leaf number.  The 

HCO3
- x AMF interaction was not significant for any growth parameters, except SLA. 
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Days
0 5 10 15 20 25 30

pH

6.5

7.0

7.5

8.0

8.5

9.0

Non-AMF 0 mM HCO3
- y=6.299+0.164x-0.004x2 R2=0.785

Non-AMF 2.5 mM HCO3
- y=6.849+0.153x-0.004x2 R2=0.904

Non-AMF 5 mM HCO3
- y=7.097+0.143x-0.004x2 R2=0.893

Non-AMF 10 mM HCO3
- y=7.406+0.114x-0.003x2 R2=0.877

Days
0 5 10 15 20 25 30

pH

6.5

7.0

7.5

8.0

8.5

9.0

AMF 0 mM HCO3
- y=6.438+0.172x-0.005x2 R2=0.759

AMF 2.5 mM HCO3
- y=6.667+0.181x-0.005x2 R2=0.920

AMF 5 mM HCO3
- y=7.054+0.147x-0.004x2 R2=0.938

AMF 10 mM HCO3
- y=7.396+0.116x-0.003x2 R2=0.922

 

A 

B 

Fig. 1. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on 

pH of Rosa multiflora cv. Burr substrate for duration of study. (A) Non-AMF
plants. (B) AMF plants. Treatment effect of HCO3

- was significant (P≤0.001) 
at every irrigation. Treatment effect of AMF and AMF x HCO3

- interaction 
was nonsignificant at every irrigation. Means±standard error (n=5). 
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Days
0 5 10 15 20 25 30

EC
 (d

S·
m

-1
)

1

2

3

4

5

6
Non-AMF 0 mM HCO3

- y=3.577-0.197x+0.007x2 R2=0.464

Non-AMF 2.5 mM HCO3
- y=3.876-0.202x+0.007x2 R2=0.245

Non-AMF 5 mM HCO3
- y=4.186-0.252x+0.009x2 R2=0.391

Non-AMF 10 mM HCO3
- y=3.776-0.187x+0.008x2 R2=0.531

Days
0 5 10 15 20 25 30

EC
 (d

S·
m

-1
)

1

2

3

4

5

6
AMF 0 mM HCO3

- y=2.880-0.004x+0.005x2 R2=0.640

AMF 2.5 mM HCO3
- y=4.123-0.234x+0.009x2 R2=0.464

AMF 5 mM HCO3
- y=4.265-0.305x+0.012x2 R2=0.708

AMF 10 mM HCO3
- y=3.875-0.180x+0.009x2 R2=0.567

 

A 

B 

Fig. 2. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on 

electrical conductivity (EC) of Rosa multiflora cv. Burr substrate for duration 
of study. (A) Non-AMF plants. (B) AMF plants. Treatment effect of AMF 
was significant (P≤0.05, 0.01, 0.01, and 0.01) at day 16, 20, 24, and 28, 
respectively. Treatment effect of HCO3

- was significant (P≤0.05, 0.01, and 
0.001) at day 16, 20, and 24, respectively. Treatment effect of AMF x HCO3

-

interaction was nonsignificant. Means±standard error (n=5). 



 

 

26

Table 1. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on growth of Rosa multiflora cv. Burr plants. 

 
HCO3

- 
(mM) 

AMF 

Inoculation 
Leaf  
DM  
(g) 

Stem  
DM  
(g) 

Root  
DM  
(g) 

Total Plant 
DM  
(g) 

Root/Shoot 
Ratio  
(g·g-1) 

MIEz 

(%) 

0 No 4.4±0.5y 4.6±0.4 0.9±0.1 9.9±0.9 0.09±0.01  
 Yes 5.0±0.3 4.6±0.2 1.0±0.1 10.6±0.5 0.10±0.00 7 
2.5 No 2.8±0.3 3.5±0.3 0.6±0.1 6.9±0.6 0.09±0.01  
 Yes 3.9±0.3 4.3±0.4 0.8±0.1 8.9±0.7 0.08±0.00 29 
5 No 2.4±0.2 3.2±0.2 0.5±0.1 6.1±0.4 0.09±0.01  
 Yes 3.1±0.2 3.7±0.2 0.6±0.1 7.4±0.4 0.09±0.00 21 
10 No 2.1±0.1 2.9±0.2 0.7±0.1 5.7±0.3 0.12±0.00  
 Yes 2.6±0.2 3.4±0.3 0.7±0.1 6.7±0.5 0.10±0.01 18 
Significancex       
    AMF ** * NS ** NS - 
    HCO3

- *** *** *** *** ** - 
    Interaction NS NS NS NS NS - 
z Mycorrhizal inoculation effect [MIE (%) = (total DM of AMF plant – total DM of non-AMF plant)/(total DM of non-AMF plant)-1 x 100]. 
y Means±standard error (n=9). 
x Significance according to ANOVA, NS, *, **, ***, nonsignificant and significant P≤ 0.05, 0.01, 0.001, respectively. 
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Table 2: Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on leaf growth of Rosa multiflora cv. Burr 

plants. 
 

HCO3
-  

(mM) 
AMF 

Inoculation 
Leaf  

Number 
Leaf Area  

(cm2) 
SLAz 

(cm2·g-1) 
LARy 

(cm2·g-1) 
0 No 58.2±5.0x 1088.0±118.4 247.4±14.3 108.6±10.1 
 Yes 54.1±6.5 1162.3±35.5 236.6±21.3 110.3±10.8 
2.5 No 49.4±3.8 560.3±56.1 203.7±11.8 80.6±11.0 
 Yes 44.7±3.9 878.2±45.5 227.6±21.9 99.7±13.4 
5 No 44.6±3.8 442.8±58.9 183.6±20.3 72.4±11.9 
 Yes 41.7±3.6 669.1±22.9 218.1±11.9 90.6±9.1 
10 No 37.8±4.6 412.3±61.3 195.9±20.3 73.1±7.8 
 Yes 38.2±4.4 549.6±54.5 206.5±16.8 81.0±11.5 
Significancew     
    AMF NS *** *** *** 
    HCO3

- ** *** *** *** 
    Interaction NS NS ** NS 
z Specific leaf area. 
y Leaf area ratio. 
x Means±standard error (n=9). 
w Significance according to ANOVA, NS, *, **, ***, nonsignificant and significant P≤ 0.05, 0.01, 0.001, respectively. 
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Total Plant Dry Mass 

Increasing concentrations of HCO3
- significantly (P≤0.001) reduced total plant 

DM (Table 1).  On average, plants inoculated with AMF exhibited a significantly 

(P≤0.01) greater total plant DM (+17%) compared to non-AMF plants.  The HCO3
- x 

AMF interaction was not significant, indicating that increasing HCO3
- stressed plants, 

regardless of AMF.  However, AMF alleviated HCO3
- stress as indicated by greater total 

plant DM at all treatment levels. 

