26 research outputs found

    Provenance of Ordovician and Devonian sandstones from southern Peru and northern Bolivia - U-Pb and Lu-Hf isotope evidence of detrital zircons and its implications for the geodynamic evolution of the Western Gondwana margin (14° - 17° S)

    Get PDF
    In an attempt to trace the provenance of sedimentary detritus and to gain information on the crustal evolution of the Early Paleozoic western Gondwana margin (14°-17°S) we applied a combined in situ U-Pb and Lu-Hf LA-ICP-MS isotope analysis on detrital zircon from 12 Ordovician and Devonian sandstones in southern Peru and northern Bolivia. The sandstones are exposed in the Eastern Cordillera, the Altiplano and the Coastal Cordillera. The sedimentary basins are part of the Peru-Bolivia trough. Few intrusive and extrusive Early Paleozoic rocks indicate that the Ordovician basins developed in a back-arc position, with the arc on the Arequipa Massif in the west and the Amazonian craton in the east. This plate-tectonic setting appears to have changed into a passive margin in the Early Devonian. The U-Pb zircon age distribution of the Ordovician sandstones from the Eastern Cordillera has the most distinctive peak between 0.7 and 0.5 Ga (Brazilian interval). Contrastingly, the most prominent U-Pb zircon age peak of the Ordovician sandstones from the Altiplano is at 1.2-0.9 Ga (Grenvillian interval) with a smaller peak at 1.85-1.7 Ga. The Devonian sandstones from the same locality on the Altiplano contain zircons with a major age peak at 0.5-0.4 Ga (Famatinian interval). Smaller U-Pb age peaks can be connected to the Brazilian, Grenvillian and Transamazonian (2.2-1.8 Ga) intervals. Zircons of the Devonian sandstones from the Coastal Cordillera have a similar age distribution but the Grenvillian ages, in one case also the Transamazonian ages are significantly more pronounced than the Brazilian ages. Zircons formed during the Brazilian interval could have been derived from various eastern sources on the Amazonian craton, those with Grenvillian ages were derived either from the Sunsas belt to the east or from the Arequipa Massif to the west of the sedimentary basin. Zircons related to the Famatinan event most probably originated in the Arequipa Massif, the closest place where respective magmatic arc rocks were available. Thus, the Ordovician sandstones of the Eastern Cordillera and the Altiplano had an eastern source, while the Altiplano locality was fed from a very limited source area, probably the Sunsas belt. The Devonian siliciclastic strata instead were mainly influenced by the Arequipa Massif. Minor influences of eastern sources are documented by the presence of Brazilian zircon ages. The in situ Lu-Hf isotope signature provides information about crustal recycling. Together with the U-Pb zircon ages, crustal evolution paths can be reconstructed. εHf(t) values of the analysed zircons spread between –20 and +12. Zircons with a very juvenile signatures (less than 5 εHf-units below the respective depleted mantle composition) we detected only in the interval between 1.5 and 0.9 Ga. Hence, of the Brazilian and Famatinian events we only find zircons derived from an evolved crust. A striking feature is the common Hf model ages (c.1.5-1.2 Ga) of zircons formed during the Grenvillian, Brazilian and Famatinian orogenies. This indicates that Famatinian-aged crystalline rocks of the Arequipa Massif and the Brazilianaged crystalline rocks of the Amazonian craton have a similar crustal origin

    Análisis multicriterio para la ubicación de los posibles proyectos de inyección geológica de CO2 en el Perú

