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Abstract

We consider the propagation of wave fronts connecting unstable and stable uniform solutions
to a discrete reaction-diffusion equation on a one-dimensional integer lattice. The dependence
of the wavespeed on the coupling strength µ between lattice points and on a detuning parameter
(a) appearing in a nonlinear forcing is investigated thoroughly. Via asymptotic and numerical
studies, the speed both of ‘pulled’ fronts (whereby the wavespeed can be characterised by the
linear behaviour at the leading edge of the wave) and of ‘pushed’ fronts (for which the nonlinear
dynamics of the entire front determine the wavespeed) is investigated in detail. The asymp-
totic and numerical techniques employed complement each other in highlighting the transition
between pushed and pulled fronts under variations of µ and a.

1 Introduction

Mathematical analyses of a wide variety of physical and biological systems lead to investigation of
spatially-discrete nonlinear reaction-diffusion equations of the form

duj

dt
= µ (uj+1 − 2uj + uj−1) + f(uj; a), (1)

on a discrete integer lattice with lattice points j ∈ Z at which uj = uj(t), the parameter µ > 0
dictating the coupling strength between lattice points while the constant a parameterises the non-
linearity (see below). Such models arise in, for example, the study of crystal growth [1] and binary
alloy evolution [2] in material science and of neural networks for image processing and pattern recog-
nition [3, 4]; additionally, analogous formulations emerge naturally in the study of cell population
growth [5] and cell signalling [6–9]. Lastly, such systems of course occur in the numerical solution
by spatial discretisation of partial differential equations. We remark, however, that the formulations
investigated in the above studies, and the equation analysed herein, are to be viewed as truly spa-
tially discrete, and not as discretised versions of PDEs; indeed, the results that we present serve to
illustrate how the behaviour of the continuous analogue of (1) relates to that of the discrete system,
representing one of the simplest systems in which such a discrete-to-continuous transition can be
explored.

The study of spatially discrete diffusion equations has a long history, especially in the area
of material sciences (see, e.g., Cook et al. [10] and references therein). An important aspect of
such studies is in the choice of the nonlinearity f(uj ; a). For example, discrete diffusion equations
with a bistable nonlinearity have been widely studied: see Keener [11], Elmer and van Vleck [12],
Cahn et al. [13], Chow et al. [14], Fáth [15] and King and Chapman [16], and references therein,
in which propagation failure was considered in detail, highlighting some key differences between
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discrete models and their continuous counterparts. Here, however, our focus is on the propagation of
heteroclinic connections between unstable and stable states (rather than stable–stable connections),
for which travelling wave solutions to the continuous Fisher (or Kolmogorov-Petrovskii-Piskunov
(KPP)) equation, in particular, have been extremely widely studied. In the discrete case, Zinner
et al. [17] considered the existence of travelling-wave solutions to the discrete Fisher-KPP equation
on a one-dimensional lattice, obtaining a constraint on the coupling strength for which strictly
increasing travelling wavefronts of speed c > 0 exist; more recent work on related systems includes
that of Guo and Morita [18] and Hakberg [19].

In this study, we consider for definiteness (and because of its widespread adoption as a model
nonlinearity in the PDE case) equation (1) with the following cubic nonlinearity

f(u; a) = u(1 − u)
(

1 +
u

a

)

, (2)

and investigate the dependence on the parameters µ and a of the wave propagation speed through
a discrete lattice. We emphasise that the specific form (2) is adopted for illustrative purposes; the
features that we analyse below are applicable to a broad class of nonlinearities and much of the
analysis applies to more general cases of smooth f with (1) scaled such that

f(u; a) = u + o(1) as u → 0, f(1; a) = 0, f(u; a) > 0 for 0 < u < 1. (3)

The parameter a > 0 is often termed the ‘detuning parameter’ in the literature (e.g. Cahn et al.
[13]). The uniform steady state solutions of (1), (2) are uj ≡ 0 (unstable) and uj ≡ 1,−a (stable
for a > 0). We remark that (1), (2) contains as limit cases both the (monostable) discrete Fisher
equation (a → ∞), with steady states uj ≡ 0, 1, and the (bistable) discrete Newell-Whitehead-Segel
equation with stable states uj ≡ ±1 (a = 1). Our interest here will be in fronts in which the
stable state uj = 1 overruns the unstable one uj = 0. In the continuous counterpart of equation
(1), µ corresponds to the diffusion coefficient; the study of travelling wave fronts in such continuous
diffusion equations with a range of choices for the nonlinearity f(u; a) has been the subject of
extensive investigation, in a wide variety of contexts, including (but not limited to) mathematical
biology, plasma dynamics and pattern formation. We do not give a thorough review here, since
our main focus is on the discrete equation; instead, we include a summary of the results of most
relevance to the current work in §2.

The emphasis of this work is to characterise, for the first time, the transition that occurs between
so-called ‘pulled’ (where the propagation speed, denoted c∗, is characterised by the leading-edge
behaviour) and ‘pushed’ (the entire nonlinear wave profile determines the wavespeed, c†) fronts as
the parameters µ and a are varied. While equivalent results are available for the continuum version
of (1), (2), we are not aware of previous detailed analysis in discrete equations. Our results may be
summarised briefly as follows. For µ = O(1), c∗(µ) is straightforward to obtain; however, neither
the transition aT (µ) nor c†(a, µ) are available analytically. In the limit a → 0+, we obtain a new
estimate for c†(a, µ). For µ ≪ 1, we isolate the transition as aT (µ) ∼ 1/ ln(1/µ) and provide new
results for c†(a, µ) (a = O(µ)) and c† and c∗ at transition. The applicability of these results is
illustrated by comparison with numerical simulation, and with the more well-known results that
pertain for µ ≫ 1.

From the point of view of asymptotic methods, we additionally highlight the following features
of the current work. A general remark is that discrete models have been far less studied from the
point of view of formal asymptotics than their continuous counterparts. In contrast to the discrete
bistable case (in which wave pinning can occur), the continuum limit µ → +∞ (addressed in §2)
here does not lead to phenomena qualitatively absent in the continuous (PDE) case; asymptotic
analysis of the weak-coupling limit µ → 0+, analysed in §5 is, however, notably challenging and is
correspondingly delicate from a numerical point of view (for example, in that the transition from
pushed to pulled fronts is particularly difficult to capture), making the asymptotic study particularly
helpful in characterising the regimes in which pulled- and pushed-front behaviour (see §2) each occur.
The combination of Liouville-Green (JWKB) and matched-asymptotic approaches needed here is
likely also to be applicable in a number of related contexts.
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There is an issue that needs setting to one side before proceeding with the detailed analysis: we
concern ourselves only with initial data that decay sufficiently rapidly that the minimum wavespeed
(denoted henceforth by cmin) of strictly positive travelling waves is realised. To characterise what
‘sufficiently rapidly’ means here, we note that (1), (3) linearised about u = 0 has travelling-wave
solutions uj = exp(−λ(j − ct)), with

λc = 2µ(cosh(λ) − 1) + 1. (4)

Hence c(λ) takes its minimum value when

c = 2µ sinh(λ) (5)

and (4) both hold. When the initial data behave as exp(−λj) as j → +∞, where λ is less than the
value determined by (4), (5) and the resulting c given by (4) has c > cmin, then that value of c is
realised as the large-time behaviour; for more rapidly decaying initial data we are in the territory
analysed in the remainder of the paper.

The paper is organised as follows. In §2 we outline the two distinct classes (pulled and pushed)
of waves of relevance here, and analyse the continuum (strong-coupling) limit µ → +∞. In §3 we
set up the corresponding discrete travelling-wave problem and in §4, an asymptotic analysis of the
transition between pulled and pushed waves in (1) is performed. §5 considers the weak-coupling
limit (µ → 0+) in detail. In §6, we present numerical simulations indicating the key features of
travelling wave behaviour, and illustrating the applicability of the asymptotic results derived in
previous sections. §7 includes a summary of the main results of this paper. Appendix A addresses
the limit a → 0+, Appendix B treats a linear differential-difference equation crucial to the results
of §5, Appendix C gives an analysis of both stable–unstable and stable–stable connections for the
case of a specific (explicitly solvable) nonlinear coupling between lattice points and Appendix D
generalises aspects of the analysis of §2 and §4 to a much broader setting.

