274 research outputs found
Influence of ventricular torsion on left ventricular hemodynamics : a patient-specific model using the chimera technique
Characterization of heterotic quantitative trait loci in maize by evaluation of near-isogenic lines and their crosses at two competition levels
From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations
With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume
High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands
11 pags.; 4 figs.; 9 tabs.© 2015 AIP Publishing LLC. Infrared and Raman spectra of mono 13C fully deuterated acetylene, 13C12CD2, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm−1 in the region 1800–7800 cm−1. Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm−1. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm−1, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations.The Bologna authors acknowledge the Università di
Bologna and the financial support of the Ministero dell’
Istruzione dell’Università e della Ricerca (PRIN 2012 “Spettroscopia
e Tecniche computazionali per la ricerca Astrofisica,
atmosferica e Radioastronomica”). D.B. and R.Z.M. acknowledge
the financial support of the Ministry of Economy and
Competitiveness through Research Grant No. FIS2012-38175.Peer Reviewe
Bound on Lorentz- and CPT-Violating Boost Effects for the Neutron
A search for an annual variation of a daily sidereal modulation of the
frequency difference between co-located Xe and He Zeeman
masers sets a stringent limit on boost-dependent Lorentz and CPT violation
involving the neutron, consistent with no effect at the level of 150 nHz. In
the framework of the general Standard-Model Extension, the present result
provides the first clean test for the fermion sector of the symmetry of
spacetime under boost transformations at a level of GeV.Comment: 4 pages, 1 figur
Rotational and high-resolution infrared spectrum of HCN: global ro-vibrational analysis and improved line catalogue for astrophysical observations
HCN is an ubiquitous molecule in interstellar environments, from external
galaxies, to Galactic interstellar clouds, star forming regions, and planetary
atmospheres. Observations of its rotational and vibrational transitions provide
important information on the physical and chemical structure of the above
environments. We present the most complete global analysis of the spectroscopic
data of HCN. We have recorded the high-resolution infrared spectrum from
450 to 1350 cm, a region dominated by the intense and
fundamental bands, located at 660 and 500 cm, respectively, and their
associated hot bands. Pure rotational transitions in the ground and
vibrationally excited states have been recorded in the millimetre and
sub-millimetre regions in order to extend the frequency range so far considered
in previous investigations. All the transitions from the literature and from
this work involving energy levels lower than 1000 cm have been fitted
together to an effective Hamiltonian. Because of the presence of various
anharmonic resonances, the Hamiltonian includes a number of interaction
constants, in addition to the conventional rotational and vibrational l-type
resonance terms. The data set contains about 3400 ro-vibrational lines of 13
bands and some 1500 pure rotational lines belonging to 12 vibrational states.
More than 120 spectroscopic constants have been determined directly from the
fit, without any assumption deduced from theoretical calculations or
comparisons with similar molecules. An extensive list of highly accurate rest
frequencies has been produced to assist astronomical searches and data
interpretation. These improved data, have enabled a refined analysis of the
ALMA observations towards Sgr B2(N2).Comment: 35 pages, 14 figures, accepted for pubblication in ApJ Supplemen
Unambiguous Quantum Gravity Phenomenology Respecting Lorentz Symmetry
We describe a refined version of a previous proposal for the exploration of
quantum gravity phenomenology. Unlike the original scheme, the one presented
here is free from sign ambiguities while it shares with the previous one the
essential features. It focuses on effects that could be thought as arising from
a fundamental granularity of quantum space-time. The sort of schemes we
consider are in sharp contrast with the simplest scenarios in that such
granularity is assumed to respect Lorentz Invariance but it remains otherwise
unspecified. The proposal is fully observer covariant, it involves non-trivial
couplings of curvature to matter fields and leads to a well defined
phenomenology. We present the effective Hamiltonian which could be used to
analyze concrete experimental situations, and we shortly review the degree to
which this proposal is in line with the fundamental ideas behind the
equivalence principle.Comment: Accepted for its publications in ROM
- …
