64 research outputs found

    Holocene evolution of a barrier island system, Ria Formosa, South Portugal

    Get PDF
    Holocene evolution of the Ria Formosa barrier island system was studied through the examination of a large subsurface dataset acquired from 191 boreholes and five seismic refraction profiles. Two boreholes with total depths of 26 and 16.5 m were selected for a multi-proxy detailed laboratory analysis, including mean grain size distribution, organic matter (OM) content, color variation, shell identification, and benthic foraminifera assemblages. Selected cores are thought to be representative of the identified depositional sub-basins. Subsurface age data from 16 AMS C-14 dated samples were plotted against depth and resulted in a coherent age model of sedimentary infill. The system evolution was largely controlled by sediment availability, accommodation space, and Holocene sea level rise, first at a rapid rate of 7 mm/yr from 10 kcal yr BP to 7.25 kcal yr BP, followed by a slowdown to 1.1 mm/yr until present. A conceptual model for the origin and Holocene evolution of the Ria Formosa barrier island system implies three main steps, leading to the present system geomorphology: (1) marine flooding of incised palaeovalleys by the rapid transgression of palaeovalleys in the early Holocene(2) development of a proto-barrier island chain perched on Pleistocene detritic headlands and steeper interfluve areas during the early to middle Holoceneand (3) full development of the barrier islands chain and enclosing of the coastal lagoon, followed by the maturation of the system with subsequent siltation and salt marsh expansion from the middle Holocene until present. The onset of barrier system formation dates back to ca. 8 kcal yr BP, predating previously proposed age.SIHER project [PTDC/CTE-GIX112236/2009]EU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of AlgarveEU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of Cadi

    Bad Practice in Erosion Management: The Southern Sicily Case Study

    Get PDF
    This case study from Sicily illustrates a common sequence of events where one unwise action was countered with another, which in turn created additional problems. The situation arose through strong political interference and ignorance (or lack of concern) regarding the environmental impacts of human interventions on the shoreline and by the public perception that government has a duty to protect private property. The poor design and location of ports and harbours produced infilling problems and huge updrift accretion with concomitant downdrift erosion. The human-induced coastal retreat was counteracted by the progressive emplacement of breakwaters creating a “domino” effect. On many occasions these were constructed to protect unplanned and illegal (in the sense that they do not conform to planning regulations) beachfront summer houses. Without the presence of these structures, there would have been no need for publicly funded intervention. Furthermore, only a narrow coastal belt close to the shoreline is used by bathers on the wide beaches formed updrift of ports and harbours and in the lee of breakwaters, most of the accreted beach being unused or partially occupied by tourist developments. Thus beach users and municipalities acquired some benefits from beach accretion at specific sites, the opposite being true in eroding areas

    Ireland: Submerged Prehistoric Sites and Landscapes

    Get PDF
    Evidence of Ireland's drowned landscapes and settlements presently comprises 50 sites spread across the entire island. These comprise mainly intertidal find spots or small collections of flint artefacts. A handful of fully subtidal sites are known, generally from nearshore regions and consisting, with one exception, of isolated single finds. Evidence of organic remains is also sparse, with the exception of Mesolithic and Neolithic wooden fish traps buried in estuarine sediments under Dublin. The relatively small number of sites is probably due to lack of research as much as taphonomic issues, and thus the current evidence hints at the potential archaeological record which may be found underwater. Such evidence could contribute to knowledge of the coastal adaptations and seafaring abilities of Ireland's earliest inhabitants. Nonetheless, taphonomic considerations, specifically relating to Ireland's history of glaciation, sea-level change and also modern oceanographic conditions likely limit the preservation of submerged landscapes and their associated archaeology. Realistically, the Irish shelf is likely characterised by pockets of preservation, which makes detection and study of submerged landscapes difficult but not impossible. A range of potential routes of investigation are identifiable, including site-scale archaeological survey, landscape-scale seabed mapping, archival research and community engagement

    Ecological drivers of plant diversity patterns in remnants coastal sand dune ecosystems along the northern Adriatic coastline

    Get PDF
    Coastal sand dunes represent one of the most fragile ecosystems in the Mediterranean basin. These habitats naturally suffer the action of several limiting factors such as sand burial, marine aerosol and low soil fertility; on the other hand, they often host species of high conservation value. Over the last decades, they have also experienced a high level of biological invasion. In this study, we sampled psammophilous vegetation in two sites in the northern Adriatic coast belonging to the Natura 2000 network to describe diversity patterns and to identify the main ecological drivers of species diversity. Plant species richness and their abundance were assessed in each plot. Differences in species composition for native and alien species were compared via PERMANOVA analysis. Species complementarity was explored by partitioning beta diversity in its spatial components (richness and replacement). A Generalized Linear Model was also computed to assess the main environmental factors that may promote invasiveness in these ecosystems. For the investigated area, our results highlight the strong differentiation in community composition both in alien and native species: in particular alien species showed on average a lower complementarity among habitats compared to native species. Specifically, communities seem to be more diversified when larger spatial scales were considered. Beta diversity in both groups appears to be more dominated by the richness component with respect to the replacement component. Furthermore, in these habitats, the occurrence of alien species was shown to be related to geomorphological predictors more than climatic variables
    corecore