2 Pushed and pulled fronts and the continuum limit µ → +∞
This paper focusses on the propagation speed of large-time (travelling-wave) solutions to equations
(1), (2) in a one-dimensional integer lattice j ∈ Z on which uj = uj(t). We consider in particular how
these speeds differ from those obtained in the corresponding continuous reaction-diffusion equation.

The type of behaviour with which we are concerned is illustrated in Figure 1, which shows a nu-
merical solution indicating the evolution to two travelling waves (one propagating in each direction)
from initial data given by (see §6 for details of the numerical procedures adopted)

uj(0) =

{

1, −5 6 j 6 5,

0, otherwise.
(6)

Our analysis will concern the rightward travelling wave, the other following from an obvious sym-
metry argument.

Stable-unstable connections in systems such as (1) may be categorised into two distinct classes:
in the case for which the propagation speed is determined by the leading edge of the wave, the front
is termed ‘pulled’; conversely, in the case of ‘pushed’ waves, the wavespeed is determined by the
whole of the wavefront1. The pulled speed can be obtained by linearising the system around the
homogeneous state (and is therefore also frequently referred to as the ‘linearly-selected’ wavespeed);
in this regime, the unstable homogeneous state is invaded by the stable one at a speed which tends
to a constant c∗ as t → +∞; when nonlinear effects are dominant in a sense that will be clarified
below, invading waves of speed c† > c∗ are obtained, and in such circumstances the linear analysis
provides a lower bound for the pushed speed, but does not give the realised speed. Determining the

1An early description of the distinct classes of wave in reaction-diffusion equations of the form (7) was given by
Hadeler and Rothe [20]; detailed analysis of the different front types in such a PDE, as well as the pushed/pulled
terminology, is due to Stokes [21].
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Figure 1: Numerical solution to (1), (2) for µ = 10, a = 0.5, at times t = 0, 0.15, 1.75, 3.5, 5.25
indicating propagating front behaviour from an initial state given by (6).

class of wavefronts exhibited by a given discrete system is, in general, difficult (see, e.g., Plahte and
Øyehaug [8]); in the continuous case (with a monostable nonlinearity), approaches to achieve this
include that of Lucia et al. [22], but such methods do not seem likely to be applicable in the discrete
case.

In the limit µ → +∞ in (1), neighbouring lattice points have (after an initial transient t =
O(1/µ), unless the initial data are suitably prepared) almost equal values of uj , i.e. the solution is
slowly varying with respect to j. The appropriate spatial variable is x = j/

√
µ; under this rescaling,

with uj(t) ∼ u(x, t), we obtain
∂u

∂t
=

∂2u

∂x2
+ f(u; a). (7)

Since the seminal studies of Fisher [23] and Kolmogorov et al. [24], travelling wave solutions to (7)
have been widely investigated; see, e.g., the review of van Saarloos [25].

Travelling-wave solutions of (7) take the form u(x, t) ∼ U(z), z = x−S(t), S(t) ∼ ct for constant2

c and satisfying

U ′′ + cU ′ + f(U ; a) = 0, (8)

U → 1, z → −∞; U → 0, z → +∞. (9)

These describe the heteroclinic connections between the stable state u = 1 and the unstable one
u = 0; note that for given c > 0, (8), (9) should be viewed as an initial value problem from z = −∞,
the solution then being determined up to translations in z. Linearising (8) as z → +∞ gives (in
view of (3))

U ′′ + cU ′ + U = 0, (10)

so that
U =

(

A−e−(c−
√

c2−4 )z/2 + A+e−(c+
√

c2−4 )z/2
)

, c 6= 2. (11)

Positivity (required by the comparison theorem for non-negative initial data) thus requires c > 2.
In the phase plane of (8), the origin is a degenerate stable node if c = 2, in which case (10) implies

U = e−z (Az + B) (12)

and, when A > 0 holds for the solution to (8), (9), c = 2 is the wavespeed associated with a pulled
front (i.e. c∗ = 2). As a decreases (in the case of (2), and more generally in (1), (3) if a is suitably
defined), A reaches zero at a = aT , say, and for smaller a with 2 < c < c† for some c†(a), U(z)
in (10) becomes negative at some z, approaching zero from below as z → +∞ (as can readily be
demonstrated by a phase-plane analysis, a method that is not of course available in the discrete

2Due to the rescaling of j the constant c in the remainder of this section corresponds to dividing that elsewhere in
the paper by

√
µ.
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case); such non-monotonic waves are unstable and are in any case again precluded for non-negative
initial data by the comparison theorem. In this case, pushed fronts occur and we now further classify
the two cases (summarising well-known results for (7)), whereby cmin = c∗ for a > aT (pulled front)
and cmin = c†(a) > c∗ for 0 < a < aT (pushed front).

(a) Pulled fronts: a > aT , cmin = 2. The wavespeed here follows either via (12) from the
linearisation (10) of the travelling-wave ODE or from an application of the Liouville-Green (JWKB)
method to the linearised PDE

∂u

∂t
=

∂2u

∂x2
+ u (13)

(cf. Cuesta and King [26] and references therein), whereby

u ∼ e−φ(x,t), φ(x, t) ∼ tF (x/t) as t → ∞, x = O(t) (14)

gives (since φxx does not contribute at leading order)

∂φ

∂t
+

(

∂φ

∂x

)2

+ 1 = 0, F − η
dF

dη
+

(

dF

dη

)2

+ 1 = 0, (15)

where η = x/t. We therefore obtain

F (η) =
1

4
η2 − 1, (16)

giving the point at which linearisation becomes inapplicable (i.e. at which the solution (14) fails to
be exponentially small) as η = 2 (implying S(t) ∼ 2t), thereby identifying the nonlinear wavefront
as having c = 2.

(b) Pushed fronts: 0 < a < aT , cmin = c†(a). Here the wavespeed is determined by the solution
to (8) having A− = 0, A+ > 0 in (11), i.e. fast decay into the origin (the phase-plane analysis
demonstrates that for a < aT this is the borderline between those c for which U(z) remains positive
and those for which it crosses zero, whereas for a > aT this borderline is given by the degenerate-
stable-node case (12)). For a < aT , the wavespeed cmin can therefore be viewed as an eigenvalue (or
second-kind similarity exponent), as is the wavespeed in the case of stable–stable connections; such
an interpretation is not appropriate for pulled fronts. For a = aT we have cmin = 2, the value of aT

being determined via the requirement that A = 0, B > 0 in (12), i.e. in this transition case a rather
than c can be viewed as an eigenvalue.

A specific reason for the choice of the nonlinearity (2) is that c† can be determined explicitly.
Setting U = 1/V in (8) gives the quadratically nonlinear ODE

V V ′′ − 2V ′2 + cV V ′ − (V − 1)

(

V +
1

a

)

= 0 (17)

and established approaches to such problems suggest seeking a solution of the form

V = 1 + eλz (18)

(the solution seems to have been identified for the first time by Hadeler and Rothe [20], without ex-
plicitly exploiting the quadratically nonlinear form). Equation (17) leads to two algebraic equations,
thereby prescribing c as well as λ, namely

λ2 − cλ + 1 = 0, λ2 + cλ − 1 − 1

a
= 0, (19)

so that
λ = 1/

√
2a, c = 1/

√
2a +

√
2a. (20)

Thus, in (11) we have

1

2

(

c +
√

c2 − 4
)

=

{√
2a for a > 1/2

1/
√

2a for a < 1/2
(21)
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and conversely for the negative square root. Hence (18), (20) corresponds to fast decay for a < 1/2
but slow decay for a > 1/2 (the latter will pertain for initial data that decay as exp

(

−x/
√

2a
)

as
x → +∞). We thus conclude that

aT = 1/2, c†(a) = 1/
√

2a +
√

2a (22)

and we note that

c†(1/2) = 2,
dc†

da
(1/2) = 0, (23)

implying that cmin(a) behaves rather smoothly as a passes through aT (cf. §4).
In summary, for (7) we have

cmin(a) =

{

1/
√

2a +
√

2a, 0 < a 6 1/2,

2, a > 1/2,
(24)

(the latter in fact also holds for a < −1, but we shall limit ourselves to a > 0). For more general
nonlinearities (3), cmin = 2 for a > aT remains true but c†(a) and aT each need determining
numerically.

