433 research outputs found

    Note on Self-Duality and the Kodama State

    Full text link
    An interesting interplay between self-duality, the Kodama (Chern-Simons) state and knot invariants is shown to emerge in the quantum theory of an Abelian gauge theory. More precisely, when a self-dual representation of the CCR is chosen, the corresponding vacuum in the Schroedinger representation is precisely given by the Kodama state. Several consequences of this construction are explored.Comment: 4 pages, no figures. References and discussion added. Final version to appear in PR

    Energy of test objects on black hole spacetimes: A brief review

    Full text link
    In this paper, we review the issue of defining energy for test particles on a background stationary spacetime. We revisit the different notions of energy as defined by different observers. As is well known, the existence of a time-like isometry allows for the notion of total conserved energy to be well defined. We use this well known quantity to show that a gravitational potential energy can be consistently defined. As examples, we study the case of the exterior regions of an asymptotically flat black hole and of the Λ>0\Lambda>0 Schwarzschild de Sitter case, where an asymptotic region is not available. We then consider the situation in which the test particle is absorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy as defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's total conserved energy. With these choices, there is a global conservation of energy. Finally, we comment on a recent proposal to define energy of the black hole as seen by a nearby observer at rest, for which this feature is lost.Comment: 16 pages, no figures. Discussion expanded, de Sitter BH case included. Matches published versio

    Loop quantum gravity and Planck-size black hole entropy

    Get PDF
    The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.Comment: 21 pages, 5 figures. Contribution to the Proceedings of the NEB XII International Conferenc

    Quantum Superposition Principle and Geometry

    Full text link
    If one takes seriously the postulate of quantum mechanics in which physical states are rays in the standard Hilbert space of the theory, one is naturally lead to a geometric formulation of the theory. Within this formulation of quantum mechanics, the resulting description is very elegant from the geometrical viewpoint, since it allows to cast the main postulates of the theory in terms of two geometric structures, namely a symplectic structure and a Riemannian metric. However, the usual superposition principle of quantum mechanics is not naturally incorporated, since the quantum state space is non-linear. In this note we offer some steps to incorporate the superposition principle within the geometric description. In this respect, we argue that it is necessary to make the distinction between a 'projective superposition principle' and a 'decomposition principle' that extend the standard superposition principle. We illustrate our proposal with two very well known examples, namely the spin 1/2 system and the two slit experiment, where the distinction is clear from the physical perspective. We show that the two principles have also a different mathematical origin within the geometrical formulation of the theory.Comment: 10 pages, no figures. References added. V3 discussion expanded and new results added, 14 pages. Dedicated to Michael P. Ryan on the occasion of his sixtieth bithda
    • …
    corecore