151 research outputs found

    Hypothesized role of pregnancy hormones on HER2+breast tumor development

    Get PDF
    Breast cancer incidence rates have declined among older but not younger women; the latter are more likely to be diagnosed with breast cancers carrying a poor prognosis. Epidemiological evidence supports an increase in breast cancer incidence following pregnancy with risk elevated as much as 10 years post-partum. We investigated the association between years since last full-term pregnancy at the time of diagnosis (10 years) and breast tumor subtype in a case series of premenopausal Hispanic women (n = 627). Participants were recruited in the United States, Mexico, and Spain. Cases with known estrogen receptor (ER), progesterone receptor (PR), and HER2 status, with one or more full-term pregnancies >/=1 year prior to diagnosis were eligible for this analysis. Cases were classified into three tumor subtypes according to hormone receptor (HR+ = ER+ and/or PR+; HR- = ER- and PR-) expression and HER2 status: HR+/HER2-, HER2+ (regardless of HR), and triple negative breast cancer. Case-only odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated for HER2+ tumors in reference to HR+/HER2- tumors. Participants were pooled in a mixed-effects logistic regression model with years since pregnancy as a fixed effect and study site as a random effect. When compared to HR+/HER2- cases, women with HER2+ tumors were more likely be diagnosed in the post-partum period of 45 years) did not materially alter our results (OR = 1.78; 95 % CI, 1.08-2.93). These findings support the novel hypothesis that factors associated with the post-partum breast, possibly hormonal, are involved in the development of HER2+ tumors

    Inhibition of PI3K Prevents the Proliferation and Differentiation of Human Lung Fibroblasts into Myofibroblasts: The Role of Class I P110 Isoforms

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-ÎČ (TGF-ÎČ)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-ÎČ signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-ÎČ: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-ÎČ-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110ÎŽ and p110Îł are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and ÎČ. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110Îł and p110α in both TGF-ÎČ-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∌8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Pharmacogenetics of OATP Transporters Reveals That SLCO1B1 c.388A>G Variant Is Determinant of Increased Atorvastatin Response

    Get PDF
    Aims: The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods: One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot¼ and SLCO1B1 (c.388A>G, c.463C>A and c.521T>C) and SLCO2B1 (−71T>C) gene polymorphisms were identified by TaqMan¼ Real-time PCR. Results: Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%:1.3–8.0, p < 0.05). Conclusion: SLCO1B1 c.388A>G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy

    Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Get PDF
    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10-7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10-7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10-

    A European spectrum of pharmacogenomic biomarkers: Implications for clinical pharmacogenomics

    Get PDF
    Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant interpopulation pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective

    Mosaic maternal ancestry in the Great Lakes region of East Africa

    Get PDF
    The Great Lakes lie within a region of East Africa with very high human genetic diversity, home of many ethno-linguistic groups usually assumed to be the product of a small number of major dispersals. However, our knowledge of these dispersals relies primarily on the inferences of historical, linguistics and oral traditions, with attempts to match up the archaeological evidence where possible. This is an obvious area to which archaeogenetics can contribute, yet Uganda, at the heart of these developments, has not been studied for mitochondrial DNA (mtDNA) variation. Here, we compare mtDNA lineages at this putative genetic crossroads across 409 representatives of the major language groups: Bantu speakers and Eastern and Western Nilotic speakers. We show that Uganda harbours one of the highest mtDNA diversities within and between linguistic groups, with the various groups significantly differentiated from each other. Despite an inferred linguistic origin in South Sudan, the data from the two Nilotic-speaking groups point to a much more complex history, involving not only possible dispersals from Sudan and the Horn but also large-scale assimilation of autochthonous lineages within East Africa and even Uganda itself. The Eastern Nilotic group also carries signals characteristic of West-Central Africa, primarily due to Bantu influence, whereas a much stronger signal in the Western Nilotic group suggests direct West-Central African ancestry. Bantu speakers share lineages with both Nilotic groups, and also harbour East African lineages not found in Western Nilotic speakers, likely due to assimilating indigenous populations since arriving in the region ~3000 years ago
    • 

    corecore