181 research outputs found

    Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2

    Full text link
    The discovery of a new family of high Tc materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent, for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked, however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behavior under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2

    Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    Get PDF
    The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota

    The prognostic relevance of interactions between venous invasion, lymph node involvement and distant metastases in renal cell carcinoma after radical nephrectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate a possible prognostic significance of interactions between lymph node invasion (LNI), synchronous distant metastases (SDM), and venous invasion (VI) adjusted for mode of detection, Eastern Cooperative Oncology Group performance status (ECOG PS), erythrocyte sedimentation rate (ESR) and tumour size (TS) in 196 patients with renal cell carcinoma treated with radical nephrectomy.</p> <p>Methods</p> <p>Median follow-up was 5.5 years (mean 6.9 years; range 0.01–19.4). The mode of detection, ECOG PS, ESR and TS were obtained from the patients' records. Vena cava invasion and distant metastases were detected by preoperative imaging. The surgical specimens were examined for pathological stage, LNI and VI.</p> <p>Results</p> <p>The univariate analyses showed significant impact of VI, LNI, SDM, ESR and TS (p < 0.001), as well as mode of detection (p = 0.003) and ECOG PS (p = 0.002) on cancer specific survival. In multivariate analyses LNI was significantly associated with survival only in patients without SDM or VI (p < 0.001) with a hazard ratio of 9.0. LNI lost its prognostic significance when SDM or VI was present.</p> <p>Conclusion</p> <p>Our findings underline the prognostic importance of the status of the lymph nodes. LNI, SDM, ESR, and VI were independently associated with cancer specific survival after radical nephrectomy. LNI provided the strongest prognostic information for patients without SDM or VI whereas SDM and VI had strongest impact on survival when there was no nodal involvement.</p

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    The effects of phenoxodiol on the cell cycle of prostate cancer cell lines

    Get PDF
    Background: Prostate cancer is associated with a poor survival rate. The ability of cancer cells to evade apoptosis and exhibit limitless replication potential allows for progression of cancer from a benign to a metastatic phenotype. The aim of this study was to investigate in vitro the effect of the isoflavone phenoxodiol on the expression of cell cycle genes. Methods: Three prostate cancer cell lines-LNCaP, DU145, and PC3 were cultured in vitro, and then treated with phenoxodiol (10 μM and 30 μM) for 24 and 48 h. The expression of cell cycle genes p21WAF1, c-Myc, Cyclin-D1, and Ki-67 was investigated by Real Time PCR. Results: Here we report that phenoxodiol induces cell cycle arrest in the G1/S phase of the cell cycle, with the resultant arrest due to the upregulation of p21WAF1 in all the cell lines in response to treatment, indicating that activation of p21WAF1 and subsequent cell arrest was occurring via a p53 independent manner, with induction of cytotoxicity independent of caspase activation. We found that c-Myc and Cyclin-D1 expression was not consistently altered across all cell lines but Ki-67 signalling expression was decreased in line with the cell cycle arrest. Conclusions: Phenoxodiol demonstrates an ability in prostate cancer cells to induce significant cytotoxicity in cells by interacting with p21WAF1 and inducing cell cycle arrest irrespective of p53 status or caspase pathway interactions. These data indicate that phenoxodiol would be effective as a potential future treatment modality for both hormone sensitive and hormone refractory prostate cancer

    Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.

    Get PDF
    The early diversification of animals (∼630 Ma), and their development into both motile and macroscopic forms (∼575-565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian 'explosion' (540-520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the 'homeostasis' of marine redox conditions

    Assessment of predictive models for chlorophyll-a concentration of a tropical lake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes.</p> <p>Results</p> <p>Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring the performance. RMSE is based on the level of error of prediction whereas AUC is based on binary classification task.</p> <p>Conclusions</p> <p>Overall, HEA produced the best performance in terms of RMSE, r, and AUC values. This was followed by FL, RANN, and MLR.</p

    A cluster randomized trial of standard quality improvement versus patient-centered interventions to enhance depression care for African Americans in the primary care setting: study protocol NCT00243425

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies document disparities in access to care and quality of care for depression for African Americans. Research suggests that patient attitudes and clinician communication behaviors may contribute to these disparities. Evidence links patient-centered care to improvements in mental health outcomes; therefore, quality improvement interventions that enhance this dimension of care are promising strategies to improve treatment and outcomes of depression among African Americans. This paper describes the design of the BRIDGE (Blacks Receiving Interventions for Depression and Gaining Empowerment) Study. The goal of the study is to compare the effectiveness of two interventions for African-American patients with depression--a standard quality improvement program and a patient-centered quality improvement program. The main hypothesis is that patients in the patient-centered group will have a greater reduction in their depression symptoms, higher rates of depression remission, and greater improvements in mental health functioning at six, twelve, and eighteen months than patients in the standard group. The study also examines patient ratings of care and receipt of guideline-concordant treatment for depression.</p> <p>Methods/Design</p> <p>A total of 36 primary care clinicians and 132 of their African-American patients with major depressive disorder were recruited into a cluster randomized trial. The study uses intent-to-treat analyses to compare the effectiveness of standard quality improvement interventions (academic detailing about depression guidelines for clinicians and disease-oriented care management for their patients) and patient-centered quality improvement interventions (communication skills training to enhance participatory decision-making for clinicians and care management focused on explanatory models, socio-cultural barriers, and treatment preferences for their patients) for improving outcomes over 12 months of follow-up.</p> <p>Discussion</p> <p>The BRIDGE Study includes clinicians and African-American patients in under-resourced community-based practices who have not been well-represented in clinical trials to improve depression care. The patient-centered and culturally targeted approach to depression care is a relatively new one that has not been tested in most previous studies. The study will provide evidence about whether patient-centered accommodations improve quality of care and outcomes to a greater extent than standard quality improvement strategies for African Americans with depression.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00243425</p

    Protein quality control: the who’s who, the where’s and therapeutic escapes

    Get PDF
    In cells the quality of newly synthesized proteins is monitored in regard to proper folding and correct assembly in the early secretory pathway, the cytosol and the nucleoplasm. Proteins recognized as non-native in the ER will be removed and degraded by a process termed ERAD. ERAD of aberrant proteins is accompanied by various changes of cellular organelles and results in protein folding diseases. This review focuses on how the immunocytochemical labeling and electron microscopic analyses have helped to disclose the in situ subcellular distribution pattern of some of the key machinery proteins of the cellular protein quality control, the organelle changes due to the presence of misfolded proteins, and the efficiency of synthetic chaperones to rescue disease-causing trafficking defects of aberrant proteins
    corecore