114 research outputs found

    Statistical mechanics of base stacking and pairing in DNA melting

    Full text link
    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.Comment: 13 pages with figure

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    Fonofos Exposure and Cancer Incidence in the Agricultural Health Study

    Get PDF
    BACKGROUND: The Agricultural Health Study (AHS) is a prospective cohort study of licensed pesticide applicators from Iowa and North Carolina enrolled 1993–1997 and followed for incident cancer through 2002. A previous investigation in this cohort linked exposure to the organophosphate fonofos with incident prostate cancer in subjects with family history of prostate cancer. OBJECTIVES: This finding along with findings of associations between organophosphate pesticides and cancer more broadly led to this study of fonofos and risk of any cancers among 45,372 pesticide applicators enrolled in the AHS. METHODS: Pesticide exposure and other data were collected using self-administered questionnaires. Poisson regression was used to calculate rate ratios (RRs) and 95% confidence intervals (CIs) while controlling for potential confounders. RESULTS: Relative to the unexposed, leukemia risk was elevated in the highest category of lifetime (RR = 2.24; 95% CI, 0.94–5.34, p(trend) = 0.07) and intensity-weighted exposure-days (RR = 2.67; 95% CI, 1.06–6.70, p(trend) = 0.04), a measure that takes into account factors that modify pesticide exposure. Although prostate cancer risk was unrelated to fonofos use overall, among applicators with a family history of prostate cancer, we observed a significant dose–response trend for lifetime exposure-days (p(trend) = 0.02, RR highest tertile vs. unexposed = 1.77, 95% CI, 1.03–3.05; RR(interaction) = 1.28, 95% CI, 1.07–1.54). Intensity-weighted results were similar. No associations were observed with other examined cancer sites. CONCLUSIONS: Further study is warranted to confirm findings with respect to leukemia and determine whether genetic susceptibility modifies prostate cancer risk from pesticide exposure

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    UV Melting of G‐Quadruplexes

    No full text
    • 

    corecore