67 research outputs found

    Compréhension des mécanismes de cristallisation sous tension des élastomères en conditions quasi-statiques et dynamiques

    Get PDF
    Strain induced crystallization (SIC) of Natural Rubber (NR) has been the subject of a large number of studies since its discovery in 1929. However, the literature is very poor concerning the study of SIC when samples are deformed with a stretching time in the range of the SIC characteristic time (around 10msec-100msec). Thus, the aim of this thesis is to contribute to the understanding of the SIC phenomenon thanks to dynamic tensile tests at high strain rates. To meet this goal, we have developed a dynamic tensile test machine allowing stretching samples of elastomers at strain rates up to 290 s-1. The tests are carried out on four NR with different sulphur amount, two NR with different carbon black filler amounts. We also studied a synthetic rubber made of polyisoprene chains (IR) able to crystallize under strain. Dynamic tests are relatively difficult to interpret; a significant work has thus been first performed at slow strain rate. Moreover, the experiments are coupled with a thermodynamic approach. First, the general mechanisms associated to the crystallization are identified as follows: during mechanical loading or during cooling in the deformed state, SIC is the result of successive appearance of crystallite populations whose nucleation and growth depend on the local network density. Crystallization is enhanced when the cycle is performed above the melting stretching ratio. This phenomenon is attributed to a memory effect due to a permanent alignment of the chains. Finally, the effect of the strain rate is theoretically described thanks to a diffusion term. This approach, coupled with experiments suggests that SIC is mainly governed by the nucleation kinetics. For the dynamic test, the combination of the memory effect and the acceleration of the melting during the cycle lead to a reduction or even disappearance of the crystalline hysteresis. In addition, self-heating, which progressively increases with the frequency of the cycle, causes the delay of the melting stretching ratio. This well explains why the crystallinity index decreases at the minimum stretching ratio of the dynamic cycles when the frequency increases. We finally compared the ability of our different rubbers to crystallize at high strain rates. SIC is enhanced for the weakly crosslinked rubber. This might be related to the dynamics of its free entanglements, these ones acting as supplementary crosslinks at high strain rates. Then, a filled rubber is compared to the unfilled one. We found that the filled sample has a lower ability to crystallize at high strain rates as compared to the unfilled one. This is likely due to the strong self-heating at the interface between the fillers and the rubbery matrix. Finally, we observe a convergence of crystallization kinetics in natural and synthetic rubbers at high strains and high strain rates. This is attributed to the predominance of the entropic energy in the nucleation kinetics in these experimental conditions.La cristallisation sous tension (SIC) du caoutchouc naturel (NR) a fait l’objet d’un nombre considérable d’études depuis sa découverte il y a près d’un siècle. Cependant, il existe peu d’informations dans la littérature concernant le comportement du caoutchouc à des vitesses de sollicitation proches des temps caractéristiques de cristallisation. L’objectif de cette thèse est alors de contribuer à la compréhension du phénomène de cristallisation sous tension grâce à des essais dynamiques à grandes vitesses. Pour répondre à cet objectif, nous avons développé une machine de traction permettant de déformer des échantillons d’élastomères à des vitesses de sollicitation pouvant aller jusqu’à 290s-1. Les essais ont été réalisés sur quatre NR avec des taux de soufre variables, deux NR chargés comportant des taux de noir de carbone différents. Nous avons également étudié un matériau synthétique à base de polyisoprène (IR) afin de comparer ses performances à celle du NR. Les essais dynamiques étant relativement difficiles à interpréter, un travail conséquent a donc été d’abord réalisé à basse vitesse. En outre, l’approche expérimentale proposée a été couplée à une approche thermodynamique de la SIC. Les mécanismes généraux associés à la cristallisation que nous identifions sont les suivants: lors d’une traction, la cristallisation consiste en l’apparition de populations cristallines conditionnée par l’hétérogénéité de réticulation des échantillons. Cette cristallisation semble nettement accélérée dès lors que ce cycle est réalisé au-dessus de la déformation de fusion. Nous attribuons ce phénomène à un effet mémoire dû à un alignement permanent des chaînes. Enfin, l’effet de la vitesse est décrit théoriquement en intégrant un terme de diffusion des chaînes dans la cinétique de SIC. Cette approche couplée à des essais mécaniques suggère que la SIC est essentiellement gouvernée par la cinétique de nucléation. Lors des tests dynamiques, la combinaison de l’effet mémoire et d’une accélération de la fusion pendant le cycle entraine une nette diminution voire une disparition de l’hystérèse cristalline. En outre, l’auto-échauffement, qui augmente progressivement avec la fréquence du cycle, tend à supprimer l’effet mémoire en provoquant le passage du cycle en dessous de la déformation de fusion. Lors de ces essais dynamiques, la SIC semble favorisée pour le matériau le moins réticulé. Nous attribuons cet effet au blocage d’enchevêtrements jouant le rôle de sites nucléants pour la SIC. Le matériau chargé semble avoir une moins bonne aptitude à cristalliser à hautes vitesses, par rapport à l’élastomère non chargé, en raison d’un auto-échauffement important à l’interface entre charges et matrice. Enfin, nous notons une convergence des cinétiques de cristallisation du caoutchouc naturel et synthétique à grande déformation et grande vitesse de sollicitation, que nous attribuons à la prédominance du terme énergétique d’origine entropique dans la cinétique de nucléation