The surface and contour plots in Figure 2 illustrate the range of applicability (by comparison
with numerical simulations of (1); see §6 for details of the numerical procedures employed) of the
above results in (µ, a) parameter space, namely the continuum wavespeeds (24) (rescaled by

√
µ, as

required for comparison with the discrete problem), appropriate for large µ (each in its own range
of a – see §7), and the pulled speed determined by (4), (5), appropriate for a > aT (µ).

3 Travelling wave analysis of the discrete system

We now set3

uj(t) ∼ U(z), z = j − S(t), S(t) ∼ ct as t → +∞ (25)

in (1) to give the ordinary-differential-difference equation

µ(U(z + 1) − 2U(z) + U(z − 1)) + c
dU(z)

dz
+ f(U(z); a) = 0, (26)

U → 1 as z → −∞; U → 0 as z → +∞. (27)

We note that while (1) holds for j ∈ Z, (26) applies for z ∈ R, in keeping with t ∈ R
+ applying in

(1). Unlike the continuous case, this cannot be treated as an initial value problem from z = −∞;
a boundary-condition count (respecting the invariance of (26) under translations of z) implies that
(for given c) the required degrees of freedom as z → +∞ (of the form exp(−λz)) involve all the
roots of (4) having positive real part. Pulled fronts have c∗(µ) and λ∗(µ) given by (4), (5) with
λ∗ real, (5) being the repeated-root condition (cf. Zinner et al. [17], equation (6), the supremum in
which is related to the minimum wavespeed statement that led to (5) above); (4) has two real roots
for c > c∗ > 0 (these also being its roots with the smallest positive real part) and none for c < c∗.
Pushed fronts are those for which f(u; a) is such that there is a c = c† > c∗ for which the exponential
corresponding to the smaller positive real root of (4) is absent as z → +∞ in the solution to (26),
(27) (i.e. fast decay occurs).

From (4), (5) we have that λ∗(µ), c∗(µ) are given by

2µ (cosh(λ∗) − λ∗ sinh(λ∗) − 1) + 1 = 0, c∗ = 2µ sinh(λ∗). (28)

This implies

λ∗(µ) ∼ 1√
µ

(

1 − 1

8µ

)

, c∗(µ) ∼ 2
√

µ

(

1 +
1

2µ

)

as µ → +∞, (29)

3We stress that, because x = j/
√

µ, the quantities z, S, c and λ henceforth are scaled differently from those in the
previous section.
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Figure 2: Surface (a,c,e) and contour (b,d,f) plots showing the relative deviation of the propagation
speed c observed in (time-dependent) numerical simulations of (1) from the results (4), (5) and (24):
E = (c − cmin)/c for a range of parameter values. (a,b) cmin given by (24) for 0 < a 6 1/2, the
pushed speed for (7), showing good agreement for µ large and a lying in the range 10−1 . a . 1;
(c,d) cmin given by (24) for a > 1/2, the pulled speed for (7), showing good agreement for µ large
and a sufficiently large; (e,f) cmin given by (4), (5), the pulled speed for (1), showing good agreement
for a sufficiently large and arbitrary µ. In each case, the range of agreement is as anticipated.
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the leading orders in which are consistent with the results of the previous section; for µ → 0+ we
have λ∗ → +∞ and

µ(λ∗ − 1)eλ∗ ∼ 1, c∗ ∼ µeλ∗

, (30)

with only terms exponentially smaller in λ∗ neglected, so that as µ → 0+,

λ∗ ∼ ln(1/µ) − ln ln(1/µ) +
ln ln(1/µ)

ln(1/µ)
+

1

ln(1/µ)
, c∗ ∼ 1

ln(1/µ)
+

ln ln(1/µ)

ln2(1/µ)
+

1

ln2(1/µ)
. (31)

These logarithmic dependencies provide advanced warning of the asymptotic challenges that will
arise in §5.4.

In the discrete case we have been unable to identify any f(u; a) for which c† can be determined
explicitly for a pushed front (a somewhat abortive attempt to generalise (17) in this direction, ex-
ploiting a corresponding quadratically nonlinear form, is given in Appendix C); explicit solutions
can be constructed by specifying a suitable specific profile for U(z) and then determining the non-
linearity f from (26), but the resulting f will in general then depend on µ, so this procedure is not
suitable for the current purposes. For example, proceeding in this way we find that for

f(u; a, µ) =
u(1 − u) (1 + u/a + (1 + 1/2a)u(1 − u)/2aµ)

1 + u(1 − u)/2aµ
(32)

the ansatz

U(z) =
1

1 + eλz
(33)

again applies with λ and c given by

2µ (cosh(λ) − 1) = 1/2a, cλ = 1 + 1/2a; (34)

however, the dependence of (32) upon µ makes it of limited value to the current study.

4 Asymptotic analysis of the transition between pushed and

pulled fronts

In this section we analyse the behaviour close to the transition between pushed and pulled fronts
– while we shall do so here in the framework of the ordinary-differential-difference equation (26),
the criteria in question are of much more general applicability: see Appendix D. In the current
context the analysis of this section will provide a diagnostic that is helpful in the analysis of the
weak-coupling limit µ → 0+.

We require the solution to (26), defined uniquely for given wavespeed c up to translations in z
– an indeterminacy that we shall eliminate by specifying U(0) = 1/2 – and (as usual) determine c
through the requirements that U > 0 for z ∈ (−∞,∞) and that U(z) exhibits a maximal decay rate
as z → +∞.

We denote the two real roots of (4) with c > c∗ by λ+ and λ−, with λ+ > λ−. Pushed fronts have
U(z) decaying as exp(−λ+z) as z → +∞ with λ+ = λ† > λ∗, λ†(a, µ) and c†(a, µ) being related by
(4). It is immediate from (4) and (5) that

c(λ) ∼ c∗ +
µ cosh(λ∗)

λ∗ (λ − λ∗)2 as λ → λ∗, (35)

i.e.

λ± ∼ λ∗ ±
√

λ∗

µ cosh(λ∗)
(c − c∗) as c → c∗+. (36)

For pulled fronts, having c = c∗(µ), we denote U = U∗(z; a). We reiterate that we denote by
a = aT the value of a at which a transition between pulled fronts (for which a > aT without loss of
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generality4) and pushed fronts (a < aT ) occurs. Then for a 6= aT we have (cf. (12))5

U∗(z; a) ∼ (A(a)z + B(a)) e−λ∗z as z → +∞, (37)

the z prefactor being associated with λ = λ∗ being a repeated root. In (37) we have A > 0 for
a > aT and A < 0 for a < aT . While only the former is realisable for non-negative initial data, U∗

will also play a role in the sequel for a < aT . At the transition, we have (cf. Cuesta and King [26])

U∗(z; aT ) ∼ BT e−λ∗z as z → +∞, (38)

in which BT = B(aT ) > 0 and A(aT ) = 0. Conversely, for c > c∗, we have for a 6= aT

U(z; a) ∼ A−(a, c)e−λ−(c)z as z → +∞, (39)

with A−(a, c) > 0 for a > aT and for a < aT with c > c†(a, µ); A−(a, c) < 0 holds for a < aT with6

c∗(µ) < c < c†(a, µ), as does A−(a, c†) = 0 for a < aT in which case

U †(z; a) ∼ A†
+(a)e−λ+z as z → +∞ (40)

with A†
+ > 0, and where U †(z; a) denotes the pushed front profile7, having propagation speed c†.

