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Abstract
We consider the class of measurable functions defined in all of Rn that give rise
to a nonlocal minimal graph over a ball of Rn. We establish that the gradient of any
such function is bounded in the interior of the ball by a power of its oscillation. This
estimate, together with previously known results, leads to the C1 regularity of the
function in the ball. While the smoothness of nonlocal minimal graphs was known for
nD 1; 2—but without a quantitative bound—in higher dimensions only their continu-
ity had been established. To prove the gradient bound, we show that the normal to a
nonlocal minimal graph is a supersolution of a truncated fractional Jacobi operator,
for which we prove a weak Harnack inequality. To this end, we establish a new univer-
sal fractional Sobolev inequality on nonlocal minimal surfaces. Our estimate provides
an extension to the fractional setting of the celebrated gradient bounds of Finn and
of Bombieri, De Giorgi, and Miranda for solutions of the classical mean curvature
equation.
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1. Introduction
In their seminal work, Caffarelli, Roquejoffre, and Savin [18] introduced and first
studied nonlocal minimal surfaces, which they defined as the minimizers of a frac-
tional perimeter functional. They were motivated by the work of Caffarelli and
Souganidis [20] on the asymptotic configurations of a threshold dynamics scheme
governed by a Lévy-type jump diffusion. Nonlocal minimal surfaces also appeared
in [45], where Imbert studied related nonlocal geometric flows arising in dislocation
dynamics in crystals. Later, Savin and Valdinoci [65] showed the relevance of nonlo-
cal minimal surfaces by proving—through �-convergence techniques—that they are
the limiting configurations for Ginzburg–Landau energies modeling phase-separation
phenomena in the presence of strongly nonlocal interactions.

Since their introduction, nonlocal minimal surfaces have attracted much atten-
tion, first and foremost on understanding their regularity and making progress toward
their classification. We refer the reader to [34], [53], [25, Section 7], and [15, Chap-
ter 6] for general introductions to this topic.

1.1. The gradient estimates
Our main result establishes the regularity—through a gradient estimate—of a partic-
ular type of nonlocal minimal surfaces: ˛-minimal graphs. To state it, let ˛ 2 .0; 1/,
and let n � 1 be an integer. Given a bounded open set � � R

nC1 and a measurable
set E �R

nC1, we define the ˛-perimeter of E inside � as the quantity

Per˛.EI�/ WD I˛.E \�;R
nC1 nE/C I˛.E n�;� nE/;

where

I˛.A;B/ WD

Z
A

Z
B

dx dy

jx � yjnC1C˛

for any two disjoint measurable sets A;B � R
nC1. If it happens that Per˛.EI�/ is

finite and Per˛.EI�/ � Per˛.F I�/ for every measurable set F � R
nC1 such that

F n�DE n�, then we call E a minimizer of the ˛-perimeter inside �, and we call
its boundary @E a nonlocal minimal surface of order ˛ in�—or simply an ˛-minimal
surface in �. For an unbounded open set �, we extend this definition by saying that
@E is an ˛-minimal surface in � if E minimizes the ˛-perimeter in every open set
compactly contained in �.

Our main result deals with a particular class of nonlocal minimal surfaces;
namely, those sets that locally minimize the ˛-perimeter inside the infinite vertical
cylinder B 0R � R over an open ball B 0R D ¹x

0 2 Rn W jx0j < Rº and that are globally
the subgraph of some function u defined in all of Rn. It states that u is smooth inside
B 0R and that, locally, the gradient of u is controlled by its oscillation.



A GRADIENT ESTIMATE FOR NONLOCAL MINIMAL GRAPHS 777

THEOREM 1.1
Let n� 1 and ˛ 2 .0; 1/. Let E �R

nC1 be the global subgraph

E D
®
.x0; xnC1/ 2R

n �R W xnC1 < u.x
0/
¯

of a measurable function u W Rn! R, bounded in B 0r for some r > 0, and assume
that @E is an ˛-minimal surface in the cylinder B 02r �R.

Then u 2 C1.B 0r/ and its gradient satisfies

krx0ukL1.B0r / � C
�
1C

oscB0r u

r

�nC1C˛
; (1.1)

for some constant C depending only on n and ˛.

Note that in (1.1), the supremum of the gradient of u in B 0r is controlled by its
oscillation in the same ball B 0r . However, this is not an estimate up to the boundary,
since @E is assumed to be ˛-minimal in the cylinder over the larger ball B 02r . In
fact, a gradient estimate up to the boundary cannot hold, by the boundary stickiness
phenomenon mentioned in Section 1.2.

The gradient bound (1.1) is the main novelty of Theorem 1.1. Once it is estab-
lished, the smoothness of the surface @E follows from the results of Caffarelli, Roque-
joffre, and Savin [18], Figalli and Valdinoci [39], and Barrios, Figalli, and Valdi-
noci [6]. Prior to this work, no gradient estimate was available, even in dimension
nD 1. On the other hand, the smoothness of such graphs was known for nD 1 and
nD 2—but without a quantitative bound—by the results of Savin and Valdinoci [66]
for nD 1, and of [39] and Dipierro, Savin, and Valdinoci [32] for nD 2. In higher
dimensions they were only known to be continuous—with no modulus of continuity
being established—by a result of [32].

That the gradient is controlled by a power of the oscillation (instead of its expo-
nential as in classical minimal graphs) is a consequence of the possibility of having
an additional weighted L1 term in one of our main results: a weak Harnack inequal-
ity for elliptic integro-differential equations on nonlocal minimal surfaces. Such a
term does not appear in the local case, and, to our knowledge, its presence was first
clearly observed, in the nonlocal flat Euclidean case, by Ros-Oton and Serra [63,
Theorem 2.2]. If one ignores this term, it is still possible to control the gradient by an
exponential of the oscillation (as in the local case) via a covering argument analogous
to that of [29, Corollary 3.2] (see the end of Section 6 for more comments on this).

As we will see in Section 1.2, a significant application of Theorem 1.1 regards
the Dirichlet or Plateau problem for nonlocal minimal surfaces in a bounded domain
when the exterior datum is a locally bounded graph. This problem is known to enjoy
existence and uniqueness. Now, by our result, it also has interior C1-regularity. Note
that the exterior datum may be discontinuous—it needs only to be the graph of a
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locally bounded function. In addition, a maximum principle from [32, Section 3]
allows one to control the right-hand side of (1.1) by the oscillation of the exterior
datum g in a large enough annulus. This leads to the gradient estimate (1.8) below, in
which the right-hand side depends only on the exterior datum.

Our proof of Theorem 1.1 relies, in its essential strategy, on two new fundamental
ingredients:
(a) the superharmonicity of the vertical component of the normal to a nonlocal

minimal graph with respect to a truncated fractional Jacobi operator, and
(b) a universal fractional Sobolev inequality on nonlocal minimal surfaces.
We will use as well three other known results:
(c) the density estimates of Caffarelli, Roquejoffre, and Savin [18],
(d) the perimeter bound of Cinti, Serra, and Valdinoci [23], and
(e) the estimate of Savin and Valdinoci [66] on the Hausdorff dimension of the

singular set of a nonlocal minimal surface.
In the following subsections we will state the results (a) and (b), and we will

outline the proof of Theorem 1.1. Briefly, point (c) will be essential to establish (b),
while (d) will play an important role in the proof of (a). Next, (b), (c), and (d) will
be used to establish, through a Moser iteration, a new weak Harnack inequality for
fractional equations on ˛-minimal surfaces. This inequality, applied to the vertical
component of the normal, thanks to (a), will lead easily to our gradient estimate.
Point (e) will be important for obtaining, through a capacitary argument, the same
bounds when u is not a priori known to be smooth.

It is worth noting that the Jacobi operator in (a) will be of order 2s D 1C ˛ > 1.
As we will comment more extensively in Section 1.6, this fact prevents us from using
a simple method of [67] and [63] to prove the fractional weak Harnack inequality.
The issue here is the lack of information available a priori on the local geometry of
nonlocal minimal surfaces, needed to control the Jacobi operator when applied to
smooth barrier functions. Thus, we are forced to run a Moser iteration, which is based
on the implementation of this technique in the nonlocal setting as first accomplished
by Kassmann (see [46], [48]) in the flat case.

It is known that ˛-minimal surfaces converge to classical minimal surfaces as
˛ " 1. This can be deduced from the results of [10], [27], and [62] (see also the more
recent references [5], [21] for the statement in the exact same terminology as ours).
For classical minimal graphs, an estimate similar to (1.1) was established by Finn [40]
for nD 2, and by Bombieri, De Giorgi, and Miranda [8] in higher dimensions (the
case nD 1 is clearly trivial for classical minimal surfaces, while this is not the case in
the fractional setting). They showed that the gradient of any solution u to the minimal
graph equation in a ball B 02r of Rn satisfies
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krx0ukL1.B0r / � exp
°
C
�
1C

supB0
2r
u� u.0/

r

�±
; (1.2)

for some dimensional constantC > 0. After their work, several new proofs of gradient
bounds similar to (1.2) were obtained, most notably in [9], [29], [49], [68], [70], and
[71].

Estimate (1.2) for classical minimal graphs was shown to be optimal in [40].
That is, the gradient cannot be controlled by a function of the oscillation growing
slower than an exponential. We do not know whether inequality (1.1) is optimal in the
fractional case. When trying to adapt the example of [40], it seems necessary to have
a better understanding of a delicate issue for nonlocal minimal graphs discovered in
[33]: the so-called boundary stickiness. In Section 1.2, we will comment further on
this issue.

As a consequence of the sharpness of (1.2) in the classical setting, the constant
C in (1.1) must blow up as ˛ " 1. To get a gradient bound uniform in ˛—of the form
(1.2), for instance—one should primarily obtain a Sobolev inequality on nonlocal
minimal graphs, such as the one that we establish in Theorem 1.5, but governed by
a constant displaying the right dependence in ˛ as ˛ " 1 when s D .1C ˛/=2 and
p D 2. This seems to be a nontrivial task, as some of the arguments of [11] and [56]
in the flat Euclidean case do not extend to surfaces.

When the graph @E is ˛-minimal in the entire space R
nC1, we establish a better

gradient bound. It differs from (1.1) in that a lower power of the oscillation of u
appears on the right-hand side of the estimate—the new power is n. Interestingly, the
exact same inequality holds for classical entire minimal graphs, as found by Bombieri
and Giusti [9]. Still, our proof gives a constant that may blow up as ˛ " 1.

THEOREM 1.2
Let n� 1 and ˛ 2 .0; 1/. Let E be the global subgraph

E D
®
.x0; xnC1/ 2R

n �R W xnC1 < u.x
0/
¯

of a locally bounded function u W Rn ! R, and assume that @E is an ˛-minimal
surface in all of RnC1.

Then u is of class C1 and there exists a constant C depending only on n and ˛
such that

krx0ukL1.B0r / � C
�
1C

oscB0r u

r

�n
(1.3)

for every r > 0.
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1.2. The Dirichlet or Plateau problem
The existence of a solution to the fractional Plateau problem in a bounded Lipschitz
domain �� R

nC1 (i.e., a nonlocal minimal surface @E in � with datum prescribed
in R

nC1 n�) was established in [18]. When � is unbounded, this result can be gen-
eralized through a diagonal compactness argument (see [52, Corollary 1.10] for the
details; see also [23] for existence results for nonlocal perimeter-type functionals with
other kernels).

In [18] it is also proved that a minimizer E of Per˛ in � satisfies (in a suitable
viscosity sense) the Euler–Lagrange equation

H˛ŒE�.x/D 0 (1.4)

at any point x 2�\@E . Here,H˛ŒE�.x/ denotes the so-called ˛-mean curvature (or
nonlocal mean curvature of order ˛) of E at a point x of its boundary, and is formally
defined by

H˛ŒE�.x/ WD P:V:
Z
RnC1

�RnC1nE .y/� �E .y/

jx � yjnC1C˛
dy; (1.5)

where the integral is meant in the standard Cauchy principal value sense.
When � is a cylinder of the form �0 � R, with �0 � R

n smooth and bounded,
and the outside datum is the subgraph of a continuous function g W Rn n �0 ! R,
it has been proved in [32] that minimizers are also subgraphs inside �0. Thus, any
minimizer E � R

nC1 is globally the subgraph of a function u W Rn! R and, as a
consequence, its ˛-mean curvature can be written as

H˛ŒE�
�
x0; u.x0/

�
D 2H˛u.x

0/

for every x0 2Rn around which u is of class C 2. Here, H˛ is the operator

H˛u.x
0/ WD P:V:

Z
Rn

G˛

�u.x0/� u.y0/
jx0 � y0j

� dy0

jx0 � y0jnC˛
; (1.6)

with G˛.t/ WD
R t
0 .1 C �

2/�.nC1C˛/=2 d� (see, e.g., [22, Section 2], [6, Section 3],
or [1] for proofs of this and of more general identities). Note that H˛u.x0/ is well
defined and finite whenever u is C 2 in a neighborhood of x0. In particular, no growth
assumption on u at infinity is needed, since G˛ is bounded.

As it will be shown in [26], the subgraph E of u is a minimizer of Per˛ in the
cylinder �0 � R if and only if u solves, in an appropriate weak variational sense,
the nonlinear equation H˛uD 0 in �0. Therefore, the Plateau problem for ˛-minimal
graphs in �0 �R is equivalent to the Dirichlet problem´

H˛uD 0 in �0;

uD g in R
n n�0;

(1.7)

for a given measurable function g WRn n�0!R.
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Problem (1.7) enjoys existence and uniqueness of solution in a suitable weak vari-
ational sense. While the existence follows from [18], the uniqueness will be proved
in [26] when �0 is a bounded open set with Lipschitz boundary and under the very
mild assumption g 2 L1loc.R

n n �0/—or even milder ones—on the exterior datum.
Theorem 1.1 of the present article provides full interior regularity for the Dirichlet
problem (1.7), giving that the solution u is of class C1 in �0. Moreover, by com-
bining estimate (1.1) with the boundedness results of [32, Section 3] (see also [26]),
we can control the gradient of u locally inside �0 by a power of the oscillation of the
outside datum g in a sufficiently large neighborhood of �0. More precisely, we have
the bound

krx0ukL1.U 0/ �
C

dist.U 0; @�0/nC1C˛
.R1C oscB0

.1CC/R1
n�0 g/

nC1C˛; (1.8)

where R1 > 0 is any radius for which �0 � B 0R1 , U 0 is any open set compactly con-
tained in �0, and C is a positive constant depending only on n and ˛. For the validity
of (1.8), the fact that the function G˛ in (1.6) is bounded plays again an important
role.