 In non-AMF plants treated with 2.5 mM HCO3
-, there was a reduction (-30%) in 

total plant DM compared to control (0 mM HCO3
-) plants.  Non-AMF plants treated with 

5 and 10 mM HCO3
- exhibited decreased total plant DM (-38% and -42%, respectively). 

Plants inoculated with AMF had a greater tolerance to HCO3
- stress.  In AMF 

plants treated with 2.5 mM HCO3
-, there was a reduction (-16%) in total plant DM 

compared to AMF control (0 mM HCO3
-) plants.  Inoculated plants treated with 5 and 10 

mM HCO3
- exhibited decreased total plant DM (-30% and -37%, respectively). 

 Arbuscular mycorrhizal plants partially alleviated plant HCO3
- stress at 2.5, 5, 

and 10 mM with increased (+29%, +21%, and +18%, respectively) plant DM compared 

to non-AMF plants. 

 

Stem Dry Mass 

Increasing concentration of HCO3
- induced a significant (P≤0.001) decrease in 

stem DM (Table 1).  On average, plants inoculated with AMF exhibited a significant 

(P≤0.05) increase (+13%) in stem DM compared to non-AMF plants.  The HCO3
- x 

AMF interaction was not significant. 

In non-AMF plants treated with 2.5 mM HCO3
- there was a reduction (-24%) in 

stem DM compared to the control (0 mM HCO3
-) plants.  Non-AMF plants treated with 5 

and 10 mM HCO3
- exhibited a decrease in stem DM (-30% and -37%, respectively). 

In AMF plants treated with 2.5 mM HCO3
- there was a reduction (-7%) in stem 

DM compared to AMF control (0 mM·HCO3
-) plants.  Inoculated plants treated with 5 

and 10 mM HCO3
- exhibited decreased stem DM (-20% and -26% respectively). 
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 Arbuscular mycorrhizal plants partially alleviated plant HCO3
- stress at 2.5, 5, 

and 10 mM with increased (+23%, +16%, and +17%, respectively) stem DM compared 

to non-AMF plants. 

 

Root Dry Mass 

In general, increasing concentrations of HCO3
- significantly (P≤0.001) reduced 

root DM (Table 1).  On average, plants inoculated with AMF did not exhibit a 

significant difference compared to non-AMF plants.  The HCO3
- x AMF interaction was 

not significant, indicating that HCO3
- stress occurred to the same degree regardless of 

AMF. 

In non-AMF plants treated with 2.5 mM HCO3
- there was a reduction (-33%) in 

root DM compared to control (0 mM HCO3
-) plants.  Non-AMF plants treated with 5 and 

10 mM HCO3
- exhibited a decrease in root DM (-44% and -22%, respectively). 

In AMF plants treated with 2.5 mM HCO3
- there was a reduction (-20%) in root 

DM compared to AMF control (0 mM HCO3
-) plants.  Inoculated plants treated with 5 

and 10 mM HCO3
- exhibited decreased stem DM (-40% and -30% respectively). 

Regardless of AMF treatment there was a decrease (-26%, -42%, and -26%) in 

root DM at 2.5, 5, and 10 mM HCO3
-, respectively. 

 

Root/Shoot Ratio 

The root/shoot ratio was significantly (P≤0.01) affected by the HCO3
- 

concentration (Table 1).  Plants inoculated with AMF and the HCO3
- x AMF interaction 

was not significant.  The results were inconsistent and there was no clear tendency for 

treatments. 

 

Mycorrhizal Inoculation Effect 

The MIE was very low (7%) in plants subjected to 0 mM HCO3
- (Table 1).  At 

2.5 mM HCO3
- MIE greatly increased (29%).  Plants treated with 5 and 10 mM HCO3

- 

decreased MIE values (21% and 18%, respectively). 
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Leaf Growth 

Leaf number was significantly (P≤0.01) reduced by increasing HCO3
- 

concentration (Table 2).  Plants inoculated with AMF and the HCO3
- x AMF interaction 

were not significant.  However, increasing concentration of HCO3
- significantly 

(P≤0.001) reduced both leaf area and leaf DM (Tables 1 and 2).  On average, plants 

inoculated with AMF exhibited a significantly (P≤0.01) greater leaf area and leaf DM 

(+30% and +25%, respectively) compared to non-AMF plants.  However, in AMF plants 

the negative effect of HCO3
- was mitigated to a certain degree. 

In non-AMF plants treated with 2.5 mM HCO3
- there was a reduction in leaf area 

and leaf DM (-49% and -36%, respectively) compared to control (0 mM HCO3
-) plants.  

Non-AMF plants treated with 5 and 10 mM HCO3
- exhibited decreased leaf area (-59% 

and -62%, respectively) and leaf DM (-46% and -52%, respectively). 

Plants inoculated with AMF had a greater tolerance to HCO3
- stress.  In AMF 

plants treated with 2.5 mM HCO3
- there was a reduction in leaf area and leaf DM (-24% 

and -22% respectively) compared to AMF control (0 mM HCO3
-) plants.  Inoculated 

plants treated with 5 and 10 mM HCO3
- exhibited a decrease in leaf area (-42% and -

53%, respectively) and leaf DM (-38% and -48%, respectively). 

 Arbuscular mycorrhizal plants partially alleviated plant HCO3
- stress at 2.5, 5, 

and 10 mM with increased (+39%, +29%, and +24%, respectively) leaf DM compared to 

non-AMF plants.  Arbuscular mycorrhizal fungi had a greater effect in alleviating HCO3
- 

stress in leaf area (P≤0.001) than leaf DM (P≤0.01).  Furthermore, AMF partially 

alleviated plant HCO3
- stress at 2.5, 5, and 10 mM with increased (+57%, +51%, and 

+33%, respectively) leaf area compared to non-AMF plants. 

The SLA and LAR were significantly (P≤0.001) reduced by increasing HCO3
- 

concentration (Table 2).  On average, plants inoculated with AMF exhibited a 

significantly (P≤0.01) greater SLA and LAR (+7% and +14%, respectively) compared to 

non-AMF plants.  The SLA HCO3
- x AMF interaction was significant (P≤0.01).  