The key implications of the above analysis for the current section are as follows. Seting a = aT +δ
with |δ| ≪ 1 we have from (37) that for δ > 0

U∗(z; a) ∼ (BT + δB′(aT ) + δA′(aT )z)e−λ∗z as δ → 0+, z → +∞ (41)

while for δ < 0 it follows from (40) that8, retaining terms up to O(δ),

U †(z; a) ∼
(

A†
+(aT ) + δA†′

+(aT )
)

(1 − (λ+ − λ∗)z) e−λ∗z , (42)

as λ∗ → λ+, z → +∞ (as we shall see in (46), λ+ − λ∗ = O(δ)).
Now, returning to (26), we set

U(z) ∼ U0(z) + δU1(z) + δ2U2(z), c ∼ c∗ + δ2C, (43)

as δ → 0, and it follows that

U0(z) = U∗(z; aT ), U1(z) =
∂

∂a
U∗(z; aT ) (44)

in both the pulled (δ > 0) and pushed (δ < 0) cases. In view of (38), the matching condition (41)
is automatically satisfied, while in (42) we infer from (35)–(36) that

A†
+(aT ) = BT , A†′

+(aT ) = B′(aT ), (45)

λ+ − λ∗ ∼ − δ

BT
A′(aT ), C =

µ coshλ∗

λ∗

(

A′(aT )

BT

)2

, (46)

as δ → 0−. Thus
c†(a, µ) ∼ c∗(a) + (aT − a)2C, as a → a−

T (47)

expresses the rather smooth transition of cmin(a, µ) through aT .

4Provided – as in the case of the cubic nonlinearity on which we mainly focus – only one such transition occurs; a
characterisation of the nonlinearities f(u; a) in such regards would be valuable.

5We suppress the dependence of U on µ in our far-field expressions.
6Note that c†(aT , µ) = c∗(µ).
7The far-field expansion (39) will also in general contain a contribution of the form (40) with A†

+
replaced by

A+(a, c), with A†
+

(a) = A+(a, c†).
8Significantly, the coefficient of the pre-exponential term linear in z is positive in (41) and negative in (42).
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5 The weak-coupling limit, µ → 0+

5.1 Näıve time-dependent analysis

For reasons of notational convention, we set µ = ε in this section, and consider the behaviour of
propagating fronts in (26), (27) for 0 < ε ≪ 1. It should be clear how the nonlinearity f(u; a) could
be generalised; we shall again limit ourselves to the cubic form defined by (2).

Returning to the notation uj(t), consider, for definiteness, the following initial data:

uj(0) = 1, j 6 0, uj(0) = 0, j > 0. (48)

Then uj ∼ 1 for j 6 0 holds as ε → 0 for all time, and setting uj ∼ εjvj for j > 0, t = O(1) gives

dv1

dt
= 1 + v1,

dvj

dt
= vj−1 + vj , j > 1, (49)

and so

v1 = et − 1, vj = (−1)j

(

1 − et

j−1
∑

m=0

(−1)m tm

m!

)

. (50)

Thus u1 becomes of O(1) on the timescale t1 = O(1), where

t = ln(1/ε) + t1, (51)

with leading order balance9

du1

dt1
= u1(1 − u1)(1 + u1/a), (52)

with u1 ∼ et1 as t1 → −∞, and hence u1(t1) is given by

ln(u1) −
a

a + 1
ln(1 − u1) −

1

a + 1
ln(1 + u1/a) = t1. (53)

In (50), the final term in the summation dominates for t ≫ j, so application of Stirling’s formula
gives

uj ∼ εjettj−1

√
2πjjj−1e−j

, for t ≫ j ≫ 1. (54)

Setting j = ct, it is required for (54) to be of O(1) that

c (ln(1/ε) + ln(c) − 1) ∼ 1, (55)

which corresponds exactly to eliminating λ∗ in (30), as might be expected.
Subsequent lattice points (j > 1) are activated on timescales tj = O(1), where

t = Tj(ε) ln(1/ε) + tj , Tj(0) = j, (56)

from which the wavespeed will be inferred via c(ε) = j/Tj(ε) ln(1/ε); then

duj

dtj
= uj(1 − uj)(1 + uj/a), (57)

and10 uj ∼ etj as tj → −∞, so that uj = u1(tj). That the I.V.P. (57) is identical to (52) corresponds
to the solutions approaching a waveform of fixed profile and wavespeed

c ∼ 1/ ln (1/ε) as ε → 0+. (58)

9Here we assume a = O(1); the behaviour differs significantly for a = O(ε) – see §5.3 below.
10Setting the coefficient of the exponential to unity in the initial condition requires appropriate choice of the

O (1/ ln(1/ε)) contribution to Tj(ε).
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Thus, once activated, each lattice point in turn activates its neighbour after a fixed timestep ∆t ∼
ln (1/ε), corresponding to a simple cellular automaton. The analysis above gives little insight into
whether the mechanism of wavespeed selection is of pulled or pushed type (even though (55) has
the same asymptotic behaviour as c∗(ε)). For example, (49) is independent of the nonlinearity while
(57) is not; more substantially, the use above of (49) (the linearised behaviour ahead of the front) is
consistent with pulled behaviour (and we shall find that this indeed occurs for a = O(1)), whereas
the discrete-time and two-state (uj = 0 or uj = 1) cellular automaton just referred to would have
uj ≡ 0 ahead of the wavefront, which might be interpreted as requiring pushed behaviour (which
will arise below for a logarithmically small in ε). The transition between pulled and pushed fronts
proves delicate to analyse and is therefore treated in some detail below (see §5.4).

5.2 Travelling-wave preliminaries

We now consider in more detail the small-µ asymptotics of travelling waves in the system (26), and
their propagation speed. From (4), with µ replaced by ε, it follows that for c = O(1) the real roots
λ+ > λ− have

λ− ∼ 1/c, λ+ ∼ ln (1/ε) , (59)

so the faster decaying case, at least, exhibits very rapid decay in z in the limit ε → 0.
It will prove useful in the sequel to introduce the slowness s = 1/c and the distinguished limit

that includes the repeated-root (pulled-front) case corresponds to σ = O(1), where

σ = εses, (60)

i.e.

s ∼ ln(1/ε)− ln (ln(1/ε)) + ln(σ). (61)

Since λ± are both large in this regime, (4) can be approximated (to all orders in ln(1/ε)) by

εeλ ∼ λc − 1, (62)

i.e., setting λ = s + Λ,
σeΛ ∼ Λ, (63)

the repeated-root case (5) having Λ ∼ 1, σ ∼ 1/e.
We now discuss the travelling-wave behaviour in the two regimes implicitly identified above,

namely (i) a pushed case, c† = O(1) and (ii) σ = O(1), the former being significantly simpler but of
less import for our purposes, in the sense that it resides firmly in the pushed-front regime.

5.3 a = O(ε)

Pushed fronts with c† = O(1) have a = O(ε). Here we first analyse an inner problem, which involves
setting a = ε/α and z = εc†ξ to give at leading order for ξ = O(1)

dU0

dξ
+ αU2

0 (1 − U0) = 0, (64)

with U0 → 1 as ξ → −∞, U0 → 0 as ξ → +∞, and U0(0) = 1/2. On straightforward integration,
the solution may be obtained in implicit form as

1

U0
− ln

(

U0

1 − U0

)

= αξ + 2 (65)

with limiting behaviour
U0 ∼ 1/αξ as ξ → +∞. (66)

Such algebraic decay is usually, but not here, associated for such nonlinearities with slowly decaying
initial data generating waves travelling faster than the minimal speed.
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The outer scaling sets z = c†ζ, U = εV whereby11

dV0

dζ
+ V0(1 + αV0) =

{

−1 0 < ζ < s

0 ζ > s
(67)

and, as ζ → 0+, V0 ∼ 1/αζ. The solution to (67) decays as e−ζ as ζ → ∞ for almost all s,
corresponding to first of (59). To obtain a pushed front we thus require that s be determined such
that the leading-order solution satisfies

V0 = 0 at ζ = s, V0 ≡ 0 for ζ > s. (68)

Hence

V0 =











1
2α

(√
4α − 1 cot

(

(
√

4α − 1) ζ/2
)

− 1
)

, α > 1/4;
4
ζ − 2, α = 1/4;
1
2α

(√
1 − 4α coth

(

(
√

1 − 4α) ζ/2
)

− 1
)

, α < 1/4,

(69)

so that

s(α) ∼











2√
4α−1

tan−1
(√

4α − 1
)

, α > 1/4;

2, α = 1/4;
2√

1−4α
tanh−1

(√
1 − 4α

)

, α < 1/4,

(70)

thereby providing explicitly the pushed speed (via c = 1/s) in terms of the detuning parameter in
this regime (recall, a = ε/α).