    Elastocaloric waste/natural rubber materials with various crosslink densities

    Get PDF
    The characterization of the mechanical behavior of elastocaloric materials is essential to identify their viability in heating/cooling devices. Natural rubber (NR) is a promising elastocaloric (eC) polymer as it requires low external stress to induce a wide temperature span, ¿T. Nonetheless, solutions are needed to further improve DT, especially when targeting cooling applications. To this aim, we designed NR-based materials and optimized the specimen thickness, the density of their chemical crosslinks, and the quantity of ground tire rubber (GTR) used as reinforcing fillers. The eC properties under a single and cyclic loading conditions of the resulting vulcanized rubber composites were investigated via the measure of the heat exchange at the specimen surface using infrared thermography. The highest eC performance was found with the specimen geometry with the lowest thickness (0.6 mm) and a GTR content of 30 wt.%. The maximum temperature span under single interrupted cycle and multiple continuous cycles were equal to 12 °C and 4 °C, respectively. These results were assumed to be related to more homogeneous curing in these materials and to a higher crosslink density and GTR content which both act as nucleating elements for the strain-induced crystallization at the origin of the eC effect. This investigation would be of interest for the design of eC rubber-based composites in eco-friendly heating/cooling devices.Peer ReviewedPostprint (published version

    Complex dependence on the elastically active chains density of the strain induced crystallization of vulcanized natural rubbers, from low to high strain rate

    Get PDF
    Strain Induced Crystallization (SIC) of Natural Rubbers (NR) with different network chain densities (¿) is studied. For the weakly vulcanized rubber, the melting stretching ratio ¿m at room temperature is the lowest. This is correlated with larger crystallites in this material measured by in situ WAXS, suggesting their higher thermal stability. SIC kinetics is then studied via stretching at various strain rates (from 5.6 × 10-5 s-1 up to 2.8 × 101 s-1). For the slowest strain rates, SIC onset (¿c) is clearly the lowest in weakly vulcanized rubber. By increasing the strain rate, ¿c of the different materials increase and converge. For the highest strain rates, ¿c values still increase but less rapidly for the weakly vulcanized sample. This complex dependence on the elastically active chains (EAC) density of SIC has been confirmed by in situ WAXS during dynamic experiments and interpreted as a consequence of both the polymer chain network topology and of the entanglements dynamics.Peer ReviewedPostprint (author's final draft

    Elastocaloric effect in vulcanized natural rubber and natural/wastes rubber blends

    Full text link
    Vulcanized natural/wastes rubber blends were prepared and their elastocaloric properties were analysed. A thermodynamic frame was used to discriminate the contributions of thermoelastic effects and strain induced crystallization/melting. The substitution of 20 wt% of the natural rubber matrix by waste rubber particles resulted in a maintain and even a slight improvement of heat exchanges (+10%), that we ascribed to a (i) high thermoelastic effect and a (ii) a high ability of the natural rubber matrix to crystallize due to a nucleation ability of the waste particles, both resulting from a strain amplification in the rubber phase due to undeformable carbon black aggregates in the waste particles. The materials coefficient of performance, COPmat, was estimated equal to 4.4 for the neat natural rubber and 3.8 for the blend containing 20 wt% of wastes due to larger mechanical energy originated from reinforcing effect of waste particles. Nonetheless, the elastocaloric (eC) abilities of these materials, especially their wide temperature spans (similar to those in films or polycrystals using rare earth elements) make these natural/waste rubber blends good candidates for application such as heating/cooling machines. Moreover, the partial replacement of natural rubber, a bio-source material showing risks of shortage, by industrial wastes rubber, place these blends as promising eco-friendly materials with high added value