However, the LAR HCO3
- x AMF interaction was not significant. 
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In non-AMF plants treated with 2.5 mM HCO3
- there was a reduction in SLA and 

LAR (-18% and -26%, respectively) compared to control (0 mM HCO3
-) plants.  Non-

AMF plants treated with 5 and 10 mM HCO3
- exhibited a decrease in SLA (-26% and -

21%, respectively) and LAR (-33% and -33%, respectively). 

In AMF plants treated with 2.5 mM HCO3
- there was a reduction in SLA and 

LAR (-4% and -10%, respectively) compared to AMF control (0 mM HCO3
-) plants.  

Inoculated plants treated with 5 and 10 mM HCO3
- exhibited a decrease in SLA (-8% 

and -13%, respectively) and LAR (-18% and -27%, respectively). 

 

LEAF NUTRIENT ANALYSIS 

 Leaf nutrient content of N, P, Ca, Fe, Cu, and B was significantly (P≤0.05) 

reduced by increasing HCO3
- concentration, whereas K, Na, Mn, Mg, S, Zn, and Al were 

unaffected or had no consistent response (Tables 3 and 4).  Conversely, levels of Mo 

increased with higher HCO3
- concentrations.  At selected concentrations of HCO3

-, 

plants inoculated with AMF had significantly (P≤0.05) increased leaf nutrient content of 

N, P, K, Ca, Mg, S, Na, Fe, Zn, Cu, Al, B, and Mo, compared to non-AMF plants.  

Neither AMF nor HCO3
- affected Mn levels (Table 4).  The HCO3

- x AMF interaction 

was significant (P≤0.05) for Na, Fe, Zn, Cu, Al, and Mo. 

 

Non-Arbuscular Mycorrhizal Plants 

In non-AMF plants, HCO3
- concentration induced decreased leaf nutrient content, 

however there was no clear pattern as the HCO3
- concentration increased.  The most 

affected nutrients were P, S, Fe, Zn, Cu, and Al (with a maximum decrease of -58%, -

50%, -50%, -63%, -54%, and -54%, respectively).  The lowest leaf N, P, and B content 

was obtained at 10 mM HCO3
-.  The lowest leaf Ca, S, Fe, and Cu content was obtained 

at 5 mM HCO3
-.  The lowest leaf K, Mg, Na, Zn, and Al content was obtained at 2.5 mM 

HCO3
-.  Leaf Mo increased with increasing HCO3

- concentration (maximum increase of 

362% at 5 mM HCO3
-). 
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Table 3: Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on leaf macronutrient and Na content of Rosa 

multiflora cv. Burr plants. 
 

HCO3
- 

(mM) 
AMF 

Inoculation 
N 

(g·kg-1) 
P 

(g·kg-1) 
K 

(g·kg-1) 
Ca 

(g·kg-1) 
Mg 

(g·kg-1) 
S 

(g·kg-1) 
Na 

(g·kg-1) 
0 No  32.4±3.1z 2.4±0.3 24.0±2.2 6.9±0.7 2.0±0.2 2.0±0.2 0.3±0.0 
 Yes 36.3±0.3 2.6±0.1 27.1±0.8 7.3±0.2 2.2±0.0 2.3±0.0 0.3±0.0 
2.5 No 22.1±0.9 1.5±0.1 15.5±1.6 4.6±0.5 1.4±0.1 1.2±0.1 0.2±0.0 
 Yes 30.0±3.0 2.1±0.2 26.9±2.5 7.4±0.9 2.4±0.2 1.9±0.2 0.3±0.0 
5 No 19.6±1.4 1.1±0.1 16.7±1.9 4.4±0.4 1.4±0.1 1.0±0.1 0.2±0.0 
 Yes 24.3±1.9 1.4±0.1 23.8±1.7 6.1±0.5 1.8±0.1 1.3±0.1 0.4±0.0 
10 No 18.1±2.7 1.0±0.1 17.5±2.0 4.8±0.8 1.4±0.2 1.0±0.2 0.3±0.0 
 Yes 21.1±1.9 1.2±0.1 23.4±2.8 5.7±0.7 1.7±0.2 1.3±0.1 0.4±0.1 
Significancey        
    AMF ** ** ** ** ** ** ** 
    HCO3

- *** *** NS * * *** NS 
    Interaction NS NS NS NS NS NS * 
z Means±standard error (n=3). 
y Significance according to ANOVA, NS, *, **, ***, nonsignificant and significant P≤ 0.05, 0.01, 0.001, respectively. 
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Table 4. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on leaf miconutrient content of Rosa multiflora 

cv. Burr plants. 
 

HCO3
- 

(mM) 
AMF 

Inoculation 
Fe 

(µg·g-1) 
Mn 

(µg·g-1) 
Zn 

(µg·g-1) 
Cu 

(µg·g-1) 
Al 

(µg·g-1) 
B 

(µg·g-1) 
Mo 

(µg·g-1) 
0 No 66.9±3.2z 35.3±3.7 10.7±0.6 3.5±0.5 16.9±0.5 90.3±9.4 2.6±1.0 
 Yes 70.1±2.7 34.7±1.3 12.7±0.4 3.9±0.0 15.3±0.7 99.6±2.6 2.6±0.7 
2.5 No 38.0±2.4 26.6±2.1 4.0±0.6 2.0±0.3 7.7±0.9 56.5±5.8 2.1±0.7 
 Yes 69.0±6.5 32.8±4.2 14.6±1.2 4.2±0.7 16.0±1.3 98.8±9.7 3.0±1.1 
5 No 33.6±2.5 30.6±3.4 5.0±0.7 1.6±0.1 8.4±0.9 57.3±5.7 12.0±0.8 
 Yes 52.1±4.2 32.5±4.5 11.7±1.5 2.7±0.2 20.2±2.6 80.6±3.9 18.1±0.5 
10 No 34.5±5.7 25.5±5.8 7.4±1.7 2.2±0.3 9.9±1.3 53.4±7.4 10.9±2.0 
 Yes 44.6±6.2 27.7±2.4 11.3±0.9 2.4±0.1 16.9±2.4 64.2±5.8 11.0±1.3 
Significancey        
    AMF ** NS *** ** *** ** * 
    HCO3

- *** NS * * NS ** *** 
    Interaction * NS ** * ** NS * 
z Means±standard error (n=3). 
y Significance according to ANOVA, NS, *, **, ***, nonsignificant and significant P≤ 0.05, 0.01, 0.001, respectively. 
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Arbuscular Mycorrhizal Plants 

In AMF plants, HCO3
- induced decreased leaf nutrient content, however there 

was no clear pattern as the HCO3
- concentration increased.  The most affected nutrients 

were N, P, and S (-42%, -54%, and -43%, respectively) compared to AMF control (0 

mM HCO3
-) plants.  The lowest leaf N and P content were obtained at 10 mM HCO3

-, 

and the lowest leaf S content was obtained at 5 mM. 