    Get PDF
    El cambio climático es, en la actualidad, un problema que afecta severamente al planeta. Una de las principales causas de este fenómeno es la intensificación del efecto invernadero, debido principalmente al aumento de emisiones de gases, como el dióxido de carbono (CO2), hacia la atmósfera. En este contexto, se buscan medidas de mitigación ambiental, que puedan reducir la vulnerabilidad ante esta, cada vez más latente, amenaza. Así, uno de los nuevos enfoques en los que se viene trabajando a nivel mundial es la captura de CO2 desde su fuente emisora, su transporte y su respectivo almacenamiento geológico (CCS). En el presente trabajo, el objetivo comprende la revisión y análisis de información contemporánea que existe sobre los métodos y herramientas de análisis multicriterio que, combinados con una serie de parámetros de diversa índole, servirán para el establecimiento de sitios potenciales donde podría establecerse proyectos de captura, transporte y almacenamiento de CO2 en el Perú. Es por ello que, en la presente investigación se desarrollaron dos talleres participativos con un amplio grupo de académicos y profesionales, en diversas áreas afines a las dimensiones tomadas en consideración para el proyecto. Dichos talleres determinaron la relevancia o importancia de cada criterio seleccionado, enmarcado al contexto peruano. Posteriormente, se desarrolló la evaluación del potencial de las zonas, a nivel nacional, donde se podría realizar la inyección geológica de CO2, como una medida de mitigación ambiental. Esta evaluación contó con veintitrés diferentes criterios, extraídos de la literatura técnica y aportados en el taller participativo, pertenecientes a diferentes dimensiones: geológica, social, ambiental, económica y técnica. Tomando en consideración la generalidad de las locaciones dónde podrían establecerse proyectos de inyección geológica de CO2 y diferentes criterios de eliminación, se establecieron trece lotes de hidrocarburos como potenciales zonas de inyección. Mediante la técnica de orden de preferencia por similitud a la solución ideal (TOPSIS) se estableció un ranking, en función de las condiciones más óptimas y menos desfavorables, de dichos sitios potenciales. Finalmente, a partir de dicha clasificación, se elaboró un mapa del Perú con los sitios expuestos, arreglados en orden de preferencia.Tesi

    Análisis de la susceptibilidad a los movimientos de ladera en la cuenca del río Llaminchán (Cajamarca, Perú)

    Get PDF
    Se presenta el análisis mediante Sistemas de Información Geográfica del cartografiado e inventario de movimientos de ladera, topografía, litología e hidrogeología efectuado en la cuenca Llaminchán (Cajamarca, Perú), el cual ha permitido obtener el mapa de susceptibilidad por movimientos de ladera donde se observa que las zonas con mayor susceptibilidad se encuentran al noreste de la ciudad de San Pablo, el flanco sur del cerro Callancas, el sector norte del poblado Santa Ana, la parte alta del sector Pueblo Libre-El Naranjo y la zona comprendida entre Chilete y la mina Paredones. La información, se presentadó a las autoridades y a la población de la región de Cajamarca (Perú) para su aplicación en la planificación territorial y en los planes de prevención frente a los desastres naturales

    Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction

    Get PDF
    The central Altiplano is inferred to have experienced ∼2.5±1km surface uplift between ∼10 and 6 Ma, while the southern Altiplano experienced a similar magnitude of surface uplift that began earlier, between ∼16 and 9 Ma. To properly constrain the along strike timing of the Altiplano plateau surface uplift, it is necessary to know how and when the northernmost part of the Altiplano plateau evolved. We reconstruct the paleoclimate and infer the corresponding paleoelevation from the Miocene–Pliocene deposits of the Descanso–Yauri basin (14–15°S) in the northernmost part of the Altiplano plateau using 4 different proxies, including carbonate clumped isotope composition (i.e., Δ_(47) values), carbonate δ^(18)O_c, leaf wax δD_(wax) and pollen assemblages from paleosol, lacustrine and palustrine carbonates and organic-rich sediments. The isotopic signatures reflect past climate conditions of mean annual air temperature (Δ_(47)) and meteoric water isotope values (δ^(18)O_c, δD_(wax)). Our results show that the northernmost plateau remained at low elevation (0.9±0.8 to 2.1±0.9km) until late Miocene time (∼9 Ma) characterized by ∼15 °C warmer than modern temperature (mean annual air temperature of 23±4°C, 2σ), low elevation vegetation and precipitation signature with reconstructed □ δ^(18)O_(mw) (VSMOW) of −8.3±2.0‰(2σ) from carbonate (δ^(18)O_c) and −8.6±1.8‰(2σ) from leaf wax (δD_(wax)). Modern elevations of 4 km were not reached until 5.4±1.0Ma, as indicated by a negative shift in δD_(wax) (VSMOW) from −143.4±12.8‰(2σ) to −209.2±21.1‰(2σ) between 9.1±0.7 and 5.4±1.0Ma. The timing of surface uplift of the northernmost Altiplano is consistent with the evidence for late Miocene surface uplift of the central Altiplano (16–19°S) between 10 and 6 Ma, and indicates that regional scale uplift in the northern–central plateau significantly postdates the onset of surface uplift in the southern Altiplano (19–22°S) between ∼16 and 9 Ma. These results are consistent with piecemeal removal of the lower dense lithosphere, combined with possible lower/middle crustal flow from south to north in the plateau acting as the main mechanisms for the formation of the Altiplano plateau

