477 research outputs found

    A Community-Structure-Based Method for Estimating the Fractal Dimension, and its Application to Water Networks for the Assessment of Vulnerability to Disasters

    Get PDF
    AbstractMost real-world networks, from the World-Wide-Web to biological systems, are known to have common structural properties. A remarkable point is fractality, which suggests the self-similarity across scales of the network structure of these complex systems. Managing the computational complexity for detecting the self-similarity of big-sized systems represents a crucial problem. In this paper, a novel algorithm for revealing the fractality, that exploits the community structure principle, is proposed and then applied to several water distribution systems (WDSs) of different size, unveiling a self-similar feature of their layouts. A scaling-law relationship, linking the number of clusters necessary for covering the network and their average size is defined, the exponent of which represents the fractal dimension. The self-similarity is then investigated as a proxy of recurrent and specific response to multiple random pipe failures – like during natural disasters – pointing out a specific global vulnerability for each WDS. A novel vulnerability index, called Cut-Vulnerability is introduced as the ratio between the fractal dimension and the average node degree, and its relationships with the number of randomly removed pipes necessary to disconnect the network and with some topological metrics are investigated. The analysis shows the effectiveness of the novel index in describing the global vulnerability of WDSs

    Optimal Sensor Placement in a Partitioned Water Distribution Network for the Water Protection from Contamination

    Get PDF
    Water network protection from accidental and intentional contamination is one of the most critical issues for preserving the citizen health. Recently, some techniques have been proposed in the literature to define the optimal sensor placement. On the other hand, through the definition of permanent DMAs (District Meter Areas), water network partitioning allows significant reduction in the number of exposed users through the full isolation of DMA. In this paper, the optimal sensor placement is coupled with water network partitioning in order to define the best location of isolation valves and control stations, to be closed and installed respectively. The proposed procedure is based on different procedures, and it was tested on a real water network, showing that it is possible both to mitigate the impact of a water contamination and simplify the sensor placement through the water network partitioning

    Applications of Graph Spectral Techniques to Water Distribution Network Management

    Get PDF
    Cities depend on multiple heterogeneous, interconnected infrastructures to provide safe water to consumers. Given this complexity, efficient numerical techniques are needed to support optimal control and management of a water distribution network (WDN). This paper introduces a holistic analysis framework to support water utilities on the decision making process for an efficient supply management. The proposal is based on graph spectral techniques that take advantage of eigenvalues and eigenvectors properties of matrices that are associated with graphs. Instances of these matrices are the adjacency matrix and the Laplacian, among others. The interest for this application is to work on a graph that specifically represents a WDN. This is a complex network that is made by nodes corresponding to water sources and consumption points and links corresponding to pipes and valves. The aim is to face new challenges on urban water supply, ranging from computing approximations for network performance assessment to setting device positioning for efficient and automatic WDN division into district metered areas. It is consequently created a novel tool-set of graph spectral techniques adapted to improve main water management tasks and to simplify the identification of water losses through the definition of an optimal network partitioning. Two WDNs are used to analyze the proposed methodology. Firstly, the well-known network of C-Town is investigated for benchmarking of the proposed graph spectral framework. This allows for comparing the obtained results with others coming from previously proposed approaches in literature. The second case-study corresponds to an operational network. It shows the usefulness and optimality of the proposal to effectively manage a WDN. <br/

    Water Supply Network Partitioning Based on Simultaneous Cost and Energy Optimization

    Get PDF
    Water Network Partitioning (WNP) improves water network management, simplifying the computation of water budgets and, consequently, allowing the identification and reduction of water loss. It is achieved by inserting flow meters and gate valves in the network, previously clustered in subsystems. The clustering and partitioning phases are carried out with different procedures. The first one requires clustering algorithms that assign network nodes to each district (or cluster). The second one chooses the boundary pipes where flow meters or gate valves are to be inserted. In this paper, SWANP software is employed to achieve a network clustering through two different algorithms based on a multilevel-recursive bisection and community-structure procedures. After that, a novel multi-objective function is introduced and applied to a large Mexican network integrating both cost and energy performance, thus providing a smart Decision Support System (DSS) based on qualitative and quantitative measures, and diagrams for evaluating the optimal layout in terms of the number of districts, cost, and hydraulic performance

    Management of a Complex Case during COVID-19 Time Using One-day Digital Dentistry: A Case Report