In our work we do not use expression (1.6) to establish the gradient estimate.
Instead, we work with identity (1.5) in R

nC1 and with the “ambient” metric on @E
inherited from balls in R

nC1.
For n D 1; 2, the smoothness of the solution u to (1.7) was already known

(although without a quantitative estimate) by the results of [32], [39], and [66]. In
[32] it was also established that, in any dimension, u is continuous up to the boundary
of �0 from the inside, provided g is itself continuous up to the boundary of Rn n�0.
However, as noted in [33], a solution u is rarely continuous across the boundary—
presenting instead the so-called boundary stickiness phenomenon—and may not have
bounded gradient in all of �0, even if g is smooth and bounded. In this respect, the
interior bound of Theorem 1.1 is optimal—it cannot be extended up to the boundary.
In fact, one may have whole vertical portions of the boundary @E of the subgraph
of u lying on @�0 � R (see also the forthcoming [13] for a more radical sticking
phenomenon when ˛ is small and the datum g is unbounded).

1.3. A truncated fractional Jacobi operator
Let ˛ 2 .0; 1/, and let † D @�E be the reduced boundary of a subset E of R

nC1

with locally finite perimeter (see, e.g., [35], [41], [54] for the definition of reduced
boundary and its main properties). Let �E be the unit normal vector to † pointing
outwards from E . One defines the fractional (or nonlocal) ˛-Jacobi operator J†;˛ at
a point x 2†, acting on a sufficiently smooth and bounded function w W†!R, by

J†;˛w.x/ WDL
†; 1C˛2

w.x/C c2
†; 1C˛2

.x/w.x/; (1.9)
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where, for s 2 .0; 1/, we set

L†;sw.x/ WD P:V:
Z
†

w.y/�w.x/

jy � xjnC2s
dHn.y/ (1.10)

and

c2†;s.x/ WD

Z
†

h�E .x/� �E .y/; �E .x/i

jy � xjnC2s
dHn.y/: (1.11)

See Section 2 for the definition of principal value surface integrals such as the one in
(1.10).

For the integrals in (1.9)–(1.11) to converge (with w bounded), one needs an
assumption on the behavior of † at infinity—for example, thatZ

†

dHn.y/

.1C jyj/nC1C˛
<C1; (1.12)

as required in [38, Theorem 6.1]. We point out that when† is an ˛-minimal surface in
all of RnC1, condition (1.12) is satisfied thanks to a deep result: the perimeter estimate
of [23] (see Lemma 3.3 of Section 3 below).

The fractional Jacobi operator J†;˛ was found in [28] and [38] while computing
the second variation of the fractional perimeter. Under the assumptions that †D @E
is smooth, fulfills (1.12), and has zero ˛-mean curvature inside a bounded open set
��R

nC1, it is proved in [28] and [38] that

d2

dt2
Per˛.Et I�/

ˇ̌̌
tD0
D 2

Z
@E

 .x/
�
�J†;˛ .x/

�
dHn.x/; (1.13)

for every smooth function  supported inside @E \� and with ¹Et ºt>0 being the
family of normal perturbations of E induced by  .

In order to deal with sets that minimize the ˛-perimeter only inside proper sub-
sets of R

nC1, as in our Theorem 1.1, and not to impose any restriction—such as
(1.12)—on their global geometry or on the exterior datum, in this article we introduce
a truncated version of the Jacobi operator. Given an open set ��R

nC1, we define

J�†;˛w.x/

WD P:V:
Z
†\�

w.y/�w.x/C h�E.x/� �E.y/; �E.x/iw.x/

jy � xjnC1C˛
dHn.y/: (1.14)

Observe that for �D R
nC1, we recover the ˛-Jacobi operator of (1.9)–(1.11). We

also consider the truncated fractional Laplace-type operator

L�

†; 1C˛2
w.x/ WD P:V:

Z
†\�

w.y/�w.x/

jy � xjnC1C˛
dHn.y/; (1.15)
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which will be the fundamental object of Section 6, where we establish a weak Har-
nack inequality for nonnegative supersolutions of equations having (1.15) as leading
term. In that section, we will consider more general equations involving truncated
kernels, not only the geometric ones driven by the Jacobi operator. For this analysis
to be carried out, the perimeter estimates of [23] will be crucial, in particular as they
allow the truncated integrals to be well defined. Regardless of this, in Remark 1.4 we
point out that the global Jacobi operator (1.9)–(1.11)—with no truncation—can still
be defined on hypersurfaces that minimize the ˛-perimeter only in a proper cylinder
(at least when acting on functions supported within the cylinder). This can be done
with no restriction on their global geometry or exterior datum.

The next result shows that, as a consequence of the translation invariance of equa-
tion (1.4), the normal �E to an ˛-minimal surface @E in all of RnC1 solves the frac-
tional Jacobi equation J@�E;˛�E D 0. This fact, already observed in [28, Appendix B]
for graphs, will be established in Section 4 in all details, addressing in particular the
convergence of the integrals at infinity. To do this, it will be crucial to use the perime-
ter estimates of [23].

In addition, when E is a global subgraph but only a minimizer in a vertical cylin-
der, we establish that the last component �nC1E is a supersolution of an equation driven
by the truncated fractional Jacobi operator (1.14), with� being a cylinder. This result
is new and has the advantage of requiring the ˛-minimality of E just inside a proper
subset of RnC1—a feature that will be of key importance to obtain Theorem 1.1 in
its full generality and thus to cover virtually every outside datum g in the Dirichlet
problem (1.7). Here are the precise statements of these facts.

THEOREM 1.3
Let n� 1, ˛ 2 .0; 1/, and E �R

nC1. The following facts hold true.
(i) If @E is an ˛-minimal surface in all of RnC1, then the fractional Jacobi equa-

tion

�J@�E;˛�E . Nx/D 0

holds at every point Nx 2 @E around which @E is of class C 3.
(ii) There exists a constant C > 0 depending only on n and ˛ such that if E �

R
nC1 is the global subgraph

E D
®
.x0; xnC1/ 2R

n �R W xnC1 < u.x
0/
¯

of a measurable function u W Rn! R and @E is ˛-minimal in B 02R � R for
some R > 0, then the truncated fractional Jacobi inequality

�J
B0
R
�R

@�E;˛
�nC1E . Nx/��

C

R1C˛
�nC1E . Nx/ (1.16)

holds at every point Nx 2 @E \ .B 0
R=2
�R/ around which @E is of class C 3.
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We stress that the constant C in (1.16) does not depend on the regularity of @E
around Nx, which is assumed only to perform computations in the proof. This assump-
tion will not prevent us from using Theorem 1.3 to establish the smoothness of non-
local minimal graphs. Indeed, by the results of Savin and Valdinoci [66]—point (e)
in the beginning of the Introduction—the set of regular points of @E is “large” within
@E . A capacitary argument then allows us to extend (1.16) to the whole @E in a weak
sense.

Note that Theorem 1.3(ii) requires @E to be smooth at Nx as a manifold, but does
not impose a priori regularity on the function u defining @E as the graph ¹xnC1 D
u.x0/º. That is, jrx0uj could be infinite at a point Nx0, but @E could still be C1

around . Nx0; u. Nx0//. Now, it is interesting to realize that our truncated fractional Jacobi
inequality (1.16) provides qualitative information on the slope of @E , ruling out the
possibility that the normal �E could be horizontal at a point Nx D . Nx0; NxnC1/ in @E \
.B 0
R=2
�R/; that is, ruling out that jrx0u. Nx0/j DC1. Indeed, suppose by contradic-

tion that �nC1E . Nx/D 0. By Theorem 1.3(ii), we would have

0� J
B0
R
�R

@�E;˛
�nC1E . Nx/D P:V:

Z
@�E\.B0

R
�R/

�nC1E .y/

jy � NxjnC1C˛
dHn.y/:

But since E is a global subgraph in the vertical direction, we have �nC1E .y/ � 0 for
every y 2 @�E . Therefore, by the above inequality, �nC1E � 0 on @�E \ .B 0R � R/,
which clearly contradicts the fact that @E is a graph. Observe that, for this argument
to work, it is crucial that the right-hand side of (1.16) is a zeroth order term.

From this remark (already made in [34, Theorem C.2] for globally regular sub-
graphs), we see that Theorem 1.3 “suggests” the regularity of nonlocal minimal
graphs. This is established in the current article, and its final output—Theorem 1.1—
is a precise quantitative version of the observation above.

Remark 1.4
Being a geometric object, one may wonder whether it is possible to define the global
Jacobi operator (1.9)–(1.11) also on a hypersurface † D @E that minimizes the ˛-
perimeter only in a proper cylinder B 0r � R. The answer is that this can be done,
through the divergence theorem, at least when †\ .B 0r �R/ is smooth and bounded,
and when the operator acts on smooth functions w with compact support inside †\
.B 0r � R/. Indeed, for such a w, because of a simplification of the terms involving
w.x/ in (1.9), one sees that it suffices to give a meaning to the integralsZ

†n.B0r�R/

�iE .y/

jy � xjnC2s
dHn.y/; (1.17)
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for i D 1; : : : ; nC1. Observe that the part of the integral over†\ .B 0r �R/ converges
in the standard sense, since† is regular inside B 0r �R. On the other hand, the quantity
in (1.17) can be defined, using formally the divergence theorem, as

�.nC 2s/

Z
En.B0r�R/

yi � xi

jy � xjnC2C2s
dy C

Z
@.B0r�R/\E

�i
B0r�R

.y/

jy � xjnC2s
dHn.y/:

Note that the two integrals above always converge, no matter how rough †D @E is.
On the other hand, it is not clear if the global fractional Laplace-type operator

(1.10) can be understood in a similar way. Except for this remark, in no other place
we will need such an argument to define a surface integral—they will be understood
in the standard way.

1.4. A universal Sobolev inequality on nonlocal minimal surfaces
Miranda obtained in [59], for the first time, a universal Sobolev inequality for W 1;p-
functions over a minimal surface †. His inequality is universal in the sense that it
does not depend on the geometry or structure of †—as long as † is a minimal sur-
face. To prove it, he took advantage of the isoperimetric inequality for integral cur-
rents established by Federer and Fleming in [37]. Later on, Allard [4] and Michael
and Simon [57] independently extended Miranda’s result to general hypersurfaces †
of Euclidean space. Their Sobolev inequality encapsulates the geometry of † only
through an additional term depending on the mean curvature of †.

In the next result, we establish a universal Sobolev inequality of fractional order
for functions defined on a nonlocal minimal surface †D @E . We point out that when
† is the Euclidean space (or an open subset of it), the fractional Sobolev inequality
is well known and several different proofs of it are available (see, e.g., [3], [11], [31],
[51], [56]).

THEOREM 1.5
Let n � 1, let ˛ 2 .0; 1/, and let @E be an ˛-minimal surface in all of RnC1. Let
s 2 .0; 1/ and p � 1 be such that n > sp.

Then there exists a constant C depending only on n, ˛, s, and p such that

kvk
L

np
n�sp .@�E/

� CŒv�W s;p.@�E/ (1.18)

for every v 2W s;p.@�E/.

The quantity Œ	�W s;p.@�E/ is the seminorm of the fractional Sobolev space
W s;p.@�E/ over @�E (see Section 2 for the precise definition). Note that, in the theo-
rem, ˛ and s are arbitrary parameters in .0; 1/—no relation between them is assumed.
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To prove Theorem 1.5 we do not rely on an isoperimetric-type inequality, but we
follow instead a beautiful proof of the fractional Sobolev inequality in R

n that we
learned from Brezis [12]. A fractional isoperimetric inequality on † can be obtained
a posteriori, by applying (1.18) with p D 1 to characteristic functions (see Corol-
lary 5.6). The only property of †D @�E needed to implement the argument of [12]
is the lower bound

Hn
�
†\BR.x/

�
� c?R

n for all R > 0 and x 2†; (1.19)

for the Hn-measure of † inside ambient balls BR.x/ WD ¹y 2 RnC1 W jy � xj < Rº,
where c? > 0 is a constant. Estimate (1.19) follows from the density estimates of [18]
and the relative isoperimetric inequality. Hence, we obtain the Sobolev inequality
(1.18) as a particular case of more general results valid on all hypersurfaces of RnC1

satisfying (1.19) or even milder assumptions (see Proposition 5.2, and Corollaries
5.3 and 5.6). We point out that the same lower bound (1.19) was assumed in [43] to
deduce Sobolev inequalities of integer order on general metric measure spaces.

In the proof of our gradient estimate, we will need a localized version of the
Sobolev inequality (1.18). This will require the use of the perimeter estimate of [23];
that is, the reverse inequality in (1.19).

Our proof of (1.18) requiresE to be a minimizer of Per˛ , since we use the density
estimates for minimizers to deduce (1.19). In a future work, we will establish (1.19)
also for stationary surfaces of the ˛-perimeter. On the other hand, it would be very
interesting to obtain nonlocal versions of the Michael–Simon and Allard inequality—
an important open problem.

1.5. A flatness result for entire nonlocal minimal graphs
The classification of ˛-minimal surfaces is a central and challenging problem in the
current research on nonlocal PDEs. Recall that Savin and Valdinoci [65] established
their connection with phase transitions for strongly nonlocal Allen–Cahn energies.
They later proved in [66] that, in R

2, there exist no global minimizing ˛-minimal
surfaces apart from straight lines. For this, they showed that the only minimizing ˛-
minimal cones in R

2 are the half-planes. We added here the word “minimizing” (not
used, but implicit, up to now) to distinguish minimizers from stable ˛-minimal sur-
faces or from stationary ˛-minimal surfaces, described next. The word “minimizing”
will be added only in this subsection, being implicit elsewhere.