    An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin)

    Get PDF
    Late Floian conodonts are recorded from a thin limestone lens intercalated in the lower part of the San José Formation at the Carcel Puncco section (Inambari River), Eastern Cordillera of Peru. The conodont association includes Gothodus costulatus LINDSTRÖM, Protopanderodus rectus (LINDSTRÖM), Drepanoistodus basiovalis (SERGEEVA), Drepanoistodus forceps (LINDSTRÖM), Drepanodus arcuatus PANDER, Trapezognathus diprion (LINDSTRÖM), Erraticodon patu COOPER, and Ansella cf. jemtlandica (LÖFGREN). This species association can be assigned to the upper part of the well-documented Oepikodus evae Zone. It is the northernmost conodont record of late Floian age in South America. This study updates the preliminary data presented in 2001 from this fossil locality, and it has important consequences for the paleogeographic reconstruction of the Peruvian part of the Central Andean Basin. In accordance with trilobites and brachiopods documented for the same strata, the conodont association represents a relatively cold-shallow-water platform environment. The record of late Floian conodonts towards the middle part of the San José Formation shows that the base of this unit in the studied section is considerably older than other sections of the distribution area, where its lowermost part is dated as early Darriwilian by the record of graptolites from the Undulograptus austrodentatus graptolite Zone. The diachronous initiation of the marine sedimentation makes the lower part of the Carcel Puncco shales penecontemporaneous with the volcanigenic rocks related with the Arequipa Massif, which transitionally underlie the San José Formation in other places of the Altiplano and the Eastern Cordillera of Peru

    Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction

    Get PDF
    The central Altiplano is inferred to have experienced ∼2.5±1km surface uplift between ∼10 and 6 Ma, while the southern Altiplano experienced a similar magnitude of surface uplift that began earlier, between ∼16 and 9 Ma. To properly constrain the along strike timing of the Altiplano plateau surface uplift, it is necessary to know how and when the northernmost part of the Altiplano plateau evolved. We reconstruct the paleoclimate and infer the corresponding paleoelevation from the Miocene–Pliocene deposits of the Descanso–Yauri basin (14–15°S) in the northernmost part of the Altiplano plateau using 4 different proxies, including carbonate clumped isotope composition (i.e., Δ_(47) values), carbonate δ^(18)O_c, leaf wax δD_(wax) and pollen assemblages from paleosol, lacustrine and palustrine carbonates and organic-rich sediments. The isotopic signatures reflect past climate conditions of mean annual air temperature (Δ_(47)) and meteoric water isotope values (δ^(18)O_c, δD_(wax)). Our results show that the northernmost plateau remained at low elevation (0.9±0.8 to 2.1±0.9km) until late Miocene time (∼9 Ma) characterized by ∼15 °C warmer than modern temperature (mean annual air temperature of 23±4°C, 2σ), low elevation vegetation and precipitation signature with reconstructed □ δ^(18)O_(mw) (VSMOW) of −8.3±2.0‰(2σ) from carbonate (δ^(18)O_c) and −8.6±1.8‰(2σ) from leaf wax (δD_(wax)). Modern elevations of 4 km were not reached until 5.4±1.0Ma, as indicated by a negative shift in δD_(wax) (VSMOW) from −143.4±12.8‰(2σ) to −209.2±21.1‰(2σ) between 9.1±0.7 and 5.4±1.0Ma. The timing of surface uplift of the northernmost Altiplano is consistent with the evidence for late Miocene surface uplift of the central Altiplano (16–19°S) between 10 and 6 Ma, and indicates that regional scale uplift in the northern–central plateau significantly postdates the onset of surface uplift in the southern Altiplano (19–22°S) between ∼16 and 9 Ma. These results are consistent with piecemeal removal of the lower dense lithosphere, combined with possible lower/middle crustal flow from south to north in the plateau acting as the main mechanisms for the formation of the Altiplano plateau