As α → +∞ we have

V0 ∼ 1√
α

cot(
√

αζ), s ∼ π

2
√

α
, c† ∼ 2

√
α

π
, (71)

this limit corresponding to the case in which the nonlinearity is quadratic, rather than linear, as
u → 0, in which case it is trivially clear that the front must be nonlinearly selected (i.e. pushed);
see also Appendix A. As α → 0+

V0 ∼ 1

α

e−ζ

1 − e−ζ
for ζ = O(1); V0 ∼ 1

α
e−ζ − 1 for ζ = ln(1/α) + O(1), (72)

and

s ∼ ln(1/α), c† ∼ 1

ln(1/α)
. (73)

Because V = o(1) for ζ > s, describing the transition to the exponential decay associated with λ+

in (59) requires significantly more involved asymptotics, which we shall not pursue. In summary, we
have shown here that a pushed front occurs for µ → 0+, a = O(ε); setting a = ε/α the leading-order
expressions for c†(a, µ) are

c†(ε/α, 0) =

√
1 − 4α

2

1

tanh−1(
√

1 − 4α)
, α < 1/4;

c†(4ε, 0) = 1/2, α = 1/4;

c†(ε/α, 0) =

√
4α − 1

2

1

tan−1(
√

4α − 1)
, α > 1/4.































(74)

A comparison of these results, and of the pulled ones (4), (5), with the speed observed in numerical
simulations of (1), (2) is shown in Figure 3; the agreement is excellent other than in an intermediate
range of a that we address in the next subsection.

11The ‘−1’ in (67), which arises from the U(z − 1) term in (26), is the only leading-order contribution of the
difference operator in (26) to enter either of these regions.
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Figure 3: Comparison of wavespeeds obtained from numerical solutions to (1), (2) (solid line) against
the pushed estimate (74) (dotted line) and exact pulled speed given by (4), (5), for µ = 10−4.

5.4 a = O(1)

We shall also in fact cover the regime a = O(1/ ln(1/ε)), which proves to be the most important of
all, in this subsection. We first consider the pulled case with σ = O(1) in (60). Setting z = c∗ζ,
with

c∗ ∼ 1

ln (1/ε)
≪ 1, s ∼ ln (1/ε) ≫ 1, (75)

(see (61)) gives

ε (U(ζ + s) − 2U(ζ) + U(ζ − s)) +
d

dζ
U(ζ) + f(U(ζ); a) = 0. (76)

Hence, setting
U ∼ U0(ζ) + εU1(ζ) as ε → 0+ with ζ = O(1) (77)

we have
dU0

dζ
+ f(U0; a) = 0, U0(0) = 1/2, (78)

so that, for the nonlinearity (2), U0 is given in implicit form by

U0

(1 − U0)a/(a+1)(U0 + a)1/(a+1)
=

1

(1 + 2a)1/(a+1)
e−ζ , (79)

with far-field behaviour
U0 ∼ K(a)e−ζ as ζ → +∞, (80)

where

K(a) =

(

a

1 + 2a

)1/(a+1)

. (81)

Moreover,

−2U0 + 1 +
dU1

dζ
+ f ′(U0)U1 = 0, U1(0) = 0 (82)

so that U1 ∼ −1 as ζ → +∞.
For z = O(1) with 0 < z < 1, the contributions for which we need to account follow from the

balance (which we continue to write in terms of ζ to make the matching into ζ = O(1) transparent)

ε +
dU

dζ
+ U = 0 (83)

(because U(ζ − s) ∼ 1, U(ζ), U(ζ + s) ≪ 1 and f(U ; a) ∼ U) so that

U ∼ K(a)e−ζ − ε. (84)
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In the remaining regions, the inequalities U(ζ + s) ≪ U(ζ) ≪ U(ζ − s) ≪ 1 hold, so that

εU(ζ − s) +
d

dζ
U(ζ) + U(ζ) = 0 (85)

provides the relevant balance, and we set12

U(ζ) = e−ζV (z), (86)

to give
d

dz
V (z) + σV (z − 1) = 0. (87)

We can now appeal directly to the analysis of Appendix B, which is devoted to (87) with z = ξ+1.
The initial data in 0 < ξ 6 1 follow13 from (84); adopting (111) with ν = 0 and ν = s, and using
(114), we then find that14

V (z) ∼ 1

1 − λ−

(

K(a) − ε
λ− + seλ−+s

λ− + s

)

e−λ−z, as z → +∞. (88)

It follows from (110) that λ− < 1, while s ≫ 1, so the sign of the coefficient in (88) is determined
by that of15 (using (60) and (110))

κ(λ−; a) ≡ K(a) − λ−
s

. (89)

It remains to use (89), with K(a) defined by (81), to infer the value of σ. For given λ− (and
hence σ), if κ > 0 one has slow decay associated with the initial data having behaviour proportional
to exp(−λ−j) as j → ∞ (with λ− here given by (4)). It is clear that κ is a decreasing function of
λ−, the latter being maximal in the repeated-root case, i.e. at λ− = 1. If κ(1; a) > 0, we infer that
the front is pulled, with (114) being modified in the obvious way (cf. (37)) due to ρ = −1 being a
second-order pole when σ = 1/e; however, if κ(1; a) < 0 the minimum-speed non-negative wave will
be that for which

κ(λ−; a) = 0, (90)

corresponding to the wave being of pushed class. Since s ∼ ln(1/ε), the condition (90) requires that
a ≪ 1, and hence, in view of (81), K(a) = a + O(a2) and16 a = O(1/ ln(1/ε)). Hence, at transition,
we have

aT ∼ 1

ln(1/ε)
as ε → 0+, (91)

and the pushed fronts that occur for a < aT have (using (110))

λ− ∼ a ln (1/ε) , σ ∼ a ln (1/ε) e−a ln(1/ε) (92)

and hence, from (61),
s ∼ ln(1/ε) − a ln(1/ε) + ln a. (93)

12That the other terms from the central difference operator are negligible in (85) follows from the factors e−s arising
from the transformation from U to V .

13Because ζ ≪ s in (78), this fully nonlinear region makes no leading-order contribution to the integral in (109),
though the contribution it does make is only logarithmically smaller: self-consistency checks incorporating such
correction terms have been undertaken to confirm that they do not lead to the expansions derived in this section
becoming invalid in the regimes considered.

14The notation λ− is that of Appendix B, not that above; the two usages of λ± are in correspondence, however.
15It will be clear by now that we are, in the interests of brevity, including in a number of such expressions terms

that may not be of the same order. We affirm, in line with the footnote before last, that the analysis is nevertheless
not ad hoc: that the various terms that contribute to the final conclusions (and only such terms) have each been
retained has been subject to post hoc analysis; the linearity of (87) plays an important part in such considerations.