    Get PDF
    Aim and objective: The aim of the present case report is to describe the digital management of an implant prosthetic rehabilitation performed by the use of different digital technologies, which allowed to successfully perform in 1 day both the surgical and the prosthetical stages with a minimally invasive approach and a high standard of care. Background: Coronavirus disease-2019 (COVID-19) pandemic is affecting dental everyday practice. Clinicians have to reduce the number of patients per day and the time they spend in the dental office. Minimally invasive and digital approaches, with less possible exposure and interaction, are suggested to reduce the risk of infection. Case description: The failure of a short-span implant prosthetic rehabilitation combined with pain and mobility of the involved teeth was the main complaint reported by a 78-year-old male patient, who asked an urgent appointment to solve the problem. An intraoral scanner allowed the clinician to immediately take a preliminary digital impression of the arch to be treated. The resulting 3D files were sent by e-mail to the dental technician who provided a digital wax-up for the computerized workflow. Computer-aided implantology (CAI) performed using an in-office cone-beam computed tomography (CBCT) allowed clinician to guide the surgical approach in a prosthetic manner. Such an integration inside a well-defined workflow was the key for a successful and rapid treatment. Conclusion: By using new innovative digital technology, the treatment was completed in 1 day, reducing the risk of COVID-19 by limiting the number of appointments and reducing contacts in confined environments like the dental office and public transportations. It also helped to reduce materials production and people movement in the treatment of dental emergency. Clinical significance: The possibility of performing an effective treatment saving time by using efficient technology and a minimally invasive procedure highlights the importance of digital planning in order to optimize every single step of the treatment. Digital workflow reduces also the movement of potentially infected materials from the office to the dental laboratory

    Enhanced expression of hepatic lipogenic enzymes in an animal model of sedentariness.

    Get PDF
    The hindlimb-suspended rat was used as animal model to investigate the effects induced by immobilization of the skeletal muscle in the expression of the genes encoding hepatic lipogenic enzymes. Following a 14-day period of immobilization, rats were injected intraperitoneally with radioactive acetate, and the labeling of hepatic lipids and cholesterol was evaluated 15 min after the isotope injection. The incorporation of labeled acetate in lipids and cholesterol was almost three times higher in the liver of immobilized rats than in control animals as a consequence of the enhanced transcription of the genes encoding acetyl-CoA synthase, acetyl-CoA carboxylase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoA reductase. The high expression of the key enzymes for fatty acid and cholesterol synthesis induced by immobilization was not paralleled by an increase of the hepatic sterol-regulatory element binding protein (SREBP)-1 and SREBP-2 mRNA content. However, the expression of the mature form of SREBP-1 and SREBP-2 was higher in the nuclear fraction of immobilized rat liver than in controls due to a significant increase of the cleavage of the native proteins. Immobilization also affected the expression of proteins involved in lipid degradation. In fact, the hepatic content of peroxisome proliferator-activated receptor-alpha (PPARalpha) mRNA and of PPARalpha target genes encoding carnitine palmitoyl transferase-1 and acyl-CoA oxidase were significantly increased upon immobilization

    Testing simplified protein models of the hPin1 WW domain

    Get PDF
    The WW domain of the human Pin1 protein for its simple topology and the large amount of experimental data is an ideal candidate to assess theoretical approaches to protein folding. The purpose of the present work is to compare the reliability of the chemically-based Sorenson/Head-Gordon (SHG) model and a standard native centric model in reproducing through molecular dynamics simulations some of the well known features of the folding transition of this small domain. Our results show that the G\={o} model correctly reproduces the cooperative, two-state, folding mechanism of the WW-domain, while the SHG model predicts a transition occurring in two stages: a collapse followed by a structural rearrangement. The lack of a cooperative folding in the SHG simulations appears to be related to the non-funnel shape of the energy landscape featuring a partitioning of the native valley in sub-basins corresponding to different chain chiralities. However the SHG approach remains more reliable in estimating the Φ\Phi-values with respect to G\={o}-like description. This may suggest that the WW-domain folding process is stirred by energetic and topological factors as well, and it highlights the better suitability of chemically-based models in simulating mutations.Comment: RevTex4: 12 pages and 13 eps-figure file

    How the First Year of the COVID-19 Pandemic Impacted Patients’ Hospital Admission and Care in the Vascular Surgery Divisions of the Southern Regions of the Italian Peninsula

    Get PDF
    Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months. Results: 27 out of 29 Centers were enrolled. April-December 2020 (7092 patients) vs. 2019 (9161 patients): post-EVAR surveillance, hospitalization for Rutherford category 3 peripheral arterial disease, and asymptomatic carotid stenosis revascularization significantly decreased (1484 (16.2%) vs. 1014 (14.3%), p = 0.0009; 1401 (15.29%) vs. 959 (13.52%), p = 0.0006; and 1558 (17.01%) vs. 934 (13.17%), p &lt; 0.0001, respectively), while admissions for revascularization or major amputations for chronic limb-threatening ischemia and urgent revascularization for symptomatic carotid stenosis significantly increased (1204 (16.98%) vs. 1245 (13.59%), p &lt; 0.0001; 355 (5.01%) vs. 358 (3.91%), p = 0.0007; and 153 (2.16%) vs. 140 (1.53%), p = 0.0009, respectively). Conclusions: The suspension of elective procedures during the COVID-19 pandemic caused a significant reduction in post-EVAR surveillance, and in the hospitalization of asymptomatic carotid stenosis revascularization and Rutherford 3 peripheral arterial disease. Consequentially, we observed a significant increase in admissions for urgent revascularization for symptomatic carotid stenosis, as well as for revascularization or major amputations for chronic limb-threatening ischemia
    • …
    corecore