34 research outputs found

    The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector <it>Anopheles gambiae</it>.</p> <p>Results</p> <p>We have identified the <it>Anopheles gambiae vasa</it>-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous <it>vasa </it>locus. Two reporter constructs indicate the existence of distinct <it>vasa </it>regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. <it>vasa </it>driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae.</p> <p>Conclusion</p> <p>We have characterized the <it>vasa </it>regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early <it>vasa </it>driven homing endonuclease expression.</p

    Interoperable and scalable data analysis with microservices: applications in metabolomics.

    Get PDF
    Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. Supplementary data are available at Bioinformatics online

    A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Get PDF
    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO2 have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO2–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO2. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity

    Strontium-substituted hydroxyapatite thin films grown by pulsed laser deposition.

    No full text
    Strontium substitution for calcium in the hydroxyapatite structure has lately attracted growing interest due to its beneficial effects on both bone formation and prevention of bone resorption. Coating Ti implants with Sr2+-substituted hydroxyapatite is expected to enhance the bioactivity of the surface and stimulate bone apposition. To this end, we deposited thin films of hydroxyapatite with different substitutions of Sr2+ for Ca2+ on Ti substrates by Pulsed Laser Deposition (PLD). Solid solutions of Sr-Ca hydroxyapatites \uf05bCa10-xSrxHA (x = 0-1)\uf05d were prepared by direct synthesis in aqueous medium at 90\ub0C. Sr2+ insertion led to a decrease of crystallinity degree, which accounted for the simultaneous reduction of the crystal dimensions. For PLD experiments, we used an UV excimer (KrF*) laser source (248 nm, ~7.4 ns) operating at a repetition rate of 2 Hz. The fluence during target irradiation was set at 2.4 J/cm2, and substrate temperature kept at 400\ub0C. The depositions were performed from HA at different degrees of Sr2+ substitution for Ca2+ (x = 0; 0.1; 0.5; 1). All structures were post-treated in a H2O enriched atmosphere for 6 h. The results of structural and morphological characterizations carried out on the obtained structures indicated that the coatings, which adhered well to the substrates, were made of crystalline HA and contained strontium with a (Ca+Sr)/P molar ratio close to the stoichiometric value of HA
    corecore