For cones in higher dimensions, no rigidity result nor a counterexample are known
at the moment, with the exception of the works [16] and [22]. Caffarelli and Valdi-
noci [22] proved the flatness of minimizing ˛-minimal cones, when the parameter ˛
is close to 1, in dimension less than or equal to 7. In [16], the first author, Cinti, and
Serra established the flatness of stable ˛-minimal cones (and stable ˛-minimal sur-
faces, as well) in R

3 when ˛ is close to 1. Stable ˛-minimal surfaces are stationary
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points of the ˛-perimeter at which Per˛ has nonnegative second variation—as given
by (1.13). Therefore, stable ˛-minimal surfaces are strong candidates to minimize the
˛-perimeter.

On the other hand, nonplanar stationary ˛-minimal cones (i.e., cones that have
zero ˛-mean curvature, but which are not necessarily minimizers of Per˛ , nor stable)
are known to exist in all dimensions, thanks to the work of Dávila, del Pino, and
Wei [28]. These are Lawson-type cones and, somewhat surprisingly, they are already
stable in dimension 7 when ˛ is sufficiently small. We mention here an important
open problem in this direction. The classical Simons cone is a stationary ˛-minimal
surface in R

2m for all m � 1. However, the answer to whether it is a minimizer in
large enough dimensions, as expected, remains unknown.

Figalli and Valdinoci [39] obtained a fractional version of a celebrated theo-
rem of De Giorgi, stating that the nonexistence of singular minimizing ˛-minimal
cones in R

n yields the validity of a Bernstein-type theorem for ˛-minimal graphs in
one dimension more. By applying this in combination with the results of [66], they
deduced that ˛-minimal graphs of functions defined in all of R or in all of R2 are flat.
The validity of this result is not known at the moment in any higher dimension. Recall
that for classical minimal graphs, Bernstein’s theorem holds up to R

7�RDR
8, with

counterexamples in higher dimensions.
Very recently, Farina and Valdinoci [36] noted that globally Lipschitz ˛-minimal

graphs are affine in any dimension. We state this result in Theorem 8.1, and we give
an alternative proof of it carried out independently of their work. In addition, as an
application of the gradient estimate of Theorem 1.1 or Theorem 1.2, we improve
[36, Theorem 4] by replacing the uniform Lipschitz hypothesis with a linear growth
assumption. The precise statement is the following.

THEOREM 1.6
Let n� 1 and ˛ 2 .0; 1/. Let E be the global subgraph

E D
®
.x0; xnC1/ 2R

n �R W xnC1 < u.x
0/
¯

of a measurable function u WRn!R satisfyingˇ̌
u.x0/

ˇ̌
� C

�
1C jx0j

�
for a.e. x0 2Rn; (1.20)

for some constant C . Assume also that @E is an ˛-minimal surface in all of RnC1.
Then u is affine or, equivalently, @E is a hyperplane.
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1.6. Outline of the proof of the gradient estimate: A weak Harnack inequality on
nonlocal minimal surfaces

The following are the fundamental steps in the proof of our main result, Theorem 1.1.
To simplify the exposition, here we restrict ourselves to ˛-minimal graphs†D @E in
all of RnC1.

The last component �nC1E of the upward-pointing normal to † is a nonnegative
function. Since the “nonlocal second fundamental form” (1.11) is nonnegative as well,
we deduce from Theorem 1.3(i) that �nC1E is a nonnegative superharmonic function
for the fractional Laplace-type operator on † defined in (1.10) with s D .1C ˛/=2.

The natural next step in the proof of Theorem 1.1 consists in establishing a weak
Harnack inequality for nonnegative supersolutions of linear integral equations on ˛-
minimal surfaces. This is the content of the next result. (See Section 6 for a much
broader statement, valid for a larger class of equations posed on rather general hyper-
surfaces † � R

nC1, and which does not assume the smoothness of †, nor of the
supersolution. Here, BR WDBR.0/D ¹x 2RnC1 W jxj<Rº.)

THEOREM 1.7
Let n� 1, ˛ 2 .0; 1/, and s 2 .1=2; 1/, let †D @E be a smooth ˛-minimal surface in
all of RnC1, and assume that 0 2†. Let L†;s be as in (1.10), and let w be a smooth,
bounded, nonnegative function on † satisfying

�L†;sw � 0 in †\B2:

Then

inf
†\B1

w � c
�Z
†\B1

w.x/dHn.x/C

Z
†nB1

w.y/

jyjnC2s
dHn.y/

�
(1.21)

for some constant c 2 .0; 1� depending only on n, ˛, and s.

Before commenting on Theorem 1.7, we briefly show how the gradient estimate
(1.1) of Theorem 1.1 easily follows from it. Indeed, let u be the function defin-
ing † as a graph, and pick a point Nx 2 † \ .B 01 � R/. As mentioned at the begin-
ning of this subsection, by Theorem 1.3(i), the last component �nC1E of the upward-
pointing normal is a nonnegative supersolution of the fractional Laplace-type equa-
tion �L†;.1C˛/=2wD 0 on the whole †. Hence we may apply Theorem 1.7 to it. By
translating Nx to the origin, taking advantage of (1.21), and going back to the original
coordinates, we get

�nC1E . Nx/� c

Z
†

�nC1E .y/

1C jy � NxjnC1C˛
dHn.y/
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� c

Z
†\.B0

1
�R/

�nC1E .y/

1C jy � NxjnC1C˛
dHn.y/:

Now set M WD kukL1.B0
1
/. In view of the inclusion †\ .B 01 �R/� B 01 � Œ�M;M�

and the fact that �nC1E D .1C jrx0uj
2/�1=2, we infer from the above inequality that

1p
1C jrx0u. Nx0/j2

�
Qc

.1CM/nC1C˛

Z
†\.B0

1
�R/

�nC1E .y/dHn.y/

D
QcjB 01j

.1CM/nC1C˛
;

with Qc > 0 depending only on n and ˛. Since Nx0 is an arbitrary point of B 01, this gives
estimate (1.1) with r D 1. The case of a general r > 0 follows by scaling.

Of course, to perform the above computation we overlooked several nontrivial
details; most importantly, that, according to the statement of Theorem 1.1, the set
†D @E is not known to be smooth a priori and that E is assumed to minimize the
˛-perimeter only inside a vertical cylinder in R

nC1.

Remark 1.8
Theorem 1.7 is limited to operators of fractional order 2s strictly greater than 1. We
are forced to this hypothesis only because of the corresponding assumption ˇ > 1
made in Lemma 3.3. As we have already seen for applications to ˛-minimal surfaces,
this hypothesis is not restrictive, since we need to take s D .1C ˛/=2 > 1=2. Nev-
ertheless, it would be interesting to extend Theorem 1.7 to operators with s � 1=2,
possibly requiring stronger assumptions on †.

Harnack-type inequalities have been established by many authors for linear and
nonlinear singular integral operators in Euclidean space (see, e.g., [7], [19], [24],
[30], [47], [48], [50], [69]). For second-order elliptic PDEs with bounded measur-
able coefficients, the Harnack inequality was first established by Moser [60] in his
groundbreaking work. The idea that the same result could be extended to solutions of
equations posed on minimal surfaces is, to the best of our knowledge, due to Bombieri
and Giusti [9]. Theorem 1.7 here is therefore an extension of their result to singular
integral equations on nonlocal minimal surfaces.

Our proof of the weak Harnack inequality (1.21) is based on a delicate appli-
cation of the Moser iteration technique, implemented along the lines of the works
of Kassmann [46], [48]. We stress that having s > 1=2 in Theorem 1.7 prevents the
possibility of obtaining (1.21) through the simpler method of [63], [67], or [15, Sec-
tion 3], which works well in a wide class of flat Euclidean nonlocal settings. Indeed,
in their technique it is crucial for the operator to be bounded when applied to smooth
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barrier functions, a fact that a priori does not necessarily hold for the operator L†;s

with estimates independent of the geometry of † when s � 1=2.
To carry out the Moser iteration, two ingredients are needed: that the measure

of the underlying space is doubling and a Sobolev-type inequality. In Section 1.4 we
already addressed the validity of a fractional Sobolev inequality on nonlocal minimal
surfaces. On the other hand, the doubling property follows from the fact that

c?r
n �Hn

�
†\Br.x/

�
� C?r

n (1.22)

holds for every point x 2† and radius r > 0, for some constants C? � c? > 0, when
†D @�E is the reduced boundary of a minimizer of Per˛ in all of RnC1.

While, as already noted in Section 1.4, the lower bound in (1.22) follows from the
density estimates of [18], the validity of the upper bound was recently established in
[23]. This last result is deep and somewhat surprising, since it provides, for minimiz-
ers of the ˛-perimeter, a bound for their classical perimeter—a higher order quantity.
In addition, and remarkably, the result of [23] is true in any dimension and also for sta-
ble nonlocal minimal surfaces, not just for minimizers. However, it is not uniform as
˛ " 1. In fact, for classical stable minimal surfaces in R

nC1, the validity of a perime-
ter bound is known for nD 2, but is still a famous open problem when n� 3. Recall
that, in light of [10], [27], and [62] (see also [5], [21]), ˛-minimal surfaces converge
to classical minimal surfaces as ˛ " 1.

1.7. Organization of the paper
Section 2 specifies some notation that is used throughout the paper. In Section 3,
besides collecting several known results needed at later stages, we obtain estimates
for integral quantities defined on hypersurfaces with controlled volume growth, and
we establish a result on fractional capacities. Section 4 deals with fractional Jacobi
operators applied to the normal vector; we prove Theorem 1.3. In Section 5 we estab-
lish fractional Poincaré, Sobolev, and isoperimetric inequalities on nonlocal mini-
mal surfaces and on more general subsets of RnC1—in particular, we give the proof
of Theorem 1.5. Section 6 concerns the Moser iteration that leads to the weak Har-
nack inequality of Theorem 1.7. In Section 7 we establish the gradient estimates of
Theorems 1.1 and 1.2, while a proof of the Liouville-type Theorem 1.6 is given in
Section 8. We end the article with Appendix 8, which contains a few technical com-
putations.

2. Notation
We will typically work in the Euclidean space R

nC1, with n� 1. Points in R
nC1 are

indicated by x;y; z, while x0; y0; z0 is reserved for points in R
n—which will often

be identified with the subspace R
n � ¹0º of R

nC1. This distinction carries over to
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Euclidean balls. Hence, for R > 0, x 2RnC1, and x0 2Rn, we write

BR.x/ WD
®
y 2RnC1 W jy � xj<R

¯
;

B 0R.x
0/ WD

®
y0 2Rn W jy0 � x0j<R

¯
;

as well as BR WDBR.0/ and B 0R WDB
0
R.0/.

We indicate as

CR.x/ WDB
0
R.x

0/�R

the infinite vertical cylinder of radius R > 0, centered at a point x D .x0; xnC1/ of
R
nC1. Again, CR WD CR.0/.

For d � 0, the symbol Hd stands for the d -dimensional Hausdorff measure in
both R

n and R
nC1. The Hausdorff measures HnC1 of RnC1 and Hn of Rn are both

sometimes denoted by j 	 j. Inside integrals over Hn-measurable subsets of RnC1, we
frequently write d� instead of dHn.

We now set the notation for fractional Sobolev spaces defined on Hn-measurable
subsets of RnC1. Let p � 1, let s 2 .0; 1/, and let†�R

nC1 be a set with locally finite
n-dimensional Hausdorff measure. Given U �†, we say that a function v 2 Lp.U /
belongs to W s;p.U / if and only if

Œv�W s;p.U / WD
�Z
U

Z
U

jv.x/� v.y/jp

jx � yjnCsp
d�.x/d�.y/

� 1
p

<C1:

The Sobolev space W s;p.U / is then endowed with the norm k 	 kW s;p.U / defined by
the relation kvkp

W s;p.U /
WD kvk

p

Lp.U /
C Œv�

p

W s;p.U /
. When pD 2, the notationH s.U /

is favored toW s;2.U /. If U has finite Hn measure and v 2L1.U /, then we also write

.v/U WD �

Z
U

v.x/d�.x/ WD
1

Hn.U /

Z
U

v.x/d�.x/:

A similar (standard) terminology is used for the corresponding spaces over open sub-
sets of Rn and of RnC1.

We will often deal with improper integrals defined over open subsets of Rn and
R
nC1, as well as Hn-measurable subsets of R

nC1. As customary, we will use the
symbol P:V: to indicate that an integral has to be understood in the Cauchy principal
value sense, defined as follows. Let � be an open subset of RnC1, and let f W�!R

be a measurable function having an isolated singularity at a point x 2�. We define

P:V:
Z
�

f .y/dy WD lim
ı!0C

Z
�nBı.x/

f .y/dy;

provided the limit converges. The same definition is adopted for integrals defined on
a subset � of Rn, integrating this time over � nB 0

ı
.x0/. Similarly, if f is defined on
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an Hn-measurable set U �R
nC1, x 2 U , and f has an isolated singularity at x, then

we set

P:V:
Z
U

f .y/d�.y/ WD lim
ı!0C

Z
UnBı.x/

f .y/d�.y/:

Note that, also in this case, we remove Euclidean balls of RnC1 from the domain of
integration, prior to taking the limit.

3. Some preliminary results
In this section, we review some known facts about the regularity of nonlocal minimal
surfaces, obtain integral bounds to be used throughout the paper, and collect a few
results about the fractional Sobolev capacity on general hypersurfaces of Euclidean
space. Readers who wish to get to the heart of the matter may skip this part and
proceed to Section 4.

3.1. Some known regularity results for nonlocal minimal surfaces
The following theorem provides uniform perimeter and density estimates for nonlocal
minimal surfaces. They were proved in [23] and [18], respectively. From now on, by
nonlocal minimal surface we mean a minimizer of the fractional perimeter—as in the
beginning of the Introduction. Note that the symbol @�E appearing in the statement
denotes the reduced boundary of a set E with finite perimeter (see, e.g., [41] or [54]
for more details).