16Again, it can be confirmed that the above expressions remain valid at leading order under this scaling, notwith-
standing the title of this subsection.
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so that

c†(a, ε) ∼ 1

ln(1/ε)
+

a

ln(1/ε)
− ln a

ln2(1/ε)
. (94)

It is clear from (91) and (93) that, to these orders, ds/da = 0 at a = aT , consistent with the analysis
of §4 (recalling that c = 1/s). Moreover, formally setting a ≪ 1/ ln (1/ε) in (93) gives

s ∼ ln(a/ε), c† ∼ 1

ln(a/ε)
, (95)

thereby matching successfully with the regime analysed in §5.3 (see (73)).
Much of the analysis of pushed fronts (notably in Appendix B) here relies, unusually, on lin-

earisation ahead of the wavefront; the nonlinear profile from (79) feeds through only in the small-a
behaviour of K(a) in (81). We observe that the propagation speed is rather insensitive here to the
values of ε and of a, and hence even to whether the front is pulled or pushed (compare (31) and
(94)), making the numerical identification of the transition particularly challenging.

6 Numerical results

In this section, we outline our numerical approach and present further simulations complementing,
and comparing the observed wave propagation speed in (1), (2) to, the asymptotic results provided
above, thereby investigating a wide range of parameter values.

We consider a domain j = 1 . . . N , and the system of N ODEs is solved using the initial value
problem solver ode15s in MATLAB with Neumann-type boundary conditions; i.e. u0 = u2, uN+1 =
uN−1. Initial conditions comprise a small region of the stable state uj(0) = 1, j ∈ [1, 50], adjacent to
the unstable (trivial) steady state in the remainder of the domain. We define the wavefront position
to be the lattice position j given by {max j ∈ N |uj > 0.5}; the speed of propagation is defined by
(t∗j+1 − t∗j )

−1, where t∗j is the time at which each node attains the wavefront value, uj = 0.5. We
remark that in order to obtain accurate wavespeed estimates, we employ a relatively large domain
(we choose a lattice of 5000 nodes in our numerical simulations); however, the above numerical
approach is significantly more accurate than the näıve method of calculating the speed directly from
the position of the wavefront, which is adversely affected by the fact that the wave then moves in
discrete jumps.

Figure 4 illustrates the propagation speed c of a travelling wave observed in numerical simulations
of (1), (2), under variation of the parameters a and µ. Figure 4(a) illustrates the dependence for
various a. More instructively, Figure 4(b) indicates two distinct regimes: for a sufficiently large, the
wavespeed is insensitive to the value of a, in accord with expectations; for smaller a the wavespeed
varies with a in correspondence with pushed-front behaviour.

Figures 5–9 explore further how the observed wavespeed compares with the asymptotic predic-
tions. Figure 5 illustrates the applicability of the large-µ results. The deviation of the numerics
from the pushed-front expression (24) for a small is noteworthy and is a consequence of (24) ceasing
to be valid for µ = O(1/a), as captured by the analysis of Appendix A. Figure 6 complements
Figure 3 in exploring in more detail the applicability of the asymptotic results of §5.3 for small µ,
emphasising in particular, through the use of a linear scale, the relative portions of parameter space
in which the different estimates apply. Figure 7 applies the results of §5.4 in the intermediate regime
in which Figures 3 and 7 show deviation between numerics and asymptotics; given the logarithmic
dependence of the asymptotics it is unsurprising that the quantitative agreement here is not good
(numerically, reducing µ further would represent a significant challenge). The qualitative agreement
is, however, reasonable given those issues and that the asymptotic expressions are derived on the
basis that a = O (1/ ln(1/µ)): in Figure 7 the pulled speed is given by the asymptotic expression (31)
rather than the exact result used in Figure 3, explaining the relatively poor agreement in the pulled
regime – if both pulled and pushed asymptotic results are translated upwards in accordance with
the exact pulled speed, the quantitative agreement is significantly improved. Figure 8 demonstrates
the behaviour for µ = O(1), giving the comparison between numerical and analytical results (the
latter are available when 0 < a < aT only for 0 < a ≪ 1).
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Figure 4: Graphs indicating the wavespeed c observed in numerical simulations of equation (1)
plotted as a function of the parameters (a) µ and (b) a, for specific values of a, µ, respectively.
The arrows indicate the direction of increasing a and µ in each case, which take the specific values
10−4–10 in 20 logarithmically spaced intervals.
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Figure 5: Comparison of wavespeeds obtained from numerical solutions to (1), (2) to pushed and
pulled speeds µ = 10. Solid curve: numerical solutions; dashed curve: pulled speed; dotted curve:
pushed speed, both from (24), scaled by

√
µ.

Figure 9 focusses on aT (µ), showing the asymptotic expressions and an attempt at a numerical
criterion to identify this cross-over point (by isolating pairs (a, µ) for which the numerically obtained
speed deviates from that given by (4), (5) by less than 1%). Given the insensitivity of the wavespeed
at small µ with a ≫ µ to whether the front is pulled or pushed, the quality of the agreement for
small µ is unsurprising, but that for large µ is encouraging.

7 Discussion

In this study, we have considered in detail the propagation of monotonic travelling wave solutions to
a spatially-discrete diffusion equation with cubic nonlinearity on a one-dimensional integer lattice.
The focus of this work was on characterising, for the first time, the transition between so-called
‘pulled’ (where the propagation speed is characterised by the leading-edge behaviour) and ‘pushed’
(the entire nonlinear wave profile determines the wavespeed) fronts, under variation of the coupling
strength µ and of the detuning parameter a that appears in the nonlinear term. While results
characterising the transition between pushed and pulled fronts in the continuum version of the
equation studied herein are well established (see e.g. Hadeler and Rothe [20], Stokes [21] and Rothe
[27]), and the linearly-selected speed of travelling waves in discrete systems is straightforward to
obtain, we are not aware of previous detailed results for pushed waves in discrete equations.

In summary, we have the following. For µ = O(1), neither aT (µ) nor c†(a, µ) are available
analytically. However, the following general results hold.
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Figure 6: Comparison of wavespeeds obtained from numerical solutions to (1), (2) (solid lines)
against asymptotic pushed speeds (74) (dotted lines) and exact pulled speed (4), (5) (dashed lines).
The curves marked with circles are for µ = 10−4, and those with diamonds for µ = 6 × 10−4.
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Figure 7: Comparison of the asymptotic speeds for pushed (94) (dotted line) and pulled (31) (dashed
line) waves, with numerical simulation results (solid line) for an intermediate range of a and µ = 10−4.
The figure also illustrates the tangency of the pulled and pushed curves at the transition point.

(a) cmin(a, µ) = c∗(µ) for a > aT (µ). c∗(µ) > 0 is given exactly by (see (4), (5))

λ∗c∗ = 2µ(cosh(λ∗) − 1) + 1, c∗ = 2µ sinh(λ∗), (96)

or, equivalently, by the transcendental equation

c∗ ln

(

c∗ +
√

c∗2 + 4µ2

2µ

)

=
√

c∗2 + 4µ2 − 2µ + 1. (97)

(b) cmin(a, µ) = c†(a, µ) ∼ 2
π

√µ
a , as a → 0+ at fixed µ, this following from (106).

Figure 8 compares these results to the numerical ones.

The asymptotic results in terms of µ can be summarised as follows. Two distinguished limits
arise when µ ≪ 1, in which case aT (µ) ∼ 1/ ln(1/µ).
(I) a = O(µ) (pushed)

c†(a, µ) ∼























√
(4µ/a)−1

2
1

tan−1

“√
(4µ/a)−1

” , 0 < a < 4µ;

1/2, a = 4µ;√
1−(4µ/a)

2
1

tanh−1
“√

1−(4µ/a)
” , a > 4µ.

(98)

See Figures 3 and 6 for comparison of these results and of (97) to the numerical ones.
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Figure 8: Comparison of wavespeeds obtained from numerical solutions (solid lines) with the pulled
speed from (4), (5) (dashed lines) and the small a behaviour of the pushed speed c† ∼ 2

√

(µ/a)/π
(dotted lines) given by (71), for µ = 0.43 (bottom), 1.6, 3 (top).
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Figure 9: Contours in a, µ-space indicating the transition between pushed and pulled wavefronts.
The solid line demarks the set of parameter values for which the pulled speed (4), (5) provides a
good estimate of the speed observed in numerical simulations: for parameter values lying to the
right of this curve, (4), (5) deviates from the numerical speed observed in numerical simulations by
less than 1%. Also shown is the transition contour given by (91) (valid in the weak-coupling limit
µ ≪ 1; dotted line) and the transition value aT = 1/2 (pertaining to the PDE (7); dashed line).