Inoculated plants had a greater leaf N, P, and S content compared to non-AMF 

plants.  At 2.5 mM HCO3
- concentration, AMF plants exhibited greatest leaf N, P and S 

content (+36%, +40%, and +58%) compared to non-AMF plants. 

Leaf K, Ca, Mg, Fe, and B content remained constant in inoculated plants treated 

with 2.5 mM HCO3
- compared to control AMF (0 mM HCO3

-) plants.  At 2.5 mM HCO3
- 

concentration AMF plants exhibited greatest leaf K, Ca, Mg, Fe, and B content (+74%, 

+61%, +71%, +82%, and +75%, respectively) compared to non-AMF plants.  

Bicarbonate concentrations >2.5 mM decreased leaf K, Ca, Mg, Fe, and B content.  The 

lowest leaf K, Ca, Mg, Fe, and B content (-14%, -22%, -23%, -36%, and -36%, 

respectively) was obtained at 10 mM HCO3
-. 

At 2.5 mM HCO3
- concentration AMF plants exhibited greater leaf Zn and Cu 

content (+15% and +8%, respectively) compared to control (0 mM HCO3
-) AMF and 

(+36% and +20%, respectively) non-AMF plants.  In AMF plants leaf Zn content 

remained constant with increasing HCO3
- concentration compared to control (0 mM 

HCO3
-) non-AMF plants.  However, in AMF plants leaf Cu content decreased with 

increasing HCO3
- concentration compared to control (0 mM HCO3

-) non-AMF plants. 

 At 0 mM HCO3
- concentration AMF plants did not have increased leaf Mo, Na, 

and Al content compared to non-AMF plants.  In AMF plants increasing HCO3
- 

concentration increased leaf Mo, Na, and Al content compared to non-AMF plants.  At 5 

mM HCO3
- concentration AMF plants exhibited greatest (+51%, +100%, and +140%) 

leaf Mo, Na, and Al content compared non-AMF plants. 
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TOTAL CHLOROPHYLL CONTENT 

 Total leaf chlorophyll content of AMF and non-AMF was significantly 

(P≤0.001) reduced by increasing HCO3
- concentration (Fig. 3).  Arbuscular mycorrhizal 

plants had greater leaf chlorophyll content than non-AMF plants at all HCO3
- 

concentrations.  At 0 mM, 2.5 mM, 5 mM, and 10 mM HCO3
- concentrations, AMF plants  

exhibited significantly (P≤0.001) increased (+310%, +494%, +63%, and +26%, 

respectively) total chlorophyll content compared to non-AMF plants.  The HCO3
- x 

AMF interaction was significant (<0.01). 

 In non-AMF plants treated with 2.5 mM HCO3
- there was a reduction (-79%) in 

total chlorophyll content compared to control (0 mM HCO3
-) plants.  Non-AMF plants 

treated with 5 and 10 mM HCO3
- exhibited a decrease in total chlorophyll content (-33% 

and -35%, respectively). 

In AMF plants treated with 2.5 mM HCO3
- there was a reduction (-70%) in total 

chlorophyll content compared to AMF control (0 mM HCO3
-) plants.  Inoculated plants 

treated with 5 and 10 mM HCO3
- exhibited a decrease in total chlorophyll content (-73% 

and -80%, respectively). 

 

ROOT IRON REDUCTASE 

The Fe reductase activity was not significantly reduced by increasing HCO3
- 

concentration (Fig. 4).  On average, AMF plants had significantly (P≤0.01) decreased (-

18%) Fe reductase activity compared to non-AMF plants. The HCO3
- x AMF interaction 

was not significant. 

 

ROOT PHOSPHATASE ACTIVITY 

Soluble Acid Phosphatase 

The soluble ACP activity was significantly (P≤0.001) decreased by increasing 

HCO3
- concentration (Fig. 5A).  Plants inoculated with AMF and the HCO3

- x AMF 

interaction were not significant.  In AMF plants treated with 0 mM HCO3
- there was 

greater (+21%) enzymatic activity compared to non-AMF control (0 mM HCO3
-) plants.   
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Fig.3. Effect of bicarbonate (HCO3

-) and arbuscular mycorrhizal fungi (AMF) on total 
 leaf chlorophyll content of Rosa multiflora cv. Burr plants. Treatment effect of 
 AMF, HCO3

-, and AMF x HCO3
- interaction were significant (P≤0.001, 0.001, 

 and 0.01, respectively). Means±standard error (n=3). 
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Fig.4. Effect of bicarbonate (HCO3

-) and arbuscular mycorrhizal fungi (AMF) on root Fe 
 reductase activity in Rosa multiflora cv. Burr plants. Treatment effect of AMF 
 was significant (P≤0.01). Bicarbonate and AMF x HCO3

- interaction were 
 nonsignificant. Means±standard error (n=3). 
 

 

 

 

 



 

 

38

Inoculated plants treated with 2.5 and 5 mM HCO3
- exhibited comparable enzymatic 

activity between AMF and non-AMF plants, while plants treated with 10 mM HCO3
- 

exhibited greater (+16%) enzymatic activity compared to non-AMF plants. 

 

Wall-Bound Acid Phosphatase 

The wall-bound ACP activity was also significantly (P≤0.01) decreased by 

increasing HCO3
- concentration (Fig. 5B).  Plants inoculated with AMF treated with 0 

mM HCO3
- exhibited a significant (P≤0.01) decrease (-28%) in enzymatic activity 

compared to non-AMF control (0 mM HCO3
-) plants.  The HCO3

- x AMF interaction 

was significant (P≤0.05).  In non-AMF plants treated with 0 and 2.5 mM HCO3
- there 

was greater (+39% and +168%, respectively) enzymatic activity compared to AMF 

plants.  Inoculated and non-AMF plants treated with 5 and 10 mM HCO3
- exhibited 

comparable enzymatic activity. 