THEOREM 3.1 ([18, Theorem 4.1], [23, Corollary 1.8])
Let n � 1, let ˛ 2 .0; 1/, and let @E be an ˛-minimal surface in the ball BR.x/, for
some x 2RnC1 and R > 0.

Then E has locally finite perimeter inside BR.x/, and for every N	 2 .0; 1/, it
holds that

Hn
�
@�E \B�.x/

�
D Per

�
EIB�.x/

�
� C?


n for 
 2 .0; N	R�; (3.1)

for some constant C? depending only on n, ˛, and N	. Moreover, if x 2 @E , then

Hn
�
@�E \B�.x/

�
D Per

�
EIB�.x/

�
� c?


n for 
 2 .0;R�; (3.2)

for some constant c? > 0 depending only on n and ˛.

Proof
The identity between the perimeter of E and the Hausdorff measure of @�E is a stan-
dard fact that holds for all sets with finite perimeter in light of De Giorgi’s structure
theorem (see [54, Chapter 15], [41, Chapter 4]).
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When N	 � 1=4, inequality (3.1) is simply [23, Corollary 1.8]. The case N	 2
.1=4; 1/ follows using an easy covering argument.

In order to check that (3.2) is true as well, we begin by noting that, by the density
estimates of [18, Theorem 4.1], it holds that

min
®ˇ̌
E \B�.x/

ˇ̌
;
ˇ̌
B�.x/ nE

ˇ̌¯
� c
nC1

for some constant c > 0 depending only on n and ˛. The lower bound for the perime-
ter of E then follows by applying the relative isoperimetric inequality (see, e.g., [41,
Corollary 1.29]).

The next statement puts together some results from [6], [18], and [66], establish-
ing the smoothness of nonlocal minimal surfaces in R

nC1 outside of a set of Hausdorff
dimension .nC 1/� 3D n� 2.

THEOREM 3.2 ([6, Theorem 1], [18, Theorem 2.4], [66, Corollary 2])
Let n � 1, let ˛ 2 .0; 1/, let � � R

nC1 be an open set, and let @E � R
nC1 be an

˛-minimal surface in �.
Then @E \� is of class C1 outside of a closed singular set S � @E \�. The

set S has Hausdorff dimension at most .nC 1/� 3D n� 2; that is, S D∅ if nD 1
and Hd .S/D 0 for every d > n� 2 if n� 2.

The theorem follows from the results of [6] and [18], where it is shown that the
surface @E is smooth outside of a certain singular set S � @E . By [66, Corollary 2],
the set S is empty when nD 1 and has Hausdorff dimension at most .nC 1/� 3D
n� 2 when n� 2.

3.2. Integral estimates on hypersurfaces
In this subsection, we provide estimates for some integral quantities defined on gen-
eral hypersurfaces with controlled volume growth.

Take a set † � R
nC1, a domain � � R

nC1, and R0 > 0. Suppose that † satis-
fies

Hn
�
†\B�.x/

�
� C?


n for every x 2†\� and 
 2 .0;R0�; (3.3)

for some constant C?. Note that this estimate holds in particular when † is the
(reduced) boundary of a minimizer of the ˛-perimeter, by inequality (3.1). As a con-
sequence, all results in this subsection apply to nonlocal minimal surfaces.

We begin with a lemma that deals with “contributions coming from far.”
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LEMMA 3.3
Let n� 1, let †�R

nC1, let ��R
nC1 be a domain, and assume that (3.3) holds for

some positive constants R0 and C?. Let ˇ > 1, x0 2RnC1, and r 2 .0;R0=2�.
Then Z

.†\�/nBr .x0/

d�.y/

jy � x0jnCˇ
�
C

rˇ

for some constant C depending only on n, ˇ, and C?.

Proof
We write R

nC1 nBr.x0/D
SC1
jD1Aj , where Aj WDB.jC1/r.x0/ nBjr.x0/.

Note that each annulus Aj can be covered by a collection Bj of at most
cnj

.nC1/�1 D cnj
n balls of radius r , for some dimensional constant cn > 0 (recall

that we are in R
nC1). Considering only those balls that intersect †\� and doubling

their radius to be 2r , we may assume that each of them is centered at some point in
†\�. Thanks to this construction and (3.3), we conclude thatZ

.†\�/nBr .x0/

d�.y/

jy � x0jnCˇ

�

C1X
jD1

Z
†\�\Aj

d�.y/

.jr/nCˇ
�

C1X
jD1

° 1

.jr/nCˇ

X
B2Bj

Hn.†\B/
±

�
2nC?

rˇ

C1X
jD1

#Bj

j nCˇ
�
2ncnC?

rˇ

C1X
jD1

1

j ˇ
�
C

rˇ
;

since ˇ > 1, for some constant C depending only on n, ˇ, and C?.

Next, we provide an estimate for interactions at small scales.

LEMMA 3.4
Let n� 1, let †�R

nC1, let ��R
nC1 be a domain, and assume that (3.3) holds for

some positive constants R0 and C?. Let � > 0, x0 2†\�, and r 2 .0;R0�.
Then Z

†\�\Br .x0/

d�.y/

jy � x0jn��
� Cr� (3.4)

for some constant C depending only on n, � , and C?.

Proof
When � � n, estimate (3.4) is an immediate consequence of assumption (3.3). We
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thus assume that � 2 .0; n/ and consider, for every positive integer j , the annulus
Aj WDB21�j r.x0/ nB2�j r .x0/. By virtue of (3.3), we haveZ

†\�\Br .x0/

d�.y/

jy � x0jn��

�

C1X
jD1

Z
†\�\Aj

d�.y/

.2�j r/n��

�

C1X
jD1

�2j
r

�n��
Hn

�
†\B21�j r.x0/

�
� C?2

nr�
C1X
jD1

2��j ;

which clearly yields (3.4), as � > 0.

The last two lemmas immediately yield the following result.

COROLLARY 3.5
Let n � 1, let † � R

nC1, let � � R
nC1 be a domain, and assume that (3.3) holds

for some positive constants R0 and C?. Let x0 2 † \�, r 2 .0;R0=2�, p � 1, and
s 2 .0; 1/ be such that sp > 1.

Then for every � 2W 1;1.RnC1/ satisfying

j�j � C� and jr�j �
C�

r
in R

nC1

for some constant C�, it holds thatZ
†\�

j�.y/� �.x0/j
p

jy � x0jnCsp
d�.y/�

C

rsp

for some constant C depending only on n, s, p, C?, and C�.

Proof
We haveZ

†\�

j�.y/� �.x0/j
p

jy � x0jnCsp
d�.y/�

C
p
�

rp

Z
†\�\Br .x0/

d�.y/

jy � x0jn�.1�s/p

C 2pCp�

Z
.†\�/nBr .x0/

d�.y/

jy � x0jnCsp
:

Applying Lemmas 3.3 and 3.4 (with ˇD sp > 1 and � D .1� s/p > 0), we conclude
the result.
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3.3. Fractional capacities on hypersurfaces
We collect here a few facts on the fractional Sobolev capacity over rather general
Hn-measurable subsets † of RnC1 and in particular over nonlocal minimal surfaces.
Although most of the results presented here can probably be deduced from more gen-
eral theories (see, e.g., the recent [61]), we include all the proofs for the convenience
of the reader.

The next definition introduces the concept of s-capacity on†. In our future appli-
cations to ˛-minimal surfaces, we will only need s D .1 C ˛/=2, which is always
greater than 1=2. For this reason, and also since we use it in some proofs, we restrict
ourselves to s 2 .1=2; 1/.

Definition 3.6
Given n� 1, s 2 .1=2; 1/, a set †� R

nC1 with locally finite Hn-measure, and A�
†, we define

Cap†;s.A/ WD inf
®
kvk2H s.†/ W v 2H

s.†/ and v � 1 Hn-a.e.

in an open neighborhood of A
¯

D inf
®
kvk2H s.†/ W v 2H

s.†/; 0� v � 1 Hn-a.e. in †; and

vD 1 Hn-a.e. in an open neighborhood of A
¯
:

We call this quantity the s-fractional capacity of A on the set †.

Recall that kvk2
H s.†/

D kvk2
L2.†/

C Œv�2
H s.†/

and see Section 2 for the definition

of the H s D W s;2 seminorm. Also, the second characterization for Cap†;s in Def-
inition 3.6 holds since, for every v 2H s.†/, we have kmin¹max¹v; 0º; 1ºkL2.†/ �
kvkL2.†/ and Œmin¹max¹v; 0º; 1º�H s.†/ � Œv�H s.†/.

By Theorem 3.2, we know that the singular set of a nonlocal minimal surface in
R
nC1 has Hausdorff dimension at most n � 2. The following proposition—which is

the main result of the subsection—provides a capacitary description of this fact.

PROPOSITION 3.7
Let n � 1, let ˛ 2 .0; 1/, let � � R

nC1 be an open set, and let @E � R
nC1 be an

˛-minimal surface in �. Then the singular set S of @E in � satisfies

Cap†\�;s.S/D 0 for every s 2 .1=2; 1/:

Proposition 3.7 follows immediately from Theorem 3.2 and the following result,
which explores the relationship between the s-fractional capacity and the Hausdorff
measure on general Hn-measurable subsets † of RnC1 satisfying
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Hn
�
†\B�.x/

�
� C?


n; (3.5)

for some constant C?. Note that for nonlocal minimal surfaces, this condition is war-
ranted by Theorem 3.1. For the next result, we restrict ourselves to n � 2—observe
that, when nD 1, Proposition 3.7 is an immediate consequence of Theorem 3.2, as in
this case S D∅.

PROPOSITION 3.8
Let n � 2, s 2 .1=2; 1/, and †� R

nC1 be a set with locally finite Hn-measure, and
��R

nC1 be an open set. Suppose that (3.5) holds for every x 2†\� and 
 2 .0;R�
for some positive constants R and C?.

Then there exists a constant C depending only on n, s, and C?, such that

Cap†\�;s.A/� CHn�2s.A/

for every set A�†\�.

To prove Proposition 3.8 we need some preliminary results. Let † � R
nC1 be

a set with locally finite Hn-measure. It is obvious that Cap†;s.A/ � Cap†;s.B/ if
A�B are subsets of †. The s-fractional capacity is also countably subadditive; that
is, if ¹Aiºi2N are subsets of †, then

Cap†;s
�C1[
iD1

Ai

�
�

C1X
iD1

Cap†;s.Ai /: (3.6)

To verify this, we may assume that the right-hand side of (3.6) is finite. Let " >
0, and let ¹viº � H s.†/ be a sequence of functions satisfying vi � 1 in an open
neighborhood of Ai and kvik2H s.†/ � Cap†;s.Ai /C 2

�i" for every i 2 N. Since it
can be easily seen that��max¹u;wº

��2
H s.†/

� kuk2H s.†/Ckwk
2
H s.†/

for any two u;w 2H s.†/, considering v WD supi2N vi , iterating the previous inequal-
ity, and applying Fatou’s lemma, we obtain

kvk2H s.†/ �

C1X
iD1

kvik
2
H s.†/ � "C

C1X
iD1

Cap†;s.Ai /:

The proof of (3.6) is then finished, as v � 1 in an open neighborhood of
SC1
iD1 Ai and

" > 0 can be chosen arbitrarily small.
The following is another ingredient toward the proof of Proposition 3.8. It pro-

vides a sharp upper bound for the s-fractional capacity of ambient balls.
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LEMMA 3.9
Let n� 1, s 2 .1=2; 1/, and † be a subset of RnC1 having locally finite Hn-measure,
��R

nC1 be an open set, x0 2†\�, and R > 0. Assume that (3.5) holds for every
point x 2†\� and radius 
 2 .0; 2R� for some constant C?.

Then there exists a constant C depending only on n, s, and C?, such that

Cap†\�;s
�
†\�\Br.x0/

�
� Crn�2s.1C r2s/ (3.7)

for every r 2 .0;R/.

Proof
Take a smooth function v 2 C1.RnC1/ satisfying supp.v/� B2r.x0/, 0 � v � 1 in
R
nC1, v D 1 in B3r=2.x0/, and jrvj � 4=r in R

nC1. By (3.5) and Corollary 3.5, we
have

Œv�2H s.†\�/ � 2

Z
†\B2r .x0/

�Z
†\�

jv.y/� v.x/j2

jy � xjnC2s
d�.y/

�
d�.x/

�
C

r2s
Hn

�
†\B2r.x0/

�
� Crn�2s

for some C depending only on n, s, and C?. On the other hand, (3.5) also yields

kvk2
L2.†\�/

D

Z
†\B2r .x0/

ˇ̌
v.x/

ˇ̌2
d�.x/�Hn

�
†\B2r.x0/

�
� 2nC?r

n:

From these bounds, estimate (3.7) follows at once.

Thanks to these results, we are now ready to address the proof of Proposition 3.8.

Proof of Proposition 3.8
Note that n � 2 > 2s and that we may assume Hn�2s.A/ to be finite. Take ı 2
.0;min¹1;R=4º�, and consider a countable covering ¹Dj ºj2N of A by sets Dj �
R
nC1 having diameter dj WD diam.Dj /� ı. Assuming without loss of generality that

allDj ’s intersect A, we deduce the existence of a new countable cover ¹Bdj .xj /ºj2N
of A made up of balls centered at points xj 2 A. By taking advantage of (3.6) and
Lemma 3.9, we have

Cap†\�;s.A/�
C1X
jD1

Cap†\�;s
�
†\�\Bdj .xj /

�
� C

C1X
jD1

dn�2sj ;

for some constant C depending only on n, s, and C?. The conclusion follows by
applying the definition of Hausdorff measure, as ı can be taken arbitrarily small.
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4. The normal vector field and the fractional Jacobi operator
In this section we establish Theorem 1.3. Point (i) has been stated within the proof of
[28, Corollary B.1]. Here, we will give a proof of it, addressing in particular integra-
bility issues in all details. On the other hand, point (ii) of our theorem is new and will
play a fundamental role later in this article.