    Spontaneous formation of a self-healing carbon nanoskin at the liquid-liquid interface

    Get PDF
    Biological membranes exhibit the ability to self-repair and dynamically change their shape while remaining impermeable. Yet, these defining features are difficult to reconcile with mechanical robustness. Here, we report on the spontaneous formation of a carbon nanoskin at the oil–water interface that uniquely combines self-healing attributes with high stiffness. Upon the diffusion-controlled self-assembly of a reactive molecular surfactant at the interface, a solid elastic membrane forms within seconds and evolves into a continuous carbon monolayer with a thickness of a few nanometers. This nanoskin has a stiffness typical for a 2D carbon material with an elastic modulus in bending of more than 40–100¿GPa; while brittle, it shows the ability to self-heal upon rupture, can be reversibly reshaped, and sustains complex shapes. We anticipate such an unusual 2D carbon nanomaterial to inspire novel approaches towards the formation of synthetic cells with rigid shells, additive manufacturing of composites, and compartmentalization in industrial catalysis.Peer ReviewedPostprint (published version

    Characteristic-time of strain induced crystallization of crosslinked natural rubber

    Get PDF
    International audienceReal time Wide-Angle X-ray Scattering (WAXS) measurements during cyclic tensile tests at high strain rates (from 8 s−1–280 s−1) and at room temperature on crosslinked Natural Rubber (NR) are performed thanks to a specific homemade device. From the observed influence of the frequency on the crystallization index at the maximum sample elongation, a characteristic crystallization time is deduced. This is done taking into account the material self-heating during such unusually high strain rates. Two regimes for the dynamic process of strain induced crystallization are evidenced. For the NR tested, the obtained characteristic time is around 20 ms when the material average elongation during the cyclic test is above a critical elongation value λc. λc is the minimum elongation needed to induce crystallization during low strain rate tensile tests. Moreover, a rapid increase of this characteristic time is found when the average elongation decreases below this critical value

    Strain induced crystallization and melting of natural rubber during dynamic cycles

    Get PDF
    Strain-induced crystallization (SIC) of natural rubber (NR) is studied during dynamic cycles at high frequencies (with equivalent strain rates ranging from 7.2 s-1 to 290 s-1). The testing parameters are varied: the frequency, the temperature and the stretching ratio domain. It is found that an increase of the frequency leads to an unexpected form of the CI–¿ curve, with a decrease of the crystallinity during both loading and unloading steps of the cycle. Nevertheless, the interpretation of the curves needs to take into account several phenomena such as (i) instability of the crystallites generated during the loading step, which increases with the frequency, (ii) the memory of the previous alignment of the chains, which depends on the minimum stretching ratio of the cycle ¿min and the frequency, and (iii) self-heating which makes the crystallite nucleation more difficult and their melting easier. Thus, when the stretching ratio domain is above the expected stretching ratio at complete melting ¿melt, the combination of these phenomena, at high frequencies, leads to unexpected results such as complete melting at ¿min, and hysteresis in the CI–¿ curves.Peer ReviewedPostprint (author's final draft

    Semiaromatic polyamides with enhanced charge carrier mobility

    Get PDF
    The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hydrogen bonding plays an important role in structural order and stability, we have used solution-phase polycondensation to incorporate dicyanoperylene bisimide repeat units into an aliphatic polyamide chain backbone. The morphology and thermomechanical characteristics of the resulting polyamides, in which the aliphatic spacer length was varied systematically, were comparable with those of existing semiaromatic engineering polyamides. At the same time, the charge carrier mobility as determined by pulse-radiolysis time-resolved microwave conductivity measurements was found to be about 10-2 cm2 V-1 s-1, which is similar to that reported for low molecular weight perylene bisimides. Our results hence demonstrate that it is possible to use hydrogen bonding interactions as a means to introduce promising optoelectronic properties into high-performance engineering polymers.Peer ReviewedPostprint (author's final draft

    Observation of heterogeneities in elastocaloric natural/wastes rubber composites

    Get PDF

    Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems

    Full text link
    • …
    corecore