 

Soluble Alkaline Phosphatase 

Soluble ALP activity was not significantly affected by increasing HCO3
- 

concentration or AMF inoculation (Fig. 6A).  The HCO3
- x AMF interaction was 

significant (P≤0.05).  In non-AMF plants treated from 0 to 5 mM HCO3
- there was 

increased (+59%) enzymatic activity.  At higher HCO3
- concentration (>5 mM HCO3

-) 

there was a decline in the enzymatic activity, however enzymatic activity of AMF plants 

increased with increasing HCO3
- concentrations.  At 10 mM HCO3

- concentration AMF 

plants exhibited increased enzymatic activity (+36%) compared to AMF control (0 mM 

HCO3
-) plants.  

 

Wall-Bound Alkaline Phosphatase 

Wall-Bound ALP activity was significantly (P≤0.01) increased by increasing 

HCO3
- concentrations (Fig. 6B).  Inoculated plants and the HCO3

- x AMF interaction 

were not significant.  In general, non-AMF plants exhibited greater enzymatic activity 

than AMF plants.  In AMF and non-AMF plants treated from 0 to 5 mM HCO3
- there  
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Fig.5. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on root 

acid phosphatase (ACP) activity in Rosa multiflora cv. Burr plants. (A) 
Soluble ACP activity. Treatment effect of HCO3

- was significant (P≤0.001). 
Arbuscular mycorrhizal fungi and AMF x HCO3

- interaction were 
nonsignificant. Means±standard error (n=3). (B) Wall-bound ACP activity. 
Treatment effect of AMF, HCO3

-, and AMF x HCO3
- interaction were 

significant (P≤0.01, 0.01, and 0.05, respectively). Means±standard error (n=3).
 

A 

B 



 

 

40

HCO3
- (mM)

0 2 4 6 8 10 12

A
LP

 a
ct

iv
ity

 (µ
m

ol
 p

-N
PP

·g
-1

 ro
ot

 fr
es

h 
m

as
s·h

-1
)

60

70

80

90

100

110

120

130

Non-AMF y=72.330+16.060x-1.514x2 R2=0.999
AMF y=82.040-0.992x+0.422x2 R2=0.945

HCO3
- (mM)

0 2 4 6 8 10 12

A
LP

 a
ct

iv
ity

 (µ
m

ol
 p

-N
PP

·g
-1

 ro
ot

 fr
es

h 
m

as
s·h

-1
)

40

60

80

100

120

140

Non-AMF y=66.630+16.320x-1.113x2 R2=0.993
 AMF y=60.390+14.000x-0.921x2 R2=0.999

 

B 

A 

Fig.6. Effect of bicarbonate (HCO3
-) and arbuscular mycorrhizal fungi (AMF) on root 

alkaline phosphatase (ALP) activity in Rosa multiflora cv. Burr plants. (A) 
Soluble ALP activity. Treatment effect of AMF x HCO3

- interaction was 
significant (P≤0.05). Treatment effects of AMF and HCO3

- were 
nonsignificant. Means±standard error (n=3). (B) Wall-bound ALP activity. 
Treatment effect of HCO3

- was significant (P≤0.01). Arbuscular mycorrhizal 
fungi and AMF x HCO3

- interaction were nonsignificant. Means±standard 
error (n=3). 
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was increased (+78% and +81% respectively) enzymatic activity compared to control (0 

mM HCO3
-).  At higher HCO3

- concentration (>5 mM HCO3
-) enzymatic activity 

plateaued. 

 

ARBUSCULAR MYCORRHIZAL FUNGI COLONIZATION 

 No AMF colonization occurred with non-inoculated plants.  Greatest depression 

of AMF occurred with increasing HCO3
- concentration, however colonization was still 

achieved (Table 5).  Total colonization and hyphae levels were ≤40%.  Inoculated plants 

treated with 2.5 mM HCO3
- exhibited significantly (P≤0.001) decreased (-35%) hyphae 

and total colonization compared to control (0 mM HCO3
-) AMF plants.  Inoculated 

plants treated with 5 and 10 mM HCO3
- exhibited significantly (P≤0.001) decreased (-

81% and -62% respectively) hyphae and total colonization compared to control (0 mM 

HCO3
-) AMF plants.  No vesicles were observed in any treatments. 

 

Discussion 

 

 To our knowledge, this is one of the first reports that AMF enhance tolerance of 

R. multiflora cv. Burr to HCO3
- stress. 

 

LEACHATE ANALYSIS 

 Increasing HCO3
- concentration caused a significant increase in substrate pH, 

which was attributed to the neutralization of H+ by HCO3
- (Lindsay, 1979).  Bicarbonate 

accumulation in the substrate was a result of frequent (every 4 d for 32 d) irrigation with 

water high in HCO3
-.  Thus, accumulation of HCO3

- caused a slight increase in substrate 

pH overtime (Fig. A1).  In general, increasing HCO3
- concentration caused a significant 

increase in substrate EC. 

We suggest that the high pH and EC reported in this study may not be a true 

reflection of actual substrate pH and EC.  Substrate was not brought to container 

capacity prior to leachate collection as recommended (Wright, 1987).  Thus, data  
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Table 5. Effect of bicarbonate (HCO3
-) on percentage arbuscules, hyphae, and vesicles in root cortical cells of arbuscular 

mycorrhizal Rosa multiflora cv. Burr plants. 
 

Bicarbonate 
(mM) 

AMFz 
Inoculation 

Arbuscules 
(%) 

Vesicles 
(%) 

Hyphae 
(%) 

Total Colonization 
(%) 

0 Yes 5.0±0.6y 0.0±0.0 40.0±3.3 40.0±3.3 
2.5 Yes 1.8±0.3 0.0±0.0 26.1±2.0 26.1±2.0 
5 Yes 1.5±0.1 0.0±0.0 15.4±1.5 15.4±1.5 
10 Yes 0.4±0.4 0.0±0.0 7.6±0.7 7.6±0.7 
Significancex      
    HCO3

-  *** NS *** *** 
z Arbuscular mycorrhizal fungi. 
y Means±standard error (n=675). 
x Significance according to ANOVA, NS, *, **, ***, nonsignificant and significant P≤ 0.05, 0.01, 0.001, respectively. 
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reported in this study maybe an overestimation of actual substrate pH and EC.  By 

bringing the substrate to container capacity, salts present in the substrate solution diffuse 

into applied irrigation water, diluting concentration of salts and potentially decreasing 

pH and EC.  This may explain the high EC towards the end of the study, with no visible 

signs of salt toxicity in the plant material. 