We begin with a preliminary result concerning the derivative of the ˛-mean cur-
vature of a set E along tangential directions to @E . This is identity (4.2) below, which
was already obtained in [17, Proposition 2.1]. For completeness, we include a slightly
shorter proof of it below. From it, we deduce (4.3), which will be used later with �
being either the whole space R

nC1 or a vertical cylinder. The sets E.t/, for t D 0; 1,
appearing in the statement denote the points of density t of E , defined as (see [54]
for more details)

E.t/ WD
°
x 2RnC1 W lim

r!0C

jE \Br.x/j

jBr j
D t

±
: (4.1)

PROPOSITION 4.1
Let n� 1 and ˛ 2 .0; 1/. Let E be a measurable subset of RnC1, and assume that @E
is of class C 2;ˇ in a neighborhood of a point Nx 2 @E , for some ˇ > ˛. Then

@vH˛ŒE�. Nx/D�.nC 1C ˛/ P:V:
Z
RnC1

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛

�
. Nx � y/ 	 v

�
dy

(4.2)

for every direction v 2RnC1 orthogonal to �E . Nx/.
Furthermore, let �� R

nC1 be an open set with locally Lipschitz boundary and
such that Nx 2 �. Assume that E has locally finite perimeter in �, that
Hn.@�E \ @�/ D 0, and that both

R
@�E\�.1 C jyj/

�n�1�˛ d�.y/ and
R
@�.1 C

jyj/�n�1�˛ d�.y/ are finite. Then

@vH˛ŒE�. Nx/

D 2 P:V:
Z
@�E\�

.�E .y/� �E . Nx// 	 v

j Nx � yjnC1C˛
d�.y/

C

Z
@�

�E .1/.y/� �E .0/.y/

j Nx � yjnC1C˛

�
��.y/ 	 v

�
d�.y/

� .nC 1C ˛/

Z
RnC1n�

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛

�
. Nx � y/ 	 v

�
dy (4.3)

for every direction v 2 RnC1 orthogonal to �E . Nx/, where E.1/ and E.0/ are given
by (4.1).



800 CABRÉ and COZZI

Proof
Up to a translation and a rotation, we may assume that Nx D 0 and �E .0/D enC1. In
this setting, (4.2) and (4.3) are respectively equivalent to

@xiH˛ŒE�.0/D .nC 1C ˛/ P:V:
Z
RnC1

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi dy (4.4)

and

@xiH˛ŒE�.0/D 2 P:V:
Z
@�E\�

�iE .y/

jyjnC1C˛
d�.y/

C

Z
@�

�E .1/.y/� �E .0/.y/

jyjnC1C˛
�i�.y/d�.y/

C .nC 1C ˛/

Z
RnC1n�

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi dy; (4.5)

for every i D 1; : : : ; n.
We begin by establishing (4.4). Take " > 0 small enough to have that

E \B" D
®
.x0; xnC1/ 2B" W xnC1 < v.x

0/
¯

for some function v 2 C 2;ˇ .Rn/ satisfying v.0/ D 0 and rx0v.0/ D 0. Let � 2
C1.RnC1/ be a radially symmetric nondecreasing function such that �D 0 in B1,
�D 1 outside of B2, and jr�j � 2 in R

nC1. For ı 2 .0; "=4/, we consider �.ı/.x/ WD
�.x=ı/ and write

H˛ŒE�
�
x0; v.x0/

�
D‰

.ı/
1 .x0/C‰

.ı/
2 .x0/;

with

‰
.ı/
1 .x0/ WD

Z
RnC1

�RnC1nE .y/� �E .y/

j.x0; v.x0//� yjnC1C˛
�.ı/

��
x0; v.x0/

�
� y

�
dy;

‰
.ı/
2 .x0/ WD P:V:

Z
RnC1

�RnC1nE .y/� �E .y/

j.x0; v.x0//� yjnC1C˛

�
1� �.ı/

��
x0; v.x0/

�
� y

��
dy:

First, we claim that

lim
ı!0C

@xi‰
.ı/
2 .0/D 0: (4.6)

To check (4.6), let …�x0 be the lower half-space bounded by the tangent hyperplane to
@E at .x0; v.x0//, that is, …�x0 WD ¹.y

0; ynC1/ 2 R
n � R W ynC1 < v.x

0/C hrx0v.x
0/;

y0 � x0iº. By symmetry,

P:V:
Z
RnC1

�RnC1n…�
x0
.y/� �…�

x0
.y/

j.x0; v.x0//� yjnC1C˛

�
1� �.ı/

��
x0; v.x0/

�
� y

��
dy D 0:
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Hence, we may subtract this term from ‰
.ı/
2 .x0/ and write, for x0 2B 0

ı
,

‰
.ı/
2 .x0/D�2

Z
B0
4ı

Z v.y0/

v.x0/Chrx0v.x
0/;y0�x0i

1� �.ı/..x0; v.x0//� y/

j.x0; v.x0//� yjnC1C˛
dynC1 dy

0:

We differentiate the above expression with respect to xi and evaluate at 0. We get

@xi‰
.ı/
2 .0/D � 2

Z
B0
4ı

Z v.y0/

0

.nC 1C ˛/.1� �.ı/.y//yi C jyj
2�
.ı/
xi .y/

jyjnC3C˛
dynC1 dy

0

C 2

Z
B0
4ı

.1� �.ı/.y0; 0//hD2
x0v.0/ei ; y

0i

jy0jnC1C˛
dy0:

By the symmetry properties of yi , �.ı/, and �.ı/xi , the last integral vanishes and alsoZ
B0
4ı

Z hD2
x0
v.0/y0;y0i=2

0

.nC 1C ˛/.1� �.ı/.y//yi C jyj
2�
.ı/
xi .y/

jyjnC3C˛
dynC1 dy

0 D 0:

Accordingly,

@xi‰
.ı/
2 .0/

D�2

Z
B0
4ı

Z v.y0/

hD2
x0
v.0/y0;y0i=2

.nC 1C ˛/.1� �.ı/.y//yi C jyj
2�
.ı/
xi .y/

jyjnC3C˛
dynC1 dy

0;

and, using that v is C 2;ˇ , we estimate

ˇ̌
@xi‰

.ı/
2 .0/

ˇ̌
� 2

Z
B0
4ı

ˇ̌̌
v.y0/�

hD2
x0v.0/y

0; y0i

2

ˇ̌̌� nC 2

jy0jnC2C˛
C
2

ı

1

jy0jnC1C˛

�
dy0

� C

Z
B0
4ı

dy0

jy0jn�ˇC˛
� Cıˇ�˛;

where, from now on, C denotes constants independent of ı. Claim (4.6) follows.
In view of (4.6), to obtain (4.4) we only need to show that

lim
ı!0C

@xi‰
.ı/
1 .0/D .nC 1C ˛/ P:V:

Z
RnC1

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi dy: (4.7)

A straightforward computation reveals that

@xi‰
.ı/
1 .0/D I

.ı/
1 � I

.ı/
2 ;

with
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I
.ı/
1 WD .nC 1C ˛/

Z
RnC1

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi�

.ı/.y/dy;

I
.ı/
2 WD

Z
RnC1

�RnC1nE .y/� �E .y/

jyjnC1C˛
�.ı/xi .y/dy:

On the one hand, the integrand in I .ı/2 withE replaced by ¹ynC1 < hD2
x0v.0/y

0; y0i=2º

has zero integral over RnC1, by oddness of �.ı/xi . Subtracting this integral from I
.ı/
2 ,

we see that

I
.ı/
2 D�2

Z
B0
2ı

Z v.y0/

hD2
x0
v.0/y0;y0i=2

�
.ı/
xi .y/

jyjnC1C˛
dynC1 dy

0: (4.8)

Thus, by the C 2;ˇ regularity of v,

jI
.ı/
2 j �

4

ı

Z
B0
2ı

ˇ̌̌
v.y0/�

hD2
x0v.0/y

0; y0i

2

ˇ̌̌ dy0

jy0jnC1C˛

�
C

ı

Z
B0
2ı

dy0

jy0jn�1�ˇC˛
� Cıˇ�˛:

On the other hand, a similar argument yields thatˇ̌̌
I
.ı/
1 � .nC 1C ˛/

Z
RnC1nB2ı

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi dy

ˇ̌̌
� Cıˇ�˛:

The combination of the last two estimates immediately leads us to (4.7).
We now move to the proof of (4.5). Write

J .ı/ WD .nC 1C ˛/

Z
�nBı

�RnC1nE .y/� �E .y/

jyjnC3C˛
yi dy:

By the divergence theorem for sets of locally finite perimeter, we have

J .ı/ D

Z
.�\E/nBı

div
� ei

jyjnC1C˛

�
dy �

Z
�n.E[Bı/

div
� ei

jyjnC1C˛

�
dy

D 2

Z
.@�E\�/nBı

�iE .y/

jyjnC1C˛
d�.y/C

Z
@�

�E .1/.y/� �E .0/.y/

jyjnC1C˛
�i�.y/d�.y/

C
1

ınC1C˛

Z
@Bı

�
�RnC1nE .y/� �E .y/

�
�iBı .y/d�.y/;

for a.e. ı > 0 small. Note that we used the formulas of, say, [54, Theorem 16.3] in
order to decompose the reduced boundary of intersections. We also took advantage of
the hypothesis Hn.@�E\@�/D 0. Thanks to the C 2;ˇ regularity of @E near 0, using
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that �iBı .y/D yi=ı, and subtracting the quadratic part of v at 0—as in the argument
leading to (4.8)—it is not hard to check thatˇ̌̌Z

@Bı

�
�RnC1nE .y/� �E .y/

�
�iBı .y/d�.y/

ˇ̌̌
� CınC1Cˇ :

Hence, letting ı! 0C in the above identity, we see that (4.5) follows from (4.4).

With this in hand, we may now proceed to prove Theorem 1.3.

Proof of Theorem 1.3
First of all, we observe that, by Theorem 3.1 and Lemma 3.3, both fractional Jacobi
operators (1.9) and (1.14) are well defined when acting on bounded functions that are
smooth near the singularity, under the hypotheses of points (i) and (ii), respectively.
In both cases (i) and (ii), by the ˛-minimality of E , there exists a small " > 0, for
which H˛ŒE�.x/D 0 for every x 2 @E \B". Nx/.

Now, for point (i), we apply identity (4.3) of Proposition 4.1 with �DR
nC1 and

deduce that D
P:V:

Z
@�E

�E . Nx/� �E .y/

j Nx � yjnC1C˛
d�.y/; v

E
D 0

for every v 2RnC1 orthogonal to �E . Nx/. This means that

P:V:
Z
@�E

�E . Nx/� �E .y/

j Nx � yjnC1C˛
d�.y/ is parallel to �E . Nx/;

or, equivalently, that

P:V:
Z
@�E

�E . Nx/� �E .y/

j Nx � yjnC1C˛
d�.y/

D
D

P:V:
Z
@�E

�E . Nx/� �E .y/

j Nx � yjnC1C˛
d�.y/; �E . Nx/

E
�E . Nx/:

From this, the claim of point (i) readily follows.
To tackle point (ii), we first observe that, since E has locally finite perimeter in

C3R=2, we have that Hn.@�E \ @Crk /D 0 along a sequence of radii ¹rkº converging
to R. We now set r D rk and prove the validity of (1.16) with r in place of R. The
conclusion will then follow by letting k!C1.

Up to a rotation in the hyperplane orthogonal to enC1, we may assume that �E . Nx/
lies in the 2-dimensional plane spanned by en and enC1, that is,

�E . Nx/D �
n
E . Nx/enC �

nC1
E . Nx/enC1: (4.9)
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Applying (4.3) with �D Cr and the vector vD �nC1E . Nx/en � �
n
E . Nx/enC1 orthogonal

to �E . Nx/, we get that

0D 2 P:V:
Z
@�E\Cr

�nE .y/�
nC1
E . Nx/� �nC1E .y/�nE . Nx/

j Nx � yjnC1C˛
d�.y/

C
�nC1E . Nx/

r

Z
@Cr

�E .1/.y/� �E .0/.y/

j Nx � yjnC1C˛
yn d�.y/

� .nC 1C ˛/�nC1E . Nx/

Z
RnC1nCr

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛
. Nxn � yn/ dy

C .nC 1C ˛/

� �nE . Nx/

Z
RnC1nCr

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛
. NxnC1 � ynC1/ dy: (4.10)

We proceed to estimate the last three terms of (4.10). On the one hand, since
Nx 2 Cr=2 for r close enough to R,ˇ̌̌1
r

Z
@Cr

�E .1/.y/� �E .0/.y/

j Nx � yjnC1C˛
yn d�.y/

ˇ̌̌
�
1

r

Z
@Cr

jynj

j Nx � yjnC1C˛
d�.y/

� Crn�1
Z C1
0

dt

.r2C t2/
nC1C˛
2

�
C

r1C˛

for some constant C depending only on n and ˛. On the other hand, using again that
Nx 2 Cr=2,ˇ̌̌Z

RnC1nCr

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛
. Nxn � yn/ dy

ˇ̌̌
� C

Z
RnnB0r

jy0j
�Z jy0j
0

dt

.jy0j2C t2/
nC3C˛
2

C

Z C1
jy0j

dt

.jy0j2C t2/
nC3C˛
2

�
dy0

� C

Z
RnnB0r

dy0

jy0jnC1C˛
�

C

r1C˛
;

with C depending only on n and ˛. Lastly, using that E is the global subgraph of u
and writing Qu.z0/ WD u.z0C Nx0/� NxnC1, we haveZ

RnC1nCr

�RnC1nE .y/� �E .y/

j Nx � yjnC3C˛
. NxnC1 � ynC1/ dy

D

Z
RnnB0r .� Nx

0/

�Z Qu.z0/
�1

t

.jz0j2C t2/
nC3C˛
2

dt
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�

Z C1
Qu.z0/

t

.jz0j2C t2/
nC3C˛
2

dt
�
dz0

D�
2

nC 1C ˛

Z
RnnB0r .� Nx

0/

dz0

.jz0j2C Qu.z0/2/
nC1C˛
2

� 0:

By multiplying both sides of identity (4.10) by �nE . Nx/=2 and taking advantage of
the last three estimates, we find that

0� P:V:
Z
@�E\Cr

.�nE .y/�
nC1
E . Nx/� �nC1E .y/�nE . Nx//�

n
E . Nx/

j Nx � yjnC1C˛
d�.y/

C
C

r1C˛
�nC1E . Nx/:

Moreover, recalling (4.9), for every y 2 @�E \Cr we have�
�nE .y/�

nC1
E . Nx/� �nC1E .y/�nE . Nx/

�
�nE . Nx/

D
�˝
�E .y/; �E . Nx/

˛
� �nC1E .y/�nC1E . Nx/

�
�nC1E . Nx/�

�
1� �nC1E . Nx/2

�
�nC1E .y/

D
˝
�E .y/; �E . Nx/

˛
�nC1E . Nx/� �nC1E .y/

D �nC1E . Nx/� �nC1E .y/�
˝
�E . Nx/� �E .y/; �E . Nx/

˛
�nC1E . Nx/;

and (1.16) follows.