(II) a = O (1/ ln (1/µ)) (transition)

c†(a, µ) ∼ 1

ln(1/µ)
+

a ln(1/µ) − ln a

ln2(1/µ)
, 0 < a ln(1/µ) < 1; (99)

c∗(µ) ∼ 1

ln(1/µ)
+

ln ln(1/µ) + 1

ln2(1/µ)
, a ln(1/µ) > 1; (100)

the latter expression for c∗ of course (because pulled speeds are independent of a) also holds for
a > O(1).
Figure 7 is devoted to a comparison in this regime.

For µ ≫ 1 we instead have the following, with aT (µ) ∼ 1/2.
(A) a = O(1/µ) (pushed)

c†(a, µ) ∼ ĉmin(aµ)/a (101)

where ĉmin is determined as in Appendix A via (104).
(B) a = O(1) (with c scaled as in (26)); see Figure 5 for a comparison.

c†(a, µ) ∼
(√

2a + 1/
√

2a
)√

µ, 0 < a < 1/2 (pushed); (102)

c∗(µ) ∼ 2
√

µ, a > 1/2 (pulled). (103)
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Figures 2 and 5 illustrate the applicability of these results.
The correction terms to the asymptotic results (b), (I), (A) and (B) are algebraic in the relevant

small parameter, while those in (II) are only logarithmically small; this distinction is clearly reflected
in the comparisons above with the numerical results.

We note that in the weak-coupling limit analytical expressions are thus available for the wavespeed
in both pulled and pushed regimes and, unlike those for the continuum limit, the latter can relatively
easily be generalised to other forms of nonlinearity. It is important to stress that the pulled speed
is available through the transcendental expression in (a) for arbitrary µ and is independent of a,
depending only on the problem linearised about u = 0; by contrast, the pushed speed is much more
challenging to obtain and the transition point aT (µ) is extremely difficult to get at, even numeri-
cally (particularly given that the transition between pulled and pushed occurs rather smoothly, as
described in §4).

A number of conjectures warranting rigorous investigation, such as that aT (µ) is an increasing
function of µ (contrast Appendix C) arise naturally from this work. Similarly, obvious potential
extensions come to mind, the higher-dimensional generalisation being the subject of current study.
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Appendices

A The limit a → 0+ in (2)

The system (1), (2) contains two parameters, µ and a; the bulk of this paper focusses on the
dependence on the former, while here we briefly address the latter. The limit a → +∞ is a regular
one in which the ‘u/a’ term in f(u; a) is simply disregarded at leading order and the front is a pulled
one (that the front is pulled when a → +∞ for any µ is a conjecture based on the results above; a
stronger conjecture also suggested by our results is that aT (µ) is an increasing function of µ with
aT (∞) = 1/2, and aT (µ) ∼ 1/ ln(1/µ) as µ → 0+). We are therefore concerned here with the limit
a → 0+ when pushed fronts are to be expected.

If we set µ = µ̂/a, c = ĉ/a and take the limit a → 0, (26) becomes

µ̂ (U(z + 1) − 2U(z) + U(z − 1)) + ĉ
dU(z)

dz
+ U2(z)(1 − U(z)) = 0 (104)

and it is clear a priori that the wave must then be pushed (the linearisation of f(u) being trivial);
moreover, absorbing a by the above rescaling implies

cmin(a, µ) ∼ ĉmin(aµ)/a as a → 0+, µ = O(1) (105)

and the preceding analyses of pushed fronts imply with minor modifications that

ĉmin(µ̂) ∼
√

µ̂/2 as µ̂ → +∞, ĉmin(µ̂) ∼ 2
√

µ̂/π as µ̂ → 0+ (106)

(cf. (22) and (74) as α → +∞). It is noteworthy in (106) that ĉmin scales with µ̂ in the same fashion
in both limits.

The scaling result (105) does not, however, apply when µ is small with respect to a. For µ = O(a)
the distinguished limit in §5.3 applies, and a further regime with µ exponentially small in a gives
the transition from pushed to pulled fronts, as in §5.4. Thus, while for a > 1/2 fronts are pulled for
any µ, for small a pushed fronts occur except in a very small region of µ parameter space.
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B A linear differential-difference equation

The differential-difference equation

d

dξ
v(ξ + 1) + σv(ξ) = 0 (107)

plays a central role in §5.4 and warrants brief separate discussion, not least because it constitutes
a rare instance in which the appropriate treatment of a linearised problem in such a wavespeed-
selection analysis is not simply the Liouville-Green (or JWKB) approximation. The notation in this
appendix differs from elsewhere.

Introducing the Laplace transform

v̂(ρ) =

∫ ∞

0

v(ξ)e−ρξ dξ, v(ξ) =
1

2πi

∫ i∞

−i∞
v̂(ρ)eρξ dρ, (108)

(the poles of v̂(ρ) have R(ρ) < 0) gives

(ρeρ + σ)v̂(ρ) = v(1) + ρeρ

∫ 1

0

v(ξ)e−ρξ dξ. (109)

The poles of v̂ thus occur at ρ = −λ with

λe−λ = σ (110)

(cf. (63)), so for σ < 1/e there are two (real) roots for λ that we denote here by λ− and λ+, with
0 < λ− < λ+, and it is easy to show that the complex roots all have real part larger than λ+.

Equation (107) requires initial data for 0 6 ξ 6 1 and for our purposes in §5 it suffices to consider
the case

v(ξ) = eνξ for 0 6 ξ 6 1 (111)

for constant ν, and it then follows from (109) that

(ρeρ + σ)v̂(ρ) =
ρeρ − νeν

ρ − ν
. (112)

If ν = −λ, with λ satisfying (110), we have

v̂(ρ) = 1/(ρ + λ), v(ξ) = e−λξ, (113)

as is clear beforehand. More significantly for our purposes, the far-field behaviour

v(ξ) ∼ λ− + νeλ−+ν

(1 − λ−)(λ− + ν)
e−λ−ξ, as ξ → ∞ (114)

follows from (112) as a residue contribution; suppressing such a slowly decaying term is a central
ingredient in the selection mechanism for a pushed front in §5.4.

C Pulled and pushed waves in a discrete diffusion equation
with nonlinear coupling

In this appendix, we show that travelling wave speeds for (1), with nonlinearity given by (2), may be
constructed explicitly in both the pushed and pulled regimes in the case for which constant coupling
strength is replaced by the nonlinear function

µ =
µu2

j

uj+1uj−1
, (115)
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in which µ is constant. The nonlinearity (115) converges to the constant-coupling case in the
continuum (slowly varying) limit and is otherwise mathematically convenient, as we shall highlight
below.

Travelling waves U(z), propagating at speed c obey

µU2(z)

U(z + 1)U(z − 1)
(U(z + 1) − 2U(z) + U(z − 1)) + c

dU(z)

dz
+ f(U(z); a) = 0. (116)

C.1 Stable–unstable connections

I Pulled waves Because
U(z) ∼ e−λz z → +∞ (117)

has µ ∼ µ in (115), the pulled wavespeed c∗(µ) is again given by (4), (5).