In addition, modified LANS Na content (Table A1 and A2) was at levels 

reported to cause little or no toxic effect to plant growth (Petersen, 1996).  Leaf Na 

content irrigated with high levels of HCO3
- were not significantly different from control 

AMF and non-AMF plants. 

 

PLANT GROWTH 

 Plants treated with increasing HCO3
- concentrations (≥2.5 mM) exhibited 

significantly inhibited growth.  Reduced plant growth may be caused by the inhibitory 

effect of HCO3
- on metabolic processes and/or impairment of root activity/growth 

(Alhendawi et al., 1997; Bialczyk and Lechowski, 1992; Bialczyk et al., 1994; 

Kosegarten et al., 1999) and/or nutrient solubility (Alcántara et al., 1988; Bialczyk et al., 

1994; Pearce et al., 1999).  Root physiology and nutrient solubility are affected by the 

buffering capacity of HCO3
-, which is related to an increase in substrate pH (Marschner, 

1995).  Bicarbonates react with H+ resulting in higher pH, increasing the concentration 

of OH- (Lindsay, 1979).  However, plant species and cultivars may differ in their 

tolerance to HCO3
- stress (Alcántara et al., 1988; Alhendawi et al., 1997; Gharsalli and 

Hajji, 2002). 

In general, AMF helped to partially alleviate HCO3
- stress, as indicated by 

greater plant growth (leaf, stem, and total plant DM, leaf area, SLA, and LAR) compared 

to non-AMF plants.  The MIE was low in plants treated with 0 mM HCO3
-, suggesting 

that under control (non-stress) conditions R. multiflora cv. Burr plants were only 

moderately AMF dependant (Bagyaraj et al., 1988; Plenchette et al., 1983).  However, at 

≥2.5 mM HCO3
-, MIE values increased indicating that plants became more AMF 

dependent, as shown by the percent increase in total plant DM of AMF plants compared 
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to non-AMF plants (Bagyaraj et al., 1988; Plenchette et al., 1983).  Treatment with >2.5 

mM HCO3
- decreased MIE indicating that while AMF partially alleviated HCO3

- stress, 

increasing HCO3
- concentration also had a negative effect on AMF. 

There was a nonsignificant trend of lower leaf number in AMF plants compared 

to non-AMF plants.  Specific leaf area and LAR were higher in AMF plants treated with 

HCO3
- compared to non-AMF plants.  Arbuscular mycorrhizal plant leaves were thinner 

(generally higher SLA) and had a larger photosynthetic area per plant (greater LAR) in 

relative terms, as a result of carbon cost necessary to maintain AMF associations 

(Wright et al., 1998a, 1998b). 

 

LEAF NUTRIENT CONTENT 

 Increasing HCO3
- concentration (≥2.5 mM) decreased leaf N, P, Ca, Fe, Cu, and 

B content.  Leaf K, Na, Mn, Mg, S, Zn, and Al content were unaffected or had no 

consistent response with increasing HCO3
- concentration.  Decreased nutrient content 

may be caused by the inhibitory effect of HCO3
- on metabolic processes and/or 

impairment of root activity/growth (Alhendawi et al., 1997; Bialczyk and Lechowski, 

1992; Bialczyk et al., 1994; Kosegarten et al., 1999).  Reduced solubility of nutrients in 

the substrate at high pH as a result of high HCO3
- concentration may also be a factor 

(Alcántara et al., 1988; Marschner, 1995).  In addition, plant nutrient uptake may vary 

between species and cultivars in response to HCO3
- stress (Alcántara et al., 1988; 

Alhendawi et al., 1997; Gharsalli and Hajji, 2002). 

In general, AMF plants had significantly increased leaf nutrient content 

compared to non-AMF plants.  Arbuscular mycorrhizal fungi enhance nutrient 

acquisition through greater effective root area and penetration of substrate(s) (direct 

access to nutrients outside the zone of nutrient depletion that develop close to roots and 

to nutrients in inaccessible microsites), and activation and excretion of various enzymes 

by AMF roots and/or hyphae (Clark and Zeto, 2000; George, 2000; Marschner, 1998).  

Arbuscular mycorrhizal fungi may tolerate adverse external pH conditions by modifying 

the pH of the mycorrhizosphere during nutrient uptake (Pacovsky, 1986).  Increased P 
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nutrition as a result of AMF associations may also indirectly increase uptake of other 

ions, including N, Cu, Fe, and Zn (Marschner and Dell, 1994).  Zinc efficiency may be 

related to enhanced tolerance to HCO3
- stress (Yang et al., 1993). 

 

TOTAL CHLOROPHYLL CONTENT 

Total chlorophyll content was significantly reduced by increasing HCO3
- 

concentrations.  However, AMF plants had higher chlorophyll content compared to non-

AMF plants.  Higher chlorophyll content may reflect the higher photosynthetic rate 

necessary to support the carbon cost of AMF associations (Wright et al., 1998a, 1998b; 

Trimble and Knowles, 1995).  The majority of carbon to support the metabolism of 

AMF originates directly from host plant photosynthesis (Douds et al., 2000). 

Increased photosynthesis of AMF plants maybe mediated by enhanced Fe uptake, 

as Fe is essential for various plant metabolic reactions, including chlorophyll synthesis 

and photosynthesis (Marschner, 1995).  Increased photosynthesis of AMF plants may 

also be mediated by increased P nutrition.  Cytoplasmic inorganic phosphate (Pi) levels 

in leaves regulate carbon export, and thus photosynthesis via the triose-P/Pi translocator 

in the chloroplast membrane (Huber, 1982; Marschner, 1995).  Low levels of Pi lead to a 

build up of starch in the chloroplast, which can decrease photosynthesis (Chatterton et 

al., 1972; Thorne and Koller, 1974).  Pulse/chase experiments with 14CO2 show a greater 

percentage of labeled photosynthates are transported out of leaves of AMF plants during 

the chase period compared to non-AMF plants (Douds et al., 1988). 

 

ROOT IRON REDUCTASE ACTIVITY 

Leaf Fe content decreased with increasing HCO3
- concentration (Fig. A2).  In 

strategy I plants Fe deficiency enhances the activation of plasma membrane-bound 

inducible reductase, enhanced net excretion of protons, and enhanced release of 

reductants/chelators as a means of alleviating Fe stress (Marschner and Römheld, 1994; 

Moog and Brüggemann, 1994).  In our study, root Fe reductase activity was not 
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significantly enhanced by increasing HCO3
- concentrations, suggesting that plant 

material was not Fe efficient under study conditions. 