As we pointed out in the Introduction, for a global subgraph E to be a mini-
mizer of Per˛ , it is equivalent to solve H˛ŒE�D 0. A careful inspection of the proof
just displayed actually reveals that inequality (1.16) still holds true if we relax the
requirement on the vanishing of H˛ŒE� and assume only that

H˛ŒE�D h in a neighborhood of Nx on @E;

for some function h that admits a C 1.RnC1/ extension—still called h—that satisfies
@xnC1h� 0. In this case, the constant C in (1.16) will also depend on the L1 norm
of the first n components of the gradient of h. We stress that such an assumption
on @xnC1h is consistent with others made in the literature to obtain interior gradient
bounds for graphs with prescribed classical mean curvature (see, e.g., [49, Hypothesis
(1)] or [71, Remark (3), p. 75], where the opposite sign convention for the mean
curvature is chosen, in comparison to ours).

5. Poincaré, Sobolev, and isoperimetric inequalities
Here we show the validity of fractional Poincaré, Sobolev, and isoperimetric inequal-
ities on rather general subsets of R

nC1—even though most of the results could be
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deduced in some well-behaved metric measure spaces as well. In particular, we will
apply these results to ˛-minimal surfaces.

Throughout the section we consider a set † � R
nC1 having locally finite Hn-

measure. Given x0 2†, 
 > 0, and c? > 0, we introduce the condition

Hn
�
†\B�.x0/

�
� c?


n: (5.1)

We begin with the following Poincaré-type inequality, whose simple proof is an exten-
sion of the one given, for example, in [58, Section 4] for the Euclidean setting †D
R
n � ¹0º.

PROPOSITION 5.1
Let n� 1, s 2 .0; 1/, p � 1, and †� R

nC1 be a set with locally finite Hn-measure,
and x0 2† andR > 0. Assume that (5.1) holds with 
DR, for some constant c? > 0.

Then there exists a constant C depending only on n, p, and c?, such that��v � .v/†\BR.x0/��Lp.†\BR.x0// � CRsŒv�W s;p.†\BR.x0// (5.2)

holds for every v 2W s;p.†\BR.x0//.

Proof
Given any x 2†\BR.x0/, by Jensen’s inequality we haveˇ̌

v.x/� .v/†\BR
ˇ̌p
D
ˇ̌̌
�

Z
†\BR.x0/

�
v.x/� v.y/

�
d�.y/

ˇ̌̌p
��

Z
†\BR.x0/

ˇ̌
v.x/� v.y/

ˇ̌p
d�.y/:

Since 1� .2R/nCspjx � yj�n�sp for all x;y 2BR.x0/, we deduce thatˇ̌
v.x/� .v/†\BR

ˇ̌p
� .2R/nCsp�

Z
†\BR.x0/

jv.x/� v.y/jp

jx � yjnCsp
d�.y/:

By integrating the above relation over †\BR.x0/, we find that��v � .v/†\BR��pLp.†\BR.x0// � 2nCpRnCsp

Hn.†\BR.x0//
Œv�
p

W s;p.†\BR.x0//
:

From this, estimate (5.2) follows by recalling that (5.1) holds with 
DR.

We now address fractional Sobolev inequalities on † when n > sp. We denote
the critical fractional Sobolev exponent by

p? D p?n;s WD
np

n� sp
:
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In this first result we assume the density hypothesis (5.1) to hold at all points and at
all scales. Its verification is based on a proof of the fractional Sobolev inequality in
the Euclidean space that we learned from Brezis [12].

PROPOSITION 5.2
Let n� 1, s 2 .0; 1/, and p � 1 be such that n > sp. Let† be a subset of RnC1 having
locally finite Hn-measure, let U be an open subset of †, and suppose that condition
(5.1) holds for all points x0 2 U and radii 
 > 0 for some constant c? > 0.

Then there exists a constant C depending only on n, s, p, and c?, such that

kvkLp? .†/ � CŒv�W s;p.†/ (5.3)

holds for every v 2W s;p.†/ supported inside U .

Proof
By a standard procedure using truncations, we may assume that v 2 L1.†/. Now,
for x;y 2†, we have ˇ̌

v.x/
ˇ̌
�
ˇ̌
v.x/� v.y/

ˇ̌
C
ˇ̌
v.y/

ˇ̌
:

By integrating this relation in y over †\Br.x/ for any given r > 0, we obtainˇ̌
v.x/

ˇ̌
��

Z
†\Br .x/

ˇ̌
v.x/� v.y/

ˇ̌
d�.y/C�

Z
†\Br .x/

ˇ̌
v.y/

ˇ̌
d�.y/: (5.4)

On the one hand, by the fact that 1 � rnCspjx � yj�n�sp for all y 2 Br.x/ and
Jensen’s inequality, we have

�

Z
†\Br .x/

ˇ̌
v.x/� v.y/

ˇ̌
d�.y/�

�
�

Z
†\Br .x/

ˇ̌
v.x/� v.y/

ˇ̌p
d�.y/

� 1
p

�
�
rnCsp�

Z
†\Br .x/

jv.x/� v.y/jp

jx � yjnCsp
d�.y/

� 1
p

:

On the other hand, we use Jensen’s inequality once again to estimate

�

Z
†\Br .x/

ˇ̌
v.y/

ˇ̌
d�.y/�

�
�

Z
†\Br .x/

ˇ̌
v.y/

ˇ̌p?
d�.y/

� 1
p?

:

Note that the right-hand side of the above estimate is finite—this follows from the
initial reduction to v 2L1.†/ and our starting hypothesis v 2Lp.†/.

By plugging the last two estimates in (5.4) and taking advantage of (5.1), we get
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ˇ̌
v.x/

ˇ̌
� C

°
rs
�Z
†

jv.x/� v.y/jp

jx � yjnCsp
d�.y/

� 1
p

C r
� n
p?

�Z
†

ˇ̌
v.y/

ˇ̌p?
d�.y/

� 1
p?
±

(5.5)

for a.e. x 2 U and every r > 0, for some constant C depending only on n, s, p, and
c?. By optimizing in r > 0 the above relation, say, picking as r the quantity

r.x/ WD
�Z
†

ˇ̌
v.y/

ˇ̌p?
d�.y/

� p

np?
�Z
†

jv.x/� v.y/jp

jx � yjnCsp
d�.y/

�� 1n
; (5.6)

we conclude thatˇ̌
v.x/

ˇ̌
� C

�Z
†

jv.x/� v.y/jp

jx � yjnCsp
d�.y/

� 1
p?
�Z
†

ˇ̌
v.y/

ˇ̌p?
d�.y/

� sp

np?

; (5.7)

for a possibly larger C .
By raising both sides of the previous inequality to the power p? and integrating

it as x ranges over U , we conclude that (5.3) holds true.

As a particular case of this result, we obtain the fractional Sobolev inequality on
nonlocal minimal surfaces, as stated in Theorem 1.5.

Proof of Theorem 1.5
It suffices to apply Proposition 5.2 with �DR

nC1. Note that (5.1) is satisfied thanks
to estimate (3.2) of Theorem 3.1, with a constant c? depending only on n and ˛.

Proposition 5.2 holds under global lower bounds on the density of †. For later
applications, it is important to have a related inequality involving only local
quantities—such as in Proposition 5.1. This is done in the next corollary, at the cost
of complementing the density lower bound with the upper bound

Hn
�
†\B�.x0/

�
� C?


n; (5.8)

in order to estimate the tails of the W s;p-seminorm.

COROLLARY 5.3
Let n � 2, s 2 .0; 1/, and p � 1 be such that 1 < sp < n. Given a set † � R

nC1,
a point Nx 2 †, and R > 0, assume that (5.1) and (5.8) hold for every point x0 2
†\B2R. Nx/ and every radius 
 2 .0;R�.

Then there is a constant C depending only on n, s, p, c?, and C?, such that
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kvkLp? .†\Br . Nx// � C
�
Œv�W s;p.†\BR. Nx//C

1

.R� r/s
kvkLp.†\BR. Nx//

�
(5.9)

holds for all v 2W s;p.†\BR. Nx// and r 2 .0;R/.

In the following proof, we will change † outside the ball B3R=2 by replacing it
with a hyperplane. In this way, we obtain a new hypersurface †1 that satisfies the
density assumptions (5.1) and (5.8) at all scales 
 > 0. By doing this, we are able
to apply the global fractional Sobolev estimate of Proposition 5.2 on †1 and ulti-
mately establish (5.9). Although simple, this replacement trick is a bit nonstandard.
For this reason, in the forthcoming Remark 5.4 we sketch a different proof of Sobolev
inequality (5.9).

Proof of Corollary 5.3
We may suppose that Nx D 0. Consider the auxiliary set

†1 WD .†\B 3R
2
/[ .… nB 3R

2
/;

where … denotes the hyperplane orthogonal to enC1 passing through the origin; that
is, … WD ¹y 2RnC1 W ynC1 D 0º. It is not hard to see that †1 satisfies

Hn
�
†1 \B�.x/

�
� c]


n for every x 2†1 \BR and 
 > 0 (5.10)

and

Hn
�
†1 \B�.x/

�
� C]


n for every x 2†1 and 
 > 0; (5.11)

with 0 < c] � C] depending only on n, c?, and C?.
To prove (5.10), we separately consider the cases of small radii 
 2 .0; 4R/ and

large radii 
 � 4R. In the first situation, we apply estimate (5.1) to the smaller set
†1 \B�=8.x/D†\B�=8.x/, while in the second we just observe that †1 \B�.x/
contains the flat set …\ .B3�=4 nB2R/, which has Hn-measure of order 
n.

Claim (5.11) follows instead from the trivial estimate Hn.… \ B�.x// � C

n

and

Hn
�
†\B3R=2 \B�.x/

�
� C
n for every x 2†1 and 
 > 0; (5.12)

for some constant C depending only on n and C?. To get (5.12), we distinguish
between 
 2 .0;R=8/ and 
 �R=8. In the first case, we may assume that x 2 B7R=4
(since otherwiseB�.x/\B3R=2 D∅ and (5.12) is automatically satisfied) and directly
apply (5.8). On the other hand, when 
 �R=8, hypothesis (5.8) and a covering argu-
ment immediately lead to the desired estimate for the larger set †\B3R=2.
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Now let v 2 W s;p.† \ BR/, r 2 .0;R/, and consider a cutoff function � 2
C1.RnC1/ satisfying 0 � � � 1 in R

nC1, supp.�/ � B.RCr/=2, � D 1 in Br , and
jr�j � 4=.R � r/ in R

nC1. Observe that �v is supported inside U WD † \ BR D
†1\BR. Thanks to this and (5.10), we may apply Proposition 5.2 to the function �v,
on the set †1. We get

kvkLp? .†\Br / � k�vkLp? .†\BR/ � k�vkLp
?
.†1/
� CŒ�v�W s;p.†1/; (5.13)

for some constant C depending only on n, s, p, c?, and C?. Thanks to the properties
of �,

Œ�v�
p

W s;p.†1/
D

Z
†\BR

Z
†\BR

j�.x/v.x/� �.y/v.y/jp

jx � yjnCsp
d�.x/d�.y/

C 2

Z
†\BRCr

2

ˇ̌
v.x/

ˇ̌p�Z
†1nBR

d�.y/

jx � yjnCsp

�
d�.x/: (5.14)

We haveˇ̌
�.x/v.x/� �.y/v.y/

ˇ̌p
D
ˇ̌
�.y/

�
v.x/� v.y/

�
C v.x/

�
�.x/� �.y/

�ˇ̌p
� 2p�1

�ˇ̌
v.x/� v.y/

ˇ̌p
C
ˇ̌
v.x/

ˇ̌p ˇ̌
�.x/� �.y/

ˇ̌p�
;

and thus Z
†\BR

Z
†\BR

j�.x/v.x/� �.y/v.y/jp

jx � yjnCsp
d�.x/d�.y/

� 2p�1
°
Œv�
p

W s;p.†\BR/

C

Z
†\BRCr

2

ˇ̌
v.x/

ˇ̌p�Z
†1

j�.x/� �.y/jp

jx � yjnCsp
d�.y/

�
d�.x/

±
:

By combining this with (5.14) and noting that BR�r
2
.x/� BR for every x 2 BRCr

2
,

we obtain

Œ�v�
p

W s;p.†1/
� C

�
Œv�
p

W s;p.†\BR/
C

Z
†\BRCr

2

ˇ̌
v.x/

ˇ̌p
„.x/d�.x/

�
;

with

„.x/ WD

Z
†1

j�.x/� �.y/jp

jx � yjnCsp
d�.y/C

Z
†1nBR�r

2
.x/

d�.y/

jx � yjnCsp
:

In view of Lemma 3.3 (with ˇD sp > 1) and Corollary 3.5—that both can be applied
is due to (5.11)—we see that„.x/� C.R� r/�sp for every x 2†\BRCr

2
. Accord-

ingly,



A GRADIENT ESTIMATE FOR NONLOCAL MINIMAL GRAPHS 811

Œ�v�
p

W s;p.†1/
� C

�
Œv�
p

W s;p.†\BR/
C

1

.R� r/sp
kvk

p

Lp.†\BR/

�
;

and (5.9) follows from (5.13).