II Pushed waves Wave propagation speeds determined by the whole nonlinear wavefront may
be obtained by the ansatz (which motivated (115) in the first place)

U(z) =
1

V (z)
, V (z) = 1 + eλz . (118)

We thereby obtain

cV (z)
dV (z)

dz
−µ (V (z)V (z + 1) − 2V (z + 1)V (z − 1) + V (z)V (z − 1))−(V (z)−1)

(

V (z) +
1

a

)

= 0,

(119)
and hence

c†λ† = 2µ
(

cosh(λ†) − 1
)

+ 1, c†λ† = 1 +
1

2a
, (120)

with a pushed front occuring when λ† > λ∗; λ†(a, µ) and c†(a, µ) can be determined explicitly in
the form

λ† = ln

(

1 +
1 +

√
1 + 8aµ

4aµ

)

, c† = (1 + 1/2a)/λ†, (121)

and the transition relationships λ† = λ∗, c† = c∗ imply that aT (µ) is given by

2aT + 1 =
√

1 + 8aT µ ln

(

1 +
1 +

√
1 + 8aT µ

4aT µ

)

. (122)

Equation (116) is evidently not of the class discussed in Appendix D; moreover, setting

U(z) ∼ e−λ∗zW (z) (123)

in (116) with c = c∗ and W (z) slowly varying yields the dominant balance

2(cosh(λ∗) − 1)

W

(

(

dW

dz

)2

− W
d2W

dz2

)

+ cosh(λ∗)
d2W

dz2
= 0, (124)

so the far-field behaviour differs from (37), and the behaviour outlined in Appendix D might not be
expected to pertain. Nevertheless, it is easy to see that ∂c†(aT , µ)/∂a = 0 also holds in this case.

Equation (121) implies

c† ∼ 1

2a ln(1/2aµ)
as a → 0+, c† ∼

√

2aµ as a → +∞, (125)

the former being consistent with the scaling argument embodied by (105) and the latter correspond-
ing to the continuum limit. More importantly,

c† ∼ (1 + 1/2a)/ ln(1/2aµ) as µ → 0+, c† ∼
(√

2a + 1/
√

2a
)√

µ as µ → +∞, (126)
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Figure 10: The transition contour aT (µ) (solid line) as given by (122), separating regions of param-
eter space in which pulled and pushed fronts arise in (1) with coupling strength and nonlinearity
given by (115) and (2), respectively. Also shown are the results corresponding to the strong (dashed
line) and weak-coupling (dotted line) limits (127).

and it follows that
aT ∼ ln(1/µ)/2 as µ → 0+, aT ∼ 1/2 as µ → +∞; (127)

the latter is as expected from the continuum limit, but the former implies aT → +∞ as µ → 0+,
i.e. the opposite behaviour from that in §5.4. Thus the analysis of (119) is counterproductive in terms
of gaining insight into (26) – it does, however, reinforce the point that intuition into whether pushed
or pulled behaviour is to be expected is hard to come by in the weakly-coupled case. Figure 10 shows
the curve (122) separating pushed and pulled waves, together with the weak- and strong-coupling
limits (127). The offset of the latter for µ ≪ 1 illustrates further the implications of logarithmic
terms in the associated asymptotic expansions (here through closed-form expressions, in contrast to
§5.4).

C.2 Stable–stable connections

For completeness, we exploit the analytic tractability of (115) to address this case also. For a
connection between the stable states U = 1,−a (stable for a > 0), representing the propagation of
the state U = −a overrunning U = 1 (and vice versa, denoted Ũ) we set

U(z) = 1 − 1 + a

V (z)
, Ũ(z) = −a +

1 + a

V (z)
, (128)

where V (z) is defined in (118). In each case, the wavespeed and decay rate may be obtained as in
§C.1. The resulting wavespeeds are

c± = ± 1

2λ

(

a − 1

a

)

, (129)

where c+ corresponds to the wave U(z) and c− to Ũ , and the decay rate λ(µ, a) is given in each case
by

λ(µ, a) = cosh−1

(

1 +
(a + 1)2

4aµ

)

; (130)

indeed the ostensibly distinct solution ansätze (128) in fact represent the same propagating front,
moving in opposite directions.

D The generic pushed/pulled transition

Here we revisit briefly the analysis of §4 in a much more general setting. We consider the travelling-
wave problem

P

(

d

dz

)

U + c
dU

dz
+ f(U ; a) = 0 (131)
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for a pseudo-differential operator with symbol P , whereby

P

(

d

dz

)

e−λz = P (−λ)e−λz (132)

and the analysis henceforth will for the most part depend on P only in the form of the function
P (−λ); for the discrete problem (1), P (−λ) is

P (−λ) = 2µ(cosh(λ) − 1). (133)

We again let
f(u; a) = u + o(u) as u → 0 (134)

and assume P and f are such that for any given c > 0 a unique connection satisfying

U → 1 as z → −∞, U → 0 as z → +∞, U(0) = 1/2 (135)

exists. As z → +∞ we will in general have (39), where λ is a root of

P (−λ) − λc + 1 = 0 (136)

with smallest real part. The repeated root case has c∗ and λ∗ determined by

P (−λ∗) − λ∗c∗ + 1 = 0, −P ′(−λ∗) − c∗ = 0, (137)

in which case U satisfies (37). The transition value a = aT is given by A(aT ) = 0 with, generically,
B(aT ) > 0, and we again take the dependence of f upon a to be such that a pulled front arises for
a < aT and a pushed one for a > aT .

In the Liouville-Green approach (14), we have

∂φ

∂t
+ P

(

−∂φ

∂x

)

+ 1 = 0, F − η
dF

dη
+ P

(

−dF

dη

)

+ 1 = 0; (138)

on the envelope solution to the second of these (i.e. the Clairaut equation)

0 = −P ′
(

−dF

dη

)

− η (139)

holds, so by (137) it follows that F = 0 on η = c∗, dF/dη = λ∗, as is to be anticipated. Corre-
spondingly, the expansion-fan solution of the first of (138), parameterised by q = ∂φ/∂x (which is
constant on rays) is

x = −P ′(−q)t, φ = − (qP ′(−q) + P (−q) + 1) t, (140)

and determining where φ = 0 gives a further derivation of the same result.
Again setting a = aT + δ, λ ∼ λ∗ − δΛ and adopting the expansion (43) implies

P

(

− d

dx

)

U0 + c∗
dU0

dz
+ f(U0; aT ) = 0, P

(

− d

dx

)

U1 + c∗
dU1

dz
+

∂f

∂u
(U0; aT )U1 = −∂f

∂a
(U0; aT ),

(141)
from which we recover (44). Equations (136), (137) imply

1

2
P ′′(−λ∗)Λ2 = λ∗C; (142)

a pushed front (whereby δ < 0) has C > 0, Λ > 0 (and hence P ′′(−λ∗) > 0) so by (40)

U † ∼
(

A†
+(aT ) + δ

(

A†′
+(aT ) + ΛA†

+(aT )z
))

e−λ∗z as δ → 0−, z → +∞ (143)

and consistency with (44) demands

A†
+(aT ) = B(aT ), A†′

+(aT ) = B′(aT ), Λ = A′(aT )/B(aT ) (144)
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and hence

C =
1

2λ∗P ′′(−λ∗) (A′(aT )/B(aT ))
2
. (145)

Finally,

P

(

− d

dx

)

U2+c∗
dU2

dz
+

∂f

∂u
(U0; aT )U2 = −∂2f

∂a2
(U0; aT )−2

∂2f

∂a∂u
(U0; aT )u1−

∂2f

∂u2
(U0; aT )u2

1−C
dU0

dz
,

(146)
the last term in which dominates the right-hand side as z → +∞ and implies

U2 ∼ λ∗B(aT )C

2P ′′(−λ∗)
z2e−λ∗z as z → +∞; (147)

matching this to the corresponding term from (40) again implies (142), representing a useful consis-
tency check.

Salient features arising from the above (providing one of the motivations for this more general
analysis) include the following.

1. The wavespeed c∗ in the pulled front case, given by (137), is independent of a; this is self-
evident from the nature (134) of the linearisation, but is important to stress. Correspondingly,
in the current limit, that the pre-exponential in (37) has no term quadratic in z has the
consequence that (147) implies C ≡ 0 for a pulled front.

2. In the pulled-front case the wavespeed is accordingly known a priori from (137); solving (131)
for this wavespeed determines A(a) and B(a) in (37) and hence, through (144), (145), fully
determines the pushed-front behaviour (wherein c has in general instead to be treated as an
eigenvalue, being found as part of the solution) local to the transition.

3. The result c† − c∗ = O((aT − a)2) as a → a−
T seems to be generally applicable.
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