 However, in general AMF plants had significantly lower root Fe reductase 

activity and higher leaf Fe content compared to non-AMF plants (Fig. A2), suggesting 

that AMF enhanced plant Fe uptake under HCO3
- stress.  Arbuscular mycorrhizal fungi 

may enhance Fe uptake through greater effective root area and penetration of 

substrate(s) (direct access to nutrients outside the zone of nutrient depletion that develop 

close to roots and to nutrients in inaccessible microsites), and activation and excretion of 

various compounds by AMF roots and/or hyphae to mobilize/convert substrate Fe into 

plant available forms (Caris et al., 1998; Clark and Zeto, 1996).  Arbuscular mycorrhizal 

fungi may produce Fe chelating compounds, for example siderophores (Cress et al., 

1986), as do other fungi, including ectomycorrhizal fungi, to enhance Fe uptake (Leyval 

and Reid, 1991).  However, in other studies the effect of AMF on Fe uptake is variable 

and inconsistent, and acquisition of Fe has been both enhanced (Al-Karaki and Clark, 

1998; Al-Karaki et al., 1998; Clark and Zeto, 1996; Treeby, 1992) and reduced (Clark et 

al., 1999; Kothari et al., 1990a, 1990b) by AMF depending on experimental conditions.  

Bacterial levels were not tested in this study, however AMF may indirectly stimulate 

bacterial populations (Bianciotto and Bonfante, 2002; Vázquez et al., 2000), which may 

enhance Fe availability and uptake (Carrillo-Castañeda et al., 2003; Cowart, 2002). 

 

ROOT PHOSPHATASE ACTIVITY 

Biochemical and biophysical processes involved in P metabolism, and 

phosphatase synthesis, activity, and efficiency are inconsistent and not well understood 

(Ezawa et al., 2002; Joner et al., 2000a, 2000b; Tarafdar et al., 2001; van Aarle et al., 

2002b).  In this study, leaf P content decreased with increasing HCO3
- concentration 

(Fig. A3), and increasing HCO3
- concentration decreased soluble and wall-bound ACP 

activity in AMF and non-AMF plants, suggesting that high HCO3
- concentration and 

associated high pH impaired ACP synthesis, release, and/or stability (Tabatabai, 1994).  

Conversely increasing HCO3
- concentration and associated high pH resulted in increased 
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soluble and wall-bound ALP activity in AMF and non-AMF plants, suggesting that high 

HCO3
- concentration and associated high pH had limited effect on ALP synthesis, 

release, and/or stability (Tabatabai, 1994).  Bicarbonate concentrations >5 mM resulted 

in a sharp decrease in soluble ALP activity in non-AMF plants, suggesting that high 

HCO3
- concentrations and associated high pH are inhibitory to plant ALP synthesis, 

release, and/or stability.  This may attributed to: 1) lower Fe uptake potentially reducing 

chlorophyll synthesis and photosynthetic rates resulting in lower carbon accumulation 

and transport to the roots affecting ALP synthesis; 2) an internal alkalization of root cell 

symplast impairing cell metabolism and affecting ALP synthesis, release, and/or 

stability; and 3) phosphorus precipitation with Ca limiting induction of ALP.   

Arbuscular mycorrhizal plants had significantly lower soluble ALP activity at 

<10 mM HCO3
- and in general higher leaf P compared to non-AMF plants (Fig. A3), 

suggesting AMF plants had enhanced P uptake and transport under HCO3
- stress.  

Arbuscular mycorrhizal fungi may also enhance P uptake through greater effective root 

area and penetration of substrate(s) (direct access to nutrients outside the zone of nutrient 

depletion that develop close to roots and to nutrients in inaccessible microsites), and 

activation and excretion of compounds by AMF roots and/or hyphae to mobilize/convert 

substrate P into plant available forms (Bolan, 1991; Joner et al., 2000a, 2000b; Miyasaka 

and Habte, 2001).  However, HCO3
- concentrations >5 mM induced a sharp increase in 

soluble ALP activity in AMF plants, suggesting that at high HCO3
- concentrations and 

associated high pH were inhibitory to AMF P availability/uptake.  Bacterial levels were 

not tested in this study, however AMF may indirectly stimulate bacterial populations 

(Bianciotto and Bonfante, 2002; Vázquez et al., 2000), which may enhance phosphatase 

activity, P availability, and uptake (Gryndler et al., 2002; Rodríguez and Fraga, 1999; 

Villegas and Fortin, 2002). 

 

ARBUSCULAR MYCORRHIZAL COLONIZATION 

 Arbuscular mycorrhizal colonization (arbuscules, vesicles, and hyphae) was 

adversely affected by increasing HCO3
- concentrations, which may be due to the high 
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pH associated with increasing HCO3
- concentrations (Hayman and Tavares, 1985; 

Medeiros et al., 1994; van Aarle et al., 2002a).  However, AMF colonization still 

occurred at the highest HCO3
- concentrations.  Because of technical problems with the 

clearing and staining of root pieces, we suggest that results obtained in this study may be 

an underestimation of actual AMF colonization. 

 

Conclusion 

 

This is one of the first reports to demonstrate that AMF enhance plant tolerance 

to HCO3
- stress, as indicated by the enhanced growth, nutrient uptake, leaf chlorophyll 

content, MIE, low iron reductase activity, and low soluble wall bound ALP activity.  At 

2.5 mM HCO3
-, AMF plant growth was comparable to non-AMF and AMF plants at 0 

mM HCO3
-, indicating the potential beneficial application of AMF for alleviation of 

plant HCO3
- stress. 

We suggest that if this study had been conducted using a commercial substrate 

with a higher buffering capacity (compared to the low buffering capacity of the sand 

substrate used in this study), the beneficial application of AMF for enhanced plant 

tolerance to HCO3
- stress may be greater at higher HCO3

- concentrations. 