Remark 5.4
The following is an alternative, perhaps more natural, proof of Corollary 5.3. Let
v 2 W s;p.† \ BR/ be a bounded function, extended by zero in † n BR. We may
suppose that kvkLp? .†\BR/ D 1. For x 2 † \ BR, let r.x/ be as in (5.6), but with
both domains of integration replaced by †\B2R—as the proof of (5.5) really gives.
Set G WD ¹x 2†\BR W r.x/ < Rº and F WD .†\BR/ nG D ¹x 2†\BR W r.x/�
Rº.

For x 2G, we argue as in the proof of Proposition 5.2 to establish (5.7) with †
replaced by † \ B2R—this can be done since we may apply (5.1) with 
 D r.x/ 2
.0;R/. On the other hand, for x 2 F , we can still obtain the weaker inequality (5.5)
with r D R. This, combined with kvkLp? .†\BR/ D 1 and r.x/ � R, leads to the

uniform bound jv.x/j � CR�n=p
?

. This, in turn, gives that jvjp
?
� R�spjvjp in F .

By putting together this estimate with the one in G, we conclude that

kvkLp? .†\BR/ � C
�
Œv�W s;p.†\B2R/CR

�skvkLp.†\BR/
�
:

This is essentially estimate (5.13). The more refined inequality (5.9) then follows via
a cutoff argument as in the second part of the proof of Corollary 5.3.

Next is a Morrey-type L1 estimate for functions in the Sobolev space W s;p

whenever n < sp. Our argument is an appropriate modification of those presented in
[42, Lemma 2.2] and [31, Theorem 8.2].

PROPOSITION 5.5
Let n� 1, s 2 .0; 1/, and p � 1 be such that n < sp. Given a set †� R

nC1, a point
Nx 2†, and R > 0, assume that (5.1) and (5.8) hold for every x0 2†\B2R. Nx/ and

 2 .0;R�.

Then there exists a constant C depending only on n, s, p, c?, and C?, such that

kvkL1.†\Br . Nx//

� CR
sp�n
p

�
Œv�W s;p.†\BR. Nx//C

1

.R� r/s
kvkLp.†\BR. Nx//

�
(5.15)

holds for all v 2W s;p.†\BR. Nx// and r 2 .0;R/.

Proof
To prove (5.15), it suffices to show that
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u.x/

ˇ̌
� C

�
R
sp�n
p Œu�W s;p.†\B2R. Nx//CR

� np kukLp.†\B2R. Nx//
�

(5.16)

for Hn-a.e. x 2†\BR. Nx/ and every u 2W s;p.†\B2R. Nx//. Indeed, one can then
apply (5.16) to the truncated function u D �v, with � a convenient cutoff between
the balls Br. Nx/ and B.RCr/=2. Nx/, and argue as in the final part of the proof of Corol-
lary 5.3.

Let u 2W s;p.†\B2R. Nx//, and note that

u.x/D lim
r!0C

.u/†\Br .x/ (5.17)

for Hn-a.e. x 2 † \ BR. Nx/. This is true by the Lebesgue differentiation theorem,
which holds in the metric measure space†\B2R. Nx/ (endowed with the metric inher-
ited from the ambient space R

nC1 and the measure Hn�†) thanks to assumptions
(5.1) and (5.8), as shown in [44, Section 3.4].

Take then any x 2†\BR. Nx/ for which (5.17) holds true. Up to a translation, we
may assume that x D 0. For  > n, we define

M� WD sup
�2.0;R=2�

�

��

Z
†\B�

ˇ̌
u.y/� .u/†\B�

ˇ̌p
d�.y/

� 1
p

: (5.18)

We claim that there is a constant C� depending only on n, p, c?, and , such thatˇ̌
u.0/� .u/†\BR=2

ˇ̌
� C�R

��n
p M�: (5.19)

Indeed, consider any two radii 0 < 
1 < 
2 � R=2. By Jensen’s inequality, we
have ˇ̌

.u/†\B�1 � .u/†\B�2

ˇ̌
��

Z
†\B�1

ˇ̌
u.y/� .u/†\B�2

ˇ̌
d�.y/

�
�
�

Z
†\B�1

ˇ̌
u.y/� .u/†\B�2

ˇ̌p
d�.y/

� 1
p

and thus, recalling (5.18) and (5.1),ˇ̌
.u/†\B�1 � .u/†\B�2

ˇ̌
� c
� 1p
? 


� np
1 


�
p

2 M�: (5.20)

Let ¹rkº be defined by rk WD 2�kR for all k 2 N. By applying inequality (5.20) with

1 D rkC1, 
2 D rk and summing over k, we easily obtain that

ˇ̌
.u/†\BR=2 � lim

`!C1
.u/†\Br`

ˇ̌
�
�2n
c?

� 1
p

R
��n
p M�

C1X
kD1

2�
��n
p k � C�R

��n
p M�:

Claim (5.19) then follows, since (5.17) is satisfied for x D 0.
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Let 
 2 .0;R=2�. Using once again Jensen’s inequality, assumption (5.1), and the
fact that 1� .2
/nCspjy � zj�n�sp for all y; z 2B�, we haveZ

†\B�

ˇ̌
u.y/� .u/†\B�

ˇ̌p
d�.y/

�

Z
†\B�

�

Z
†\B�

ˇ̌
u.y/� u.z/

ˇ̌p
d�.z/d�.y/

� C
sp
Z
†\B�

Z
†\B�

ju.y/� u.z/jp

jy � zjnCsp
d�.z/d�.y/

� C
spŒu�
p

W s;p.†\BR/
;

where from now on C denotes constants depending only on n, s, p, c?, and C?.
Recalling definition (5.18), the above inequality yields Msp � CŒu�W s;p.†\BR/. By
this, (5.19), and the fact that n < sp, we get thatˇ̌

u.0/� .u/†\BR=2
ˇ̌
� CR

sp�n
p Œu�W s;p.†\BR/:

Thanks to this bound, Jensen’s inequality, and (5.1), we are led to (5.16) for x D 0.

To conclude the section, we deduce an isoperimetric-type inequality involving a
nonlocal notion of perimeter on †. For any Hn-measurable set A�†, we define the
s-perimeter of A on † as the quantity

Per†;s.A/ WD
Z
A

Z
†nA

d�.x/d�.y/

jx � yjnCs
:

We then have the following result.

COROLLARY 5.6
Let n � 1, let s 2 .0; 1/, and let † � R

nC1 be a set with locally finite Hn-measure.
Assume that (5.1) holds for all x0 2† and 
 > 0, for some constant c? > 0.

Then there exists a constant C > 0 depending only on n, s, and c?, such that

Hn.A/
n�s
n � C Per†;s.A/ (5.21)

for every set A � † with finite Hn-measure. In particular, (5.21) holds when † is
the reduced boundary @�E of a minimizer of the ˛-perimeter in all of RnC1—in this
case, with a constant C depending only on n, s, and ˛.

Proof
It suffices to apply Proposition 5.2 with p D 1, v D �A, and U D†; observe that U
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need not be bounded in the statement of Proposition 5.2. When †D @�E , with @�E
an ˛-minimal surface in R

nC1, the result follows since estimate (3.2) of Theorem 3.1
ensures the validity of (5.1) for any point x0 2 @�E and scale 
 > 0.

6. The weak Harnack inequality
In this section, we establish a weak Harnack inequality for nonnegative supersolu-
tions of rather general integral equations posed on hypersurfaces of Euclidean space
satisfying appropriate density assumptions. In particular, the inequality will hold for
equations posed on nonlocal minimal surfaces—including those which are not graphs.

6.1. The weak Harnack inequality on general hypersurfaces
Let n � 1, and let † be an Hn-measurable subset of RnC1. In this subsection, we
prove a weak Harnack inequality for nonnegative supersolutions of equations driven
by the integro-differential operator

LKv.x/ WD P:V:
Z
†

�
v.y/� v.x/

�
K.x;y/d�.y/;

where K W † �†! Œ0;C1� is an Hn-measurable function. (See Section 2 for the
definition of principal value surface integrals.)

Given an open set��R
nC1 and three real numbersR0 > 0,ƒ� 1, s 2 .1=2; 1/,

we require K to satisfy the conditions

K.x;y/DK.y;x/ for Hn-a.e. x;y 2†; (6.1)

ƒ�1�BR0 .x � y/

jx � yjnC2s
�K.x;y/�

ƒ

jx � yjnC2s
for Hn-a.e. x;y 2†\�; (6.2)

and

K.x;y/D 0 for Hn-a.e. x 2†\� and y 2† n�: (6.3)

The integro-differential inequality defining our class of supersolutions will be
assumed to hold only inside † \ �. In this set, we suppose † to have the density
property

c?

n �Hn

�
†\B�.x/

�
� C?


n for every x 2†\� and 
 2 .0;R0� (6.4)

for some constants C? � c? > 0. We also assume that

0 2† and †\BR0 ��: (6.5)

Observe that, unless †\�D†, for x 2†\� condition (6.3) forces K.x; 	/ to
be supported inside the proper set†\�, where† behaves nicely, according to (6.4).
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This is why we refer to LK as a truncated operator in �. In light of this, the operator
LK can be equivalently written as

LKv.x/ WD P:V:
Z
†\�

�
v.y/� v.x/

�
K.x;y/d�.y/;

whenever it is evaluated at a point x 2†\�.
Concrete examples include the cases where � D CR is a cylinder, R0 D R=2,

and

K.x;y/D
�CR.x/�CR.y/

jx � yjnC2s
;

as well as �DR
nC1 and K.x;y/D jx � yj�n�2s . For s D .1C ˛/=2, these choices

lead to the operators introduced in Section 1.3, which play a key role throughout the
paper. Note that we also include the case when � D R

nC1 and K is a translation-
invariant truncated kernel such as K.x;y/ D �BR0 .x � y/jx � yj

�n�2s . We stress
that our results are limited to operators of fractional order 2s strictly greater than 1.
(See Remark 1.8 for comments on this point.)

Given an open set U �†\�, we consider the Sobolev space H
K.U / made up

by the Hn-measurable functions v W†!R for which vjU 2L2.U / and

Œv�2
HK.U /

WD

“
Q.U/

ˇ̌
v.x/� v.y/

ˇ̌2
d	K.x; y/ <C1;

where we set

Q.U / WD .†�†/ n
�
.† nU /� .† nU /

�
and we adopted the short-hand notation

d	D d	K.x; y/ WDK.x;y/d�.x/d�.y/:

Note that HK.U / differs from H s.U /—as defined in Section 2—primarily because
the seminorm associated to the former is determined by an integral over Q.U / and
not just U �U . We also define H

K
loc.U / as the set of functions that belong to H

K.V /

for every open set V ��U .
Let b;f W U !R be two bounded Hn-measurable functions satisfying

b �R�2s0 b� in †\BR0 (6.6)

and

f ��d in †\BR0 (6.7)

for some nonnegative constants b� and d . We deal with supersolutions of the equation
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�LKvC bvD f (6.8)

in U . As we will see later, we need to take into account two types of them: weak
supersolutions and generalized pointwise supersolutions, as defined next. All results
in this section apply to both supersolutions.

First, we consider the following standard variational notion of supersolution. The
Moser iteration that leads to the weak Harnack inequality will be carried out for this
type of supersolutions.

Definition 6.1
A function w 2HKloc.U / is a weak supersolution of (6.8) in U if

1

2

Z
†

Z
†

�
w.x/�w.y/

��
'.x/� '.y/

�
d	C

Z
†

b.x/w.x/'.x/d�.x/

�

Z
†

f .x/'.x/d�.x/ (6.9)

for every nonnegative function ' 2HK.U / compactly supported inside U .

Since the equations involving the fractional Jacobi operators in Theorem 1.3 hold
a priori only at points where the nonlocal minimal surface † D @E is C 3, we also
need to consider the following notion of supersolution.

Definition 6.2
An Hn-measurable function w W†\�!R is called a generalized pointwise super-
solution of (6.8) in U if there exists a closed set S � U satisfying Cap†\�;s.S/D 0
for n� 2 and S D∅ for nD 1, such that
� w is bounded in †\�;
� the quantity LKw.x/ is well defined at every x 2 U n S , and the principal

value that defines it converges uniformly in every compact set V � U n S ;
� it holds that

�LKw.x/C b.x/w.x/� f .x/ (6.10)

for every x 2 U n S .

Note that the quantity Cap†\�;s appearing in Definition 6.2 is the s-fractional
capacity on †\� introduced in Section 3.3. In our main applications, the set S will
be the singular set of a nonlocal minimal surface @E .

The hypothesis that w is bounded rules out undesirable pointwise supersolutions
such as fundamental solutions. For instance, when n � 2, the function �jxj�nC2s is
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a pointwise solution for the fractional Laplacian of order 2s in R
n outside of a set of

zero s-fractional capacity, but not a weak supersolution.
Before heading to the statement of the weak Harnack inequality, we establish that

every generalized pointwise supersolutionw is indeed a weak supersolution. Note that
our proof will use crucially that w is bounded.

LEMMA 6.3
Under assumptions (6.1)–(6.5), let w be a generalized pointwise supersolution of
(6.8) in †\BR for some R 2 .0;R0/ and with b and f bounded in †\BR.

Then w is a weak supersolution of (6.8) in †\BR.

Proof
Up to scaling, we may assume that R D 1. Let S be a closed subset of † \ B1
with Cap†\�;s.S/ D 0, outside of which (6.10) is satisfied. By the definition of s-
fractional capacity (Definition 3.6), there exists a sequence of functions ¹vkºk2N �
H s.†\�/ such that 0� vk � 1 in †\�, vk D 1 in an open neighborhood Ak of
S , and

kvkkH s.†\�/ �
1

k
: (6.11)

By taking a subsequence, we also suppose that vk converges to zero Hn-a.e. in †\
�.

Given r 2 .1=2; 1/, let � 2 C1.RnC1/ be such that 0 � � � 1 in R
nC1,

supp.�/�B.2Cr/=3, �D 1 in B.1C2r/=3, and jr�j � 6=.1� r/ in R
nC1. Write  k WD

�.1� vk/.
First, we show that w 2HK.†\Br/. As w is bounded, we only need to check

that

Œw�HK.†\Br / <C1: (6.12)

Set ew WD w � inf†\�w C 1. We multiply inequality (6.10) by the nonnegative
function  2

k
ew�1 and integrate over the set .† nAk/\B1, which contains its support.

