1,476 research outputs found

    A systematic phenomenological study of the cos⁥2ϕ\cos 2 \phi asymmetry in unpolarized semi--inclusive DIS

    Full text link
    We study the cos⁥2ϕ\cos 2 \phi azimuthal asymmetry in unpolarized semi-inclusive DIS, taking into account both the perturbative contribution (gluon emission and splitting) and the non perturbative effects arising from intrinsic transverse motion and transverse spin of quarks. In particular we explore the possibility to extract from some information about the Boer--Mulders function $h_1^{\perp}$, which represents a transverse--polarization asymmetry of quarks inside an unpolarized hadron. Predictions are presented for the HERMES, COMPASS and JLab kinematics, where is dominated by the kinematical higher--twist contribution, and turns to be of order of few percent. We show that a larger asymmetry in π−\pi^- production, compared to π+\pi^+ production, would represent a signature of the Boer--Mulders effect.Comment: 14 pages, 12 figure

    Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection

    Get PDF
    We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures

    Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3,C)⊕u(1)sl(3,C) \oplus u(1)

    Full text link
    We discuss three important classes of three-qubit entangled states and their encoding into quantum gates, finite groups and Lie algebras. States of the GHZ and W-type correspond to pure tripartite and bipartite entanglement, respectively. We introduce another generic class B of three-qubit states, that have balanced entanglement over two and three parties. We show how to realize the largest cristallographic group W(E8)W(E_8) in terms of three-qubit gates (with real entries) encoding states of type GHZ or W [M. Planat, {\it Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8)W(E_8) by entangling gates}, Preprint 0904.3691 (quant-ph)]. Then, we describe a peculiar "condensation" of W(E8)W(E_8) into the four-letter alternating group A4A_4, obtained from a chain of maximal subgroups. Group A4A_4 is realized from two B-type generators and found to correspond to the Lie algebra sl(3,C)⊕u(1)sl(3,\mathbb{C})\oplus u(1). Possible applications of our findings to particle physics and the structure of genetic code are also mentioned.Comment: 14 page

    Angular dependences in electroweak semi-inclusive leptoproduction

    Get PDF
    We present the leading order unpolarized and polarized cross sections in electroweak semi-inclusive deep inelastic leptoproduction. The azimuthal dependences in the cross section differential in the transverse momentum of the vector boson arise due to intrinsic transverse momenta of the quarks. However, the presented asymmetries are not suppressed by inverse powers of the hard scale. We discuss the different opportunities to measure specific asymmetries as offered by neutral compared to charged current processes and point out the optimal kinematical regions. The present and (proposed) future HERA collider experiments would be most suitable for measuring some of the asymmetries discussed here, especially in case of Lambda production.Comment: 10 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st

    Pushed and pulled fronts in a discrete reaction-diffusion equation

    Get PDF
    We consider the propagation of wave fronts connecting unstable and stable uniform solutions to a discrete reaction-diffusion equation on a one-dimensional integer lattice. The dependence of the wavespeed on the coupling strength ” between lattice points and on a detuning parameter (α) appearing in a nonlinear forcing is investigated thoroughly. Via asymptotic and numerical studies, the speed both of 'pulled' fronts (whereby the wavespeed can be characterised by the linear behaviour at the leading edge of the wave) and of 'pushed' fronts (for which the nonlinear dynamics of the entire front determine the wavespeed) is investigated in detail. The asymptotic and numerical techniques employed complement each other in highlighting the transition between pushed and pulled fronts under variations of ” and α

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Absolutely stable proton and lowering the gauge unification scale

    Get PDF
    A unified model is constructed, based on flipped SU(5) in which the proton is absolutely stable. The model requires the existence of new leptons with masses of order the weak scale. The possibility that the unification scale could be extremely low is discussed

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos⁥2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin⁥(2ϕ−ϕS)\sin(2\phi-\phi_S), sin⁥(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin⁥2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ
    • 

    corecore