    Tectonic rotations and transcurrent deformation south of the Abancay deflection in the Andes of southern Peru

    Get PDF
    International audienceWe report new paleomagnetic results from 55 out of 76 sites sampled at different localities along a transect from Nazca to Cuzco where the general structures of the Peruvian Andes are strongly offset across the Abancay deflection. Nine new 39Ar/40Ar ages better constrain the timing of volcanism along the western edge of the Western Cordillera at the latitude of Nazca. A mean paleomagnetic result from 22 sites in the lower Miocene volcanics does not show significant rotation (R = −2.3° ± 7.7°) of the western margin of the Central Andean Plateau since the early Miocene. Within the Western Cordillera we sampled three structural blocks bounded to the north by the Abancay fault system. In the westernmost block, a large counterclockwise rotation (R = −65.0° ± 11.1°) is found in Mesozoic limestones and Paleocene-Eocene red beds. Magnitude of rotation decreases toward the east from (R = −35.6° ± 12.8°) in the central block to (R = −4.5° ± 8.4°) south of the town of Cuzco. The anisotropy of magnetic susceptibility (AMS) recorded by the red beds sediments is the consequence of compaction and tectonic strain during the early stages of deformation. We show that the magnetic lineations were also rotated counterclockwise as the remanent magnetizations. The present study confirms results from the Peruvian fore arc, showing that rotations are not older than circa 40 Ma and likely not younger than circa 20 Ma. The spatial variation in the amount of counterclockwise rotation suggests a large component of shear along the Abancay deflection concomitant with a broad late Eocene-Oligocene oroclinal deformation in southern Peru

    The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects

    Get PDF
    We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future

    Evolution andine et raccourcissement au niveau de Cusco (13°-16°S) , Pérou : Enregistrement sédimentaire, chronologie, contrôles paléogéographiques, évolution cinématique

