748 research outputs found

    Frontiers in Pigment Cell and Melanoma Research

    Full text link
    We identify emerging frontiers in clinical and basic research of melanocyte biology and its associated biomedical disciplines. We describe challenges and opportunities in clinical and basic research of normal and diseased melanocytes that impact current approaches to research in melanoma and the dermatological sciences. We focus on four themes: (1) clinical melanoma research, (2) basic melanoma research, (3) clinical dermatology, and (4) basic pigment cell research, with the goal of outlining current highlights, challenges, and frontiers associated with pigmentation and melanocyte biology. Significantly, this document encapsulates important advances in melanocyte and melanoma research including emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, epidemiology, pigment biophysics and chemistry, and evolution

    Difficulty in diagnosing the pathological nature of an acute fracture of the clavicle: a case report

    Get PDF
    Fractures of the clavicle comprise between 5% to10% of all fractures. Medial clavicular fractures are uncommon and are normally caused by high-energy trauma. A low impact mechanism of injury should raise suspicion of a pathological fracture, but this case report highlights the difficulty in diagnosing the pathological nature of an acute fracture of the clavicle. We describe a patient who presented with a medial clavicular fracture after a simple fall but the fracture was diagnosed as pathological in retrospect four months after the initial presentation. We would also like to emphasise that the medial clavicle is the most frequent site of pathological fractures of the clavicle, and the possibility of an underlying pathological condition should be considered whenever a patient with a medial clavicular fracture is encountered

    A prospective cohort study assessing clinical referral management & workforce allocation within a UK regional medical genetics service

    Get PDF
    Abstract Ensuring patient access to genomic information in the face of increasing demand requires clinicians to develop innovative ways of working. This paper presents the first empirical prospective observational cohort study of UK multi-disciplinary genetic service delivery. It describes and explores collaborative working practices including the utilisation and role of clinical geneticists and non-medical genetic counsellors. Six hundred and fifty new patients referred to a regional genetics service were tracked through 850 clinical contacts until discharge. Referral decisions regarding allocation of lead health professional assigned to the case were monitored, including the use of initial clinical contact guidelines. Significant differences were found in the cases led by genetic counsellors and those led by clinical geneticists. Around a sixth, 16.8% (109/650) of referrals were dealt with by a letter back to the referrer or re-directed to another service provider and 14.8% (80/541) of the remaining patients chose not to schedule an appointment. Of the remaining 461 patients, genetic counsellors were allocated as lead health professional for 46.2% (213/461). A further 61 patients did not attend. Of those who did, 86% (345/400) were discharged after one or two appointments. Genetic counsellors contributed to 95% (784/825) of total patient contacts. They provided 93.7% (395/432) of initial contacts and 26.8% (106/395) of patients were discharged at that point. The information from this study informed a planned service re-design. More research is needed to assess the effectiveness and efficiency of different models of collaborative multi-disciplinary working within genetics services. Keywords (MeSH terms) Genetic Services, Genetic Counseling, Interdisciplinary Communication, Cohort Studies, Delivery of Healthcare, Referral and Consultation

    Crimmigration and Refugees: Bridging Visas, Criminal Cancellations and ‘Living in the Community’ as Punishment and Deterrence

    Full text link
    Australia’s status as the only state with a policy of mandatory indefinite detention of all unlawful non-citizens, including asylum seekers, who are within Australian territory is a fact that is both well-known and frequently cited. From its inception, mandatory immigration detention was touted as ‘the method of deterrence for those seeking asylum onshore’ and since then ‘mandatory detention has been at the forefront of a deterrence as control and control as deterrence discourse’2. The imagined subjects of deterrence are frequently asylum seekers presented as ‘bogus’ or as economic migrants, and the sites for control are Australia’s ‘immigration program’ and borders. While these dual factors have animated the implementation and continuation of the policy for over 25 years, the contemporary practice and enforcement of detention in Australia presents a much more complex picture

    HCV+ Hepatocytes Induce Human Regulatory CD4+ T Cells through the Production of TGF-β

    Get PDF
    Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4 + regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown. Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4 + T cells. The production of IFN-c was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4 + T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV + hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function. Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses

    Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.

    Get PDF
    Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands

    A Survey of Genomic Studies Supports Association of Circadian Clock Genes with Bipolar Disorder Spectrum Illnesses and Lithium Response

    Get PDF
    Circadian rhythm abnormalities in bipolar disorder (BD) have led to a search for genetic abnormalities in circadian “clock genes” associated with BD. However, no significant clock gene findings have emerged from genome-wide association studies (GWAS). At least three factors could account for this discrepancy: complex traits are polygenic, the organization of the clock is more complex than previously recognized, and/or genetic risk for BD may be shared across multiple illnesses. To investigate these issues, we considered the clock gene network at three levels: essential “core” clock genes, upstream circadian clock modulators, and downstream clock controlled genes. Using relaxed thresholds for GWAS statistical significance, we determined the rates of clock vs. control genetic associations with BD, and four additional illnesses that share clinical features and/or genetic risk with BD (major depression, schizophrenia, attention deficit/hyperactivity). Then we compared the results to a set of lithium-responsive genes. Associations with BD-spectrum illnesses and lithium-responsiveness were both enriched among core clock genes but not among upstream clock modulators. Associations with BD-spectrum illnesses and lithium-responsiveness were also enriched among pervasively rhythmic clock-controlled genes but not among genes that were less pervasively rhythmic or non-rhythmic. Our analysis reveals previously unrecognized associations between clock genes and BD-spectrum illnesses, partly reconciling previously discordant results from past GWAS and candidate gene studies
    corecore