6 research outputs found

    HI Narrow Line Absorption in Dark Clouds

    Get PDF
    We have used the Arecibo telescope to carry out an survey of 31 dark clouds in the Taurus/Perseus region for narrow absorption features in HI (λ\lambda 21cm) and OH (1667 and 1665 MHz) emission. We detected HI narrow self--absorption (HINSA) in 77% of the clouds that we observed. HINSA and OH emission, observed simultaneously are remarkably well correlated. Spectrally, they have the same nonthermal line width and the same line centroid velocity. Spatially, they both peak at the optically--selected central position of each cloud, and both fall off toward the cloud edges. Sources with clear HINSA feature have also been observed in transitions of CO, \13co, \c18o, and CI. HINSA exhibits better correlation with molecular tracers than with CI. The line width of the absorption feature, together with analyses of the relevant radiative transfer provide upper limits to the kinetic temperature of the gas producing the HINSA. Some sources must have a temperature close to or lower than 10 K. The correlation of column densities and line widths of HINSA with those characteristics of molecular tracers suggest that a significant fraction of the atomic hydrogen is located in the cold, well--shielded portions of molecular clouds, and is mixed with the molecular gas. The average number density ratio [HI]/[\h2] is 1.5×10−31.5\times10^{-3}. The inferred HI density appears consistent with but is slightly higher than the value expected in steady state equilibrium between formation of HI via cosmic ray destruction of H2_2 and destruction via formation of H2_2 on grain surfaces. The distribution and abundance of atomic hydrogen in molecular clouds is a critical test of dark cloud chemistry and structure, including the issues of grain surface reaction rates, PDRs, circulation, and turbulent diffusion.Comment: 40 pages, 10 figures, accepted by Ap

    Physical Conditions in the Foreground Gas of Reflection Nebulae: NGC 2023, vdB 102, and NGC 7023

    Get PDF
    High resolution optical spectra of HD 37903 and HD 147009, which illuminate the reflection nebulae, NGC 2023 and vdB 102, were obtained for comparison with our results for HD 200775 and NGC 7023. Ground-based measurements of the molecules, CH, C2_2, and CN, and the atoms, Na I and K I, were analyzed to extract physical conditions in the foreground cloud. Estimates of the gas density, gas temperature and flux of ultraviolet radiation were derived and were compared with the results from infrared and radio studies of the main molecular cloud. The conditions are similar to those found in studies of diffuse clouds. The foreground material is less dense than the gas in the molecular cloud behind the star(s). The gas temperature was set at 40 K, the temperature determined for the foreground gas in NGC 7023. The flux of ultraviolet radiation was found to be less intense than in the molecular material behind the star(s). The column densities of Na I and K I were reproduced reasonably well when the extinction curve for the specific line of sight was adopted. We obtained NEWSIPS data from the IUE archive for HD 37903 and HD 200775. The ultraviolet data on C I and CO allow extraction of the physical conditions by alternate methods. General agreement among the various diagnostics was found, leading to self-consistent pictures of the foreground photodissociation regions. An Appendix describes checks on the usefulness of IUE NEWSIPS data for interstellar studies. (Abridged)Comment: 65 pages, 18 tables, 14 figures, Accepted for publication in ApJ

    Wide-field Infrared Polarimetry of the ρ Ophiuchi Cloud Core

    No full text
    We conducted wide and deep simultaneous JHKs-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHKs band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHKs bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H − Ks color up to H − Ks ≈ 3.5. The magnetic field structures in the core region are revealed up to at least AV ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius–Centaurus associationPeer reviewe

    C. Literaturwissenschaft.

    No full text
    corecore