300 research outputs found

    Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey

    Get PDF
    This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First, the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and Varadhan concerning the principal eigenvalue of an elliptic operator with bounded measurable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric and Sobolev inequalities using the ABP technique. This includes new proofs of the classical isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperimetric inequality in convex cones. For this last inequality, the new proof was recently found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev inequalities with weights came up by studying an open question raised by Haim Brezis.Peer ReviewedPostprint (published version

    Sharp isoperimetric inequalities via the ABP

    Get PDF
    Given an arbitrary convex cone of Rn, we find a geometric class of homogeneous weights for which balls centered at the origin and intersected with the cone are minimizers of the weighted isoperimetric problem in the convex cone. This leads to isoperimetric inequalities with the optimal constant that were unknown even for a sector of the plane. Our result applies to all nonnegative homogeneous weights in Rn satisfying a concavity condition in the cone. The condition is equivalent to a natural curvature-dimension bound and also to the nonnegativeness of a Bakry-Emery Ricci tensor. Even that our weights are nonradial, still balls are minimizers of the weighted isoperimetric problem. A particular important case is that of monomial weights. Our proof uses the ABP method applied to an appropriate linear Neumann problem. We also study the anisotropic isoperimetric problem in convex cones for the same class of weights. We prove that the Wulff shape (intersected with the cone) minimizes the anisotropic weighted perimeter under the weighted volume constraint. As a particular case of our results, we give new proofs of two classical results: the Wulff inequality and the isoperimetric inequality in convex cones of Lions and PacellaPeer ReviewedPostprint (published version

    A new proof of the boundedness results for stable solutions to semilinear elliptic equations

    Get PDF
    Copyright 2019 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to the AMS Permissions Officer at [email protected]. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).We consider the class of stable solutions to semilinear equations -Âżu=f(u) in a bounded smooth domain of Rn. Since 2010 an interior a priori L8 bound for stable solutions is known to hold in dimensions n=4 for all C1 nonlinearities f. In the radial case, the same is true for n=9. Here we provide with a new, simpler, and unified proof of these results. It establishes, in addition, some new estimates in higher dimensions —for instance Lp bounds for every finite p in dimension 5. Since the mid nineties, the existence of an L8 bound holding for all C1 nonlinearities when 5=n=9 was a challenging open problem. This has been recently solved by A. Figalli, X. Ros-Oton, J. Serra, and the author, for nonnegative nonlinearities, in a forthcoming papePeer ReviewedPostprint (author's final draft

    Stable solutions to some elliptic problems: minimal cones, the Allen-Cahn equation, and blow-up solutions

    Get PDF
    These notes record the lectures for the CIME Summer Course taught by the first author in Cetraro during the week of June 19–23, 2017. The notes contain the proofs of several results on the classification of stable solutions to some nonlinear elliptic equations. The results are crucial steps within the regularity theory of minimizers to such problems. We focus our attention on three different equations, emphasizing that the techniques and ideas in the three settings are quite similar. The first topic is the stability of minimal cones. We prove the minimality of the Simons cone in high dimensions, and we give almost all details in the proof of J. Simons on the flatness of stable minimal cones in low dimensions. Its semilinear analogue is a conjecture on the Allen-Cahn equation posed by E. De Giorgi in 1978. This is our second problem, for which we discuss some results, as well as an open problem in high dimensions on the saddle-shaped solution vanishing on the Simons cone. The third problem was raised by H. Brezis around 1996 and concerns the boundedness of stable solutions to reaction-diffusion equations in bounded domains. We present proofs on their regularity in low dimensions and discuss the main open problem in this topic. Moreover, we briefly comment on related results for harmonic maps, free boundary problems, and nonlocal minimal surfaces.Peer ReviewedPostprint (author's final draft

    Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier

    Get PDF
    In this Note, we consider the linear heat equation ut - Au= a(x)u in (0,T)xW,u=0 on (0,T)xaW, and u(0)=uº on W, where W C RN is a smooth bounded domain. We assume that a€L^loc(W) a >=0 and u>=. A simple condition on the potential a is necessary and suficient for the existence of positive weak solutions that are global in time and grow at most exponentially in time. We show that this condition, based on the existence of a Hardy type inequality with weight a(x), is "almost" necessary for the local existence in time of positive weak solutions. Applying these results to some "critical" potentials, we find new results on existence and on instantaneous and complete blow-up of solutions

    Universal Hardy-Sobolev inequalities on hypersurfaces of Euclidean space

    Get PDF
    In this paper, we study Hardy–Sobolev inequalities on hypersurfaces of Rn+1, all of them involving a mean curvature term and having universal constants independent of the hypersurface. We first consider the celebrated Sobolev inequality of Michael–Simon and Allard, in our codimension one framework. Using their ideas, but simplifying their presentations, we give a quick and easy-to-read proof of the inequality. Next, we establish two new Hardy inequalities on hypersurfaces. One of them originates from an application to the regularity theory of stable solutions to semilinear elliptic equations. The other one, which we prove by exploiting a “ground state” substitution, improves the Hardy inequality of Carron. With this same method, we also obtain an improved Hardy or Hardy–Poincaré inequality.Peer ReviewedPostprint (author's final draft

    A gradient estimate for nonlocal minimal graphs

    Get PDF
    We consider the class of measurable functions defined in all of Rn that give rise to a nonlocal minimal graph over a ball of Rn. We establish that the gradient of any such function is bounded in the interior of the ball by a power of its oscillation. This estimate, together with previously known results, leads to the C8 regularity of the function in the ball. While the smoothness of nonlocal minimal graphs was known for n=1,2—but without a quantitative bound—in higher dimensions only their continuity had been established. To prove the gradient bound, we show that the normal to a nonlocal minimal graph is a supersolution of a truncated fractional Jacobi operator, for which we prove a weak Harnack inequality. To this end, we establish a new universal fractional Sobolev inequality on nonlocal minimal surfaces. Our estimate provides an extension to the fractional setting of the celebrated gradient bounds of Finn and of Bombieri, De Giorgi, and Miranda for solutions of the classical mean curvature equation.Peer ReviewedPostprint (author's final draft
    • …
    corecore