However, plant species and cultivars within species can differ markedly in their 

response to HCO3
- stress (Alcántara et al., 1988; Alhendawi et al., 1997; Gharsalli and 

Hajji, 2002) and AMF species (Parke and Kaeppler, 2000; Sanders, 2002).  Efficiencies 

among AMF species vary (Jakobsen et al., 2002; Parke and Kaeppler, 2000), and each 

AMF isolate originating from a specific environment may represent an ecotype adapted 

to that particular environment (Entry et al., 2002).  Therefore, the beneficial application 

of AMF to enhance plant tolerance to HCO3
- stress may depend on plant species and/or 

cultivars within species used, plant interaction with the AMF species, and the difference 

between the environment from which the AMF isolate was obtained and the 

experimental system under study. 
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CHAPTER IV 

CONCLUSION 
 

Agricultural/horticultural production will increasingly have to preserve and 

augment good quality water resources through more enhanced water efficiency and 

utilization of non-conventional water resources; this may include water of marginal 

quality, high in total dissolved solids (non-volatile solutes) (Oster, 1994; Shalhevert, 

1994).  The potential bicarbonate (HCO3
-) content and associated high pH of this 

irrigation water may be detrimental/limiting to plant growth, due to its adverse effects on 

availability and solubility of nutrients (P, N, Mg, Fe, Mn, Zn, Cu, and other ions) 

(Bailey, 1996; Marschner, 1995).  

Rooted stem cuttings of Rosa multiflora Thunb. ex J. Murr. cv. Burr (rose) 

treated with increasing HCO3
- concentrations (≥2.5 mM) exhibited significantly inhibited 

growth and nutrient uptake.  Inoculation with a mixed Glomus Tulasne & Tulasne 

species inoculum of arbuscular mycorrhizal fungi (AMF), Glomus ZAC-19 (containing 

Glomus albidum Walker & Rhodes, Glomus claroideum Schenck & Smith, and Glomus 

diaphanum Morton & Walker), significantly enhanced plant tolerance to HCO3
- stress as 

indicated by generally greater growth, nutrient uptake, leaf chlorophyll content, higher 

mycorrhizal inoculation effect (MIE), lower Fe reducatase activity, and generally lower 

soluble and wall-bound alkaline phosphatase activity.  At 2.5 mM HCO3
-, AMF plant 

growth was comparable to non-AMF and AMF plants at 0 mM HCO3
- , indicating the 

potential beneficial application of AMF for alleviation of plant HCO3
- stress. 

However, plant species and cultivars within species can differ markedly in their 

response to HCO3
- stress (Alcántara et al., 1988; Alhendawi et al., 1997; Gharsalli and 

Hajji, 2002) and AMF species (Parke and Kaeppler, 2000; Sanders, 2002).  Efficiencies 

among AMF species vary (Jakobsen et al., 2002; Parke and Kaeppler, 2000), and each 

AMF isolate originating from a specific environment may represent an ecotype adapted 

to that particular environment (Entry et al., 2002).  Therefore, the beneficial application 

of AMF to enhance plant tolerance to HCO3
- stress may depend on plant species and/or 
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cultivars within species used, plant interaction with the AMF species, and the difference 

between the environment from which the AMF isolate was obtained and the 

experimental system under study. 
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APPENDIX 
 

Table A1. Formulations and composition of modified Long Ashton nutrient solution to 
supply bicarbonate (HCO3

-). 
 

HCO3
- 

(mM) 
Salts 

0 2.5 5 10 
 g·L-1 

Ca(NO3)2 0.94 0.94 0.94 1.24 
NaH2PO4 0.14 0.14 0.14 0.14 
MgSO4 0.37 0.31 - - 
Mg(NO3)2 - 0.06 0.38 0.38 
KNO3 0.40 0.35 0.10 - 
K2SO4 0.18 - - - 
NH4NO3 0.12 0.12 0.12 - 
KHCO3 - 0.25 0.50 0.60 
NaHCO3 - - - 0.22 
NH4HCO3 - - - 0.12 
Fe-DTPA 5.0 5.0 5.0 5.0 
 mg·L-1 

MnSO4·H2O 2 2 2 2 
ZnSO4·7H2O 0.22 0.22 0.22 0.22 
CuSO4·5H2O 0.08 0.08 0.08 0.08 
(NH4)6Mo7O24·4H2O 0.2 0.2 0.2 0.2 
H3BO3 2.8 2.8 2.8 2.8 
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Table A2.  Elemental formulation and composition of modified Long Ashton nutrient 
solution to supply bicarbonate (HCO3

-). 
 

HCO3
- 

(mM) 
Element 

0 2.5 5 10 
 (mM) 
NO3

- 15.45 15.46 15.69 15.7 
NH4

+ 1.5 1.5 1.5 1.5 
P 1 1 1 1 
K+ 6.03 5.99 5.99 6.00 
Ca2+ 5.7 5.7 5.7 5.7 
Mg2+ 1.5 1.49 1.46 1.46 
SO4

2- 2.53 1.26 1.26 1.26 
Na+ 1 1 1 3.63 
Fe 0.09 0.09 0.09 0.09 
Zn 0.0008 0.0008 0.0008 0.0008 
Cu 0.0003 0.0003 0.0003 0.0003 
Mn 0.011 0.011 0.011 0.011 
Mo 0.0011 0.0011 0.0011 0.0011 
B 0.005 0.005 0.005 0.005 
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Table A3. Average pH and electrical conductivity (EC) of modified Long Ashton 
nutrient solution to supply bicarbonate (HCO3

-). 
 
HCO3

- 
(mM) 

pH EC 
(ds·m-1) 

0 6.03±0.13 1.95±0.14 
2.5 7.10±0.08 2.08±0.10 
5 7.34±0.07 1.86±0.13 
10 7.59±0.12 2.38±0.16 
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Fig. A1. Effect of bicarbonate (HCO3

-) and arbuscular mycorrhizal fungi (AMF) on pH 
of Rosa multiflora cv. Burr substrate at days 4 and 28. Treatment effect of HCO3

- 
was significant (P≤0.001) at days 4 and 28. Treatment effect of AMF and AMF x 
HCO3

- interaction was nonsignificant at days 4 and 28. Means±standard error 
(n=5). 
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Fig. A2. Effect of bicarbonate (HCO3

-) and arbuscular mycorrhizal fungi (AMF on total 
leaf Fe content of Rosa multiflora cv. Burr plants. Treatment effect of AMF, 
HCO3

-, and AMF x HCO3
- interaction were significant (P≤0.01, 0.001, and 0.05, 

respectively. Means±standard error (n=3). 
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Fig. A3. Effect of bicarbonate (HCO3

-) and arbuscular mycorrhizal fungi (AMF) on total 
leaf P content of Rosa multiflora cv. Burr plants.  Treatment effect of AMF and 
HCO3

- were significant (P≤0.01 and 0.001, respectively). Treatment effect of 
AMF x HCO3

- interaction were nonsignificant. Means±standard error (n=3). 
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