    No full text
    A synthesis of the geologic research undertaken in the Andes of Cusco area is presented. The area lie between the NE boundary of the Western Cordillera and the SW one of the Eastern Cordillera forming the NW extremity of the Altiplano. The interpretative model which results of this study is of major importanc for the understanding of the geodynamic evolution of the Andes during Mesozoic and Cenozoic. Structural, sedimentological and petrologic data are discussed. The geodynamic evolution is controlled during paleozoic and meso--cenozoic times by a paleogeographic limit between two different kind of substratum which are in contact along a boundary corresponding to the Abancay defiexion and the Cusco-Puno threshold.The Permo-Trias represents the transition between an Hercynian regime and the Andean one. The major features of the Permo-Triassic basin are inherited structures which furtherly controlled all the Andean evolution. The area of Cusco is characterized by more than 10.000 m of Tertiary continental Red Beds which overlie marine and continental sequences of Cretaceous-PaIeocene age. These Red Beds were deposited in synorogenic basin during the Andean deformation in compressive setting. Strike-slip motions occur between 50 and 44?My along the Cusco-Puno threshold and near the NE boundary of the South-Peruvian Mesozoic basin, and result with the transtensive opening of the RedBeds basins and the deposition of the San Jeronimo Group in the Cusco, Sicuani,Ayaviri and Puno areas and possibly as far as Northern Bolivia, and representing the first settlement of the wide Altiplanic basin. A major change in stress regime occur at about 43-40 My leading to the compressive closure of the Red Beds basin and the beginning of the conglomeratic Anta sedimentation (Inca 1 tectonic event). The boundary between the Red Beds basin and the Western Cordillera, becomes a left lateral strike slip limit as shown by the evolution of the Oligo-Miocene basins. These left lateral displacement are in good agreement with the explicative model for the Bolivian Orocline. During that time (Qechua tectonic episodes) the Neogene basins were elosed in compressive tectonic regime. Geochronologic data suggest that the magmatic activity was more or less continuous since Eocene (48 My) times. However the spatial distribution of the magmatism was subject to strong variations. The quantification of the deformation shows that the amount of shortening obtained using surface geologic data cannot explain the crustal thickness observeed using geophysical data. A model involving the emplacement of continental material by underthrusting and tectonic erosion of continental crustal slivers in the subduction zone by is proposed in order to explain the volume excess. The plate kinematic seems to exercise an influence on the Andean geodynamic evolution, particularly through the event calendar, but the major control of the deformational patterns are the main paleogeographic boundaries.Ce mémoire constitue la synthèse des travaux de recherche effectués dans les Andes de la région de Cusco (Pérou). Cette région s'étend entre la bordure NE de la Cordillère Occidentale et la bordure SW de la Cordillère Orientale et constitue la terminaison NW de l'Altiplano. Les modèles interprétatifs issus de ces études sont importants pour la compréhension de l'évolution géodynamique des Andes au Méso-Cénozoïque. Ainsi une large part est faite aux résultats de la confrontation des méthodes structurales, sédimentologiques et magmatiques. On montre que l'évolution paléozoïque et méso-cénozoïque de la zone étudiée serait en partie contrôlée par une limite paléogéographique avec deux types différents de substratum. Cette limite se situe au niveau de la déflexion d' Abancay et du seuil Cusco-Puno. Le Permo-Trias doit être considéré comme une période transitoire entre le cycle hercynien et le cycle andin. Les principaux traits du bassin Permo-Trias sont des structures héritées (y compris la déflexion d'Abancay), qui ont aussi contrôlé toute l'évolution andine. La région de Cusco est caractérisée par plus de 10.000m de couches rouges tertiaires d'origine continentale qui surmontent des sédiments marins et continentaux d'âge Crétacé à Paléocène. Ces Couches Rouges tertiaires se sont déposées dans des bassins synorogéniques liés aux déformations compressives andines. Des mouvements décrochants dextres apparaissent vers 50-44 Ma le long du seuil Cusco-Puno et en bordure NE du bassin mésozoïque sud-péruvien, conduisant à l'ouverture en transtension des bassins de Couches Rouges du Groupe San Jeronimo de Cusco, Sicuani, Ayaviri, Puno et vraisemblablement du Nord de la Bolivie. A cette époque le grand bassin altiplanique aurait commencé à se structurer. Un important changement du régime de contraintes vers 43-40 Ma provoque la fermeture en compression des bassins de Couches Rouges et le début de la sédimentation des conglomérats de la Formation Anta (événement compressif Inca1). Ce changement induit postérieurement une évolution du comportement de la limite Cordillère Occidentale-Bassin Couches Rouges, qui devient le siège de mouvements décrochants senestres, comme le montrent l'évolution des bassins Oligocènes-Miocènes. Ces mouvements senestres sont compatibles avec des modèles qui tentent d'expliquer la formation de l'Orocline bolivien. Les contraintes compressives (crises Quechua) sont des marqueurs de la fermeture des bassins néogènes. Les données géochronologiques semblent indiquer que l' activité magmatique dans la zone étudiée a été plus ou moins continue depuis l'Eocène (48 Ma) et que la répartition du magmatisme montre, par contre, une nette évolution dans l'espace. Les calculs de la déformation indiquent que les valeurs de raccourcissement obtenues à partir des données géologiques de surface, ne suffisent pas à produire l'épaississement crustal mis en évidence par la géophysique. Pour expliquer cet excès de volume on propose un sous-charriage de matériel continental provenant de la subduction ou l'apport de copeaux litbosphériques résultant de l'érosion tectonique. Cependant, si le doublement de la croute est entièrement dû au raccourcissement,la déformation en surface ne serait bien exprimée qu' en quelques endroits. La cinématique de plaques semble bien avoir un rôle sur la tectonique andine, ses crises et périodes ou événements, et la déformation est contrôlée par les grands accidents paléogéographiques
    corecore