16 research outputs found

    A long Saharan dust event over the western Mediterrranean: Lidar, Sun photometer observations and regional dust modeling

    Get PDF
    A long Saharan dust event affected the western Mediterranean in the period 12– 28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/ DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing A ° ngstro¨m exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed A ° ngstro¨m exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20–30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ∼0.09 at 440 nm, AE ∼0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ∼0.28, AOD ∼0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated

    Remote sensing of lunar aureole with a sky camera: Adding information in the nocturnal retrieval of aerosol properties with GRASP code

    Get PDF
    The use of sky cameras for nocturnal aerosol characterization is discussed in this study. Two sky cameras are configured to take High Dynamic Range (HDR) images at Granada and Valladolid (Spain). Some properties of the cameras, like effective wavelengths, sky coordinates of each pixel and pixel sensitivity, are characterized. After that, normalized camera radiances at lunar almucantar points (up to 20° in azimuth from the Moon) are obtained at three effective wavelengths from the HDR images. These normalized radiances are compared in different case studies to simulations fed with AERONET aerosol information, giving satisfactory results. The obtained uncertainty of normalized camera radiances is around 10% at 533 nm and 608 nm and 14% for 469 nm. Normalized camera radiances and six spectral aerosol optical depth values (obtained from lunar photometry) are used as input in GRASP code (Generalized Retrieval of Aerosol and Surface Properties) to retrieve aerosol properties for a dust episode over Valladolid. The retrieved aerosol properties (refractive indices, fraction of spherical particles and size distribution parameters) are in agreement with the nearest diurnal AERONET products. The calculated GRASP retrieval at night time shows an increase in coarse mode concentration along the night, while fine mode properties remained constant.This work was supported by the Andalusia Regional Government (project P12-RNM-2409) and by the “Consejería de Educación, Junta de Castilla y León” (project VA100U14).Spanish Ministry of Economy and Competitiveness and FEDER funds under the projects CGL2013-45410-R, CMT2015-66742-R, CGL2016-81092-R.“Juan de la Cierva-Formación” program (FJCI-2014-22052).European Union's Horizon 2020 research and innovation programme through project ACTRIS-2 (grant agreement No 654109)

    Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula

    Get PDF
    Water vapor column (WVC) obtained by GOME-2 instrument (GDP-4.6 version) onboard MetOp-A satellite platform is compared against referenceWVC values derived from GPS (Global Positioning System) instruments from 2007 to 2012 at 21 places located at Iberian Peninsula. The accuracy and precision of GOME-2 to estimate the WVC is studied for different Iberian Peninsula zones using the mean (MBE) and the standard deviation (SD) of the GOME-2 and GPS differences. A direct comparison of all available data shows an overestimation of GOME-2 compared to GPS with a MBE of 0.7 mm (10%) and a precision quantified by a SD equals to 4.4 mm (31%). South-Western zone presents the highest overestimation with aMBE of 1.9mm(17%),while Continental zone shows the lowest SD absolute value (3.3mm) due mainly to the lowWVC values reached at this zone. The influence of solar zenith angle (SZA), cloud fraction (CF), and the type of surface and its albedo on the differences between GOME-2 and GPS is analyzed in detail. MBE and SD increase when SZA increases, but MBE decreases (taking negative values) when CF increases and SD shows no significant dependence on CF. Under cloud-free conditions, the differences between WVC from GOME-2 and GPS are within the WVC error given by GOME-2

    A long Saharan dust event over the western Mediterrranean: Lidar, Sun photometer observations and regional dust modelling.

    No full text
    A long Saharan dust event affected the western Mediterranean in the period 12– 28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/ DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing A ° ngstro¨m exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed A ° ngstro¨m exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20–30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed

    A long Saharan dust event over the western Mediterrranean: Lidar, Sun photometer observations and regional dust modelling.

    No full text
    A long Saharan dust event affected the western Mediterranean in the period 12– 28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/ DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing A ° ngstro¨m exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed A ° ngstro¨m exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20–30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed

    Evaluation of Sun photometer capabilities for the retrievals of aerosol optical depth at high latitudes: the POLAR-AOD intercomparison campaigns

    Get PDF
    Accuracy requirements for aerosol optical depth (AOD) in polar regions are much more stringent than those usually encountered in established sun photometer networks, while comparability of data from different archive centres is a further important issue. Therefore, two intercomparison campaigns were held during spring 2006 at Ny-Ålesund (Svalbard) and autumn 2008 at Izaña (Tenerife) within the framework of the IPY POLAR-AOD project, with the participation of various research institutions routinely employing different instrument models at Arctic and Antarctic stations. As reported here, a common algorithm was used for data analysis with the aim of minimizing a large part of the discrepancies affecting the previous studies. During the Ny-Ålesund campaign, spectral values of AOD derived from measurements taken with different instruments were found to agree, presenting at both 500 nm and 870 nm wavelengths average values of root mean square difference (RMSD) and standard deviation of the difference (SDD) equal to 0.003. Correspondingly, the mean bias difference (MBD) varied mainly between ␣0.003 and þ0.003 at 500 nm, and between ␣0.004 and þ0.003 at 870 nm. During the Izaña campaign, which was also intended as an intercalibration opportunity, RMSD and SDD values were estimated to be equal to 0.002 for both channels on average, with MBD ranging between ␣0.004 and þ0.004 at 500 nm and between ␣0.002 and þ0.003 at 870 nm. RMSD and SDD values for Ångström exponent a were estimated equal to 0.06 during the Ny-Ålesund campaign and 0.39 at Izaña. The results confirmed that sun photometry is a valid technique for aerosol monitoring in the pristine atmospheric turbidity conditions usually observed at high latitudes

    Quantifying the respective roles of aerosols and clouds in the strong brightening since the early 2000s over the Iberian Peninsula

    No full text
    The contribution of clouds and aerosols to the decadal variations of downward surface shortwave radiation (SSR) is a current controversial topic. This study proposes a method, which is based on surface-based SSR measurements, aerosol observations, and radiative transfer simulations (in cloud-free and cloud-and aerosol-free scenarios), to evaluate cloud-aerosol (CARE), cloud (CRE), and aerosol (ARE) radiative effects. This method is applied to quantify the role played by, separately, clouds and aerosols on the intense brightening of the SSR observed in the Iberian Peninsula. Clouds and Earth's Radiation Energy Budget System (CERES) and surface-based data exhibit an increase in SSR between 2003 and 2012, exceeding +10 Wm-2 over this period for some areas of the peninsula. The calculations are performed for three surface-based sites: Barcelona and Valladolid (Spain), and Évora (Portugal). Ranges in monthly values of CARE, CRE, and ARE are (-80,-20), (-60,-20), and (-30, 0), respectively (in Wm-2). The average trends for the analyzed period of CARE, CRE, and ARE are +7, +5, and +2 Wm-2 per decade, respectively. Overall, three fourths of the SSR trend is explained by clouds, while the other one fourth is related to aerosol changes. The SSR trends explained by the clouds and aerosol radiative effects are in line with the observed reductions in total cloud cover and aerosol load (both at the surface and in the whole atmospheric column). Furthermore, the CRE values are compared against CERES data showing good agreement between both data series, although some discrepancies are observed in their trendsJosep Calbó is supported by the Spanish Ministry of Science and Innovation project NUCLIERSOL (CGL2010-18546
    corecore