We obtainZ
.†nAk/\B1

�
�LKw.x/C b.x/w.x/� f .x/

� 2
k
.x/ew.x/ d�.x/� 0: (6.13)

Taking advantage of the uniform convergence in .† nAk/\B.2Cr/=3 of the principal
value defining LK (as required in Definition 6.2), of the fact that  k is supported
inside the set .† nAk/\B.2Cr/=3, and symmetrizing in x and y thanks to (6.1), we
get
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�

Z
.†nAk/\B1

LKw.x/
 2
k
.x/ew.x/ d�.x/

D lim
ı!0C

Z
†

 2
k
.x/ew.x/ �

Z
†nBı.x/

�
w.x/�w.y/

�
K.x;y/d�.y/

�
d�.x/

D
1

2
lim
ı!0C

“
¹.x;y/2.†�†/Wjx�yj>ıº

�ew.x/� ew.y/�
�
� 2

k
.x/ew.x/ �  2k .y/ew.y/ �d	: (6.14)

Since

�ew.x/� ew.y/�� 2k .x/ew.x/ �  2k .y/ew.y/ �
D
ˇ̌
 k.x/� k.y/

ˇ̌2
�
j k.y/ew.x/� k.x/ew.y/j2ew.x/ew.y/ ;

we deduce from (6.13) and (6.14) thatZ
†

Z
†

j k.y/ew.x/� k.x/ew.y/j2ew.x/ew.y/ d	

�

Z
†

Z
†

ˇ̌
 k.x/� k.y/

ˇ̌2
d	

C 2

Z
†\B1

�
b.x/w.x/C f .x/

� 2
k
.x/ew.x/ d�.x/:

Next, on the one hand, by the definition of  k and the boundedness of w, we
have Z

†

Z
†

j k.y/ew.x/� k.x/ew.y/j2ew.x/ew.y/ d	

�
1

C

“
.†\B 1C2r

3

/2

ˇ̌�
1� vk.x/

�ew.x/� �1� vk.y/�ew.y/ˇ̌2 d	;
where, from now on, C � 1 denotes constants independent of k. On the other hand,ˇ̌

 k.x/� k.y/
ˇ̌2
� 2

ˇ̌
�.x/� �.y/

ˇ̌2
C 2

ˇ̌
vk.x/� vk.y/

ˇ̌2
;

and thus, using this, conditions (6.1)–(6.5), Corollary 3.5 (used with r replaced by
1� r ), and (6.11), we find that
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†

Z
†

ˇ̌
 k.x/� k.y/

ˇ̌2
d	

� C
°Z
†\B1

�Z
†\�

j�.x/� �.y/j2

jx � yjnC2s
d�.y/

�
d�.x/C Œvk�

2
H s.†\�/

±
� C

�Hn.†\B1/

.1� r/2s
C

1

k2

�
� C:

Moreover, as ew � 1 in †\B1,Z
†\B1

�
b.x/w.x/C f .x/

� 2
k
.x/ew.x/ d�.x/

�
�
kbkL1.†\B1/kwkL1.†\B1/Ckf kL1.†\B1/

�
Hn.†\B1/� C: (6.15)

Putting the last estimates together and letting k!C1, by Fatou’s lemma and the
pointwise a.e. convergence of vk to zero, we conclude that“

.†\B 1C2r
3

/2

ˇ̌
w.x/�w.y/

ˇ̌2
d	 <C1: (6.16)

By Lemma 3.3 (used with .1� r/=3 in place of r ), we can also estimateZ
†\Br

Z
†nB 1C2r

3

ˇ̌
w.x/�w.y/

ˇ̌2
d	

� 4ƒkwk2L1.†\�/

Z
†\Br

�Z
.†\�/nB 1�r

3
.x/

d�.y/

jy � xjnC2s

�
d�.x/ <C1:

From this and (6.16), claim (6.12) follows.
To finish the proof, we are left to show that inequality (6.9) is satisfied for every

nonnegative function ' 2HK.†\Br/ supported inside †\Br . Pick any such func-
tion and, for M > 0, let 'M WDmin¹';M º. Multiplying (6.10) by .1� vk/'M , inte-
grating over .† nAk/\B1, and arguing as in (6.13) and (6.14), we obtain

1

2

“
Q.†\Br /

�
w.x/�w.y/

��
'M .x/� 'M .y/

��
1� vk.x/

�
d	

�
1

2

“
Q.†\Br /

�
w.x/�w.y/

��
vk.x/� vk.y/

�
'M .y/d	

C

Z
†\Br

�
f .x/� b.x/w.x/

��
1� vk.x/

�
'M .x/d�.x/: (6.17)

Since both w and 'M belong to H
K.† \ Br/, Lebesgue’s dominated convergence

theorem gives that the left-hand side of (6.17) converges to
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1

2

“
Q.†\Br /

�
w.x/�w.y/

��
'M .x/� 'M .y/

�
d	

as k !C1. On the other hand, as supp.'M / � † \ � and K satisfies (6.3), the
first term on the right-hand side of (6.17) is integrated over Q.† \ Br/ \ .� ��/.
Hence, using that 0 � 'M �M , (6.11), (6.12), and the Cauchy–Schwarz inequality,
we infer its convergence to zero. As the second term can be easily addressed by dom-
inated convergence (recall that b and f are assumed to be bounded), we conclude
that

1

2

“
Q.†\Br /

�
w.x/�w.y/

��
'M .x/� 'M .y/

�
d	

�

Z
†

�
f .x/� b.x/w.x/

�
'M .x/d�.x/:

We now let M ! C1 in the above inequality. The limit can be carried out
on both sides using dominated convergence. On the left-hand side, we also take
advantage of the Cauchy–Schwarz inequality and the fact that j'M .x/ � 'M .y/j �
j'.x/� '.y/j. From this, (6.9) follows.

We can now proceed to the statement of our weak Harnack inequality.

THEOREM 6.4
Let n � 1, let s 2 .1=2; 1/, and assume that conditions (6.1)–(6.7) hold. Let w be a
supersolution of (6.8) in †\B4R, for some R 2 .0;R0=4/, such that

w � 0 in †\�: (6.18)

Then there exists an exponent Np > 1, given by the value Np D � in (6.19) and in par-
ticular depending only on n and s, such that for every p 2 .0; Np/, it holds that

inf
†\BR

wCR2s d

� c
°�
�

Z
†\BR

wp.x/d�.x/
� 1
p

CR2s inf
x2†\BR=2

Z
†nBR

w.y/K.x;y/d�.y/
±
;

for some constant c 2 .0; 1� depending only on n, s, c?, C?, ƒ, b�, and p.

Note that, according to (6.18), the supersolution w is required to be nonnegative
in the whole set†\� (i.e., as far as the operator is extended), and not just in†\B4R
where the equation is posed. When †D R

n, this condition has been proved in [47]
and [48] to be necessary for the Harnack inequality to hold in this form.
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We prove Theorem 6.4 by following the classical Moser iteration method, adapted
to our fractional and non-Euclidean framework. To carry it out, we need the fractional
Sobolev inequalities developed in Section 5. For technical reasons, it will be conve-
nient to have an exponent 2� � 4. For some n and s, this will force 2� to be smaller
than the fractional Sobolev exponent. This is why we define

� WD

´
2 if n� 2; or nD 3 and s 2 Œ3

4
; 1/;

n
n�2s

if nD 3 and s 2 .1
2
; 3
4
/; or n� 4;

(6.19)

for which we have 2 < 2� � 4. Note that there exists a constant C� depending only
on n, s, c?, and C?, such that

kvkL2� .†\B�1 /
� C�


s� ��1
2�

n

2

�
Œv�H s.†\B�2 /C

1

.
2 � 
1/s
kvkL2.†\B�2 /

�
(6.20)

holds for every 0 < 
1 < 
2 �R and all Hn-measurable functions v W†\BR!R.
Inequality (6.20) follows from the results of Section 5—in particular, from estimate
(5.9) when n� 2 > 2s and from (5.15) along with Hölder’s inequality when nD 1 <
2s. Note that the case nD 1� 2s never occurs since we assume that s 2 .1=2; 1/.

We can now head to the proof of Theorem 6.4. Thanks to Lemma 6.3, it suffices
to present it for the case of weak supersolutions.

We start with the following lower bound for the infimum ofw in terms of its norm
in Lebesgue spaces of small, negative summability. Here, and also in Lemma 6.7,
we need to consider two independent scales R > r , instead of just R and R=2 as
is sometimes customary with Moser iterations (see, e.g., [60, (4.4)]). This will be
important in order to apply an abstract result, Lemma 6.8, that replaces in our setting
the classical John–Nirenberg inequality.

LEMMA 6.5
Let w be a supersolution of (6.8) in †\BR, for some R 2 .0;R0=2/, satisfying

w �R2sd C " in †\BR (6.21)

for some " > 0.
Then there exist two constants �1 > 0 and c > 0 such that, for all p0 2 .0; 1� and

r 2 ŒR=2;R/,

inf
†\Br

w �
°
c
�R� r

R

��1± 1
p0

�
�

Z
†\BR

w.x/�p0 d�.x/
�� 1

p0 : (6.22)

The constant �1 depends only on n and s, while c depends only on n, s, c?, C?, ƒ,
and b�.
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Proof
Up to scaling, we may suppose that RD 2. Given 1 � r � � < t � 2, we consider a
cutoff function � 2 C1.RnC1/ satisfying 0� �� 1 in R

nC1, supp.�/�Bt , �D 1 in
B.tC�/=2, and jr�j � 4=.t � �/ in R

nC1. Given q > 1, we test the weak formulation
(6.9) with the nonnegative function ' D �qC1w�q , obtainingZ

†

Z
†

�
w.y/�w.x/

���qC1
k

.x/

wq.x/
�
�qC1.y/

wq.y/

�
d	

� 2

Z
†

�
b.x/w.x/� f .x/

��qC1.x/
wq.x/

d�.x/:

Using Lemma A.2 and assumptions (6.2)–(6.7), this yieldsZ
†

Z
†

�.x/�.y/
ˇ̌̌� �.x/
w.x/

� q�1
2

�
� �.y/
w.y/

� q�1
2
ˇ̌̌2 d�.x/d�.y/
jx � yjnC2s

� Cq2
°Z
†\Bt

� �.x/
w.x/

�q�1�Z
†\�

j�.x/� �.y/j2

jx � yjnC2s
d�.y/

�
d�.x/

C

Z
†

�
R�2s0 b�w.x/C d

��qC1.x/
wq.x/

d�.x/
±
; (6.23)

where, from here on, C � 1 is a constant depending only on n, s, c?, C?, ƒ, and b�.
Now, on the one hand,Z

†

Z
†

�.x/�.y/
ˇ̌̌� �.x/
w.x/

� q�1
2

�
� �.y/
w.y/

� q�1
2
ˇ̌̌2d�.x/d�.y/
jx � yjnC2s

�

“
.†\B tC�

2

/2

ˇ̌
w�

q�1
2 .x/�w�

q�1
2 .y/

ˇ̌2 d�.x/d�.y/
jx � yjnC2s

: (6.24)

On the other hand, by Corollary 3.5—which can be applied thanks to the second
inequality in (6.4)—we haveZ

†\Bt

� �.x/
w.x/

�q�1�Z
†\�

j�.x/� �.y/j2

jx � yjnC2s
d�.y/

�
d�.x/� C

kw�qC1kL1.†\Bt /

.t � �/2s
:

Also, by (6.21),Z
†

�
R�2s0 b�w.x/C d

��qC1.x/
wq.x/

d�.x/�
b�C 1

R2s

Z
†

�qC1.x/

wq�1.x/
d�.x/

� C
kw�qC1kL1.†\Bt /

.t � �/2s
:

By plugging (6.24) together with the last two inequalities into (6.23), we obtain that
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Œw�
q�1
2 �2H s.†\B tC�

2

/ �
Cq2

.t � �/2s
kw�qC1kL1.†\Bt /:

Taking advantage of inequality (6.20), this leads to

kw�qC1kL� .†\B� / � Cq
2 t
2s� ��1

�
n

.t � �/2s
kw�qC1kL1.†\Bt /; (6.25)

where � is the constant defined in (6.19).
Now let p0 2 .0; 1� (as in the statement of the lemma), and consider the three

sequences ¹rj º, ¹pj º, and ¹ˆj º defined by

rj WD r C 2
�j .2� r/; pj WD �

jp0; and

ˆj WD
�
�

Z
†\Brj

w.x/�pj d�.x/
� 1
pj

for every nonnegative integer j . By applying estimate (6.25) with � D rjC1, t D rj ,
and q D 1C pj , it is not hard to see that, for every integer j � 0, we have

ˆjC1 � jˆj with j WD
®
C22sj .1C pj /

2.2� r/�2s
¯ 1
pj � 1: (6.26)

Since the terms ˆj involve averages, to get the above relation we used once again
(6.4) to bound from above and below the n-dimensional measures of the sets†\Brj .

Note now that

logC

pi
D

logC

p0
��i �

C

p0
.1C ı/�i ;

log22si

pi
D
2s log2

p0
��i i �

C

p0
.1C ı/�i ; and

log.1C pi /2

pi
D

2

p0
log.1C p0�

i /��i �
C

p0
.1C ı/�i

for a small ı > 0 depending only on n, s, c?, C?, ƒ, and b�. Moreover,

C1Y
iD0

.2� r/
� 2spi D .2� r/

� 2sp0

PC1
iD0

��i
D .2� r/

� 2s�
.��1/p0 ;

and hence
C1Y
iD0

i D
°C1Y
iD0

.2� r/
� 2spi

±
exp

°C1X
iD0

� logC

pi
C

log22si

pi
C

log.1C pi /2

pi

�±

� .2� r/
� 2s�
.��1/p0 exp

° C
p0

C1X
iD0

.1C ı/�i
±
� C

1
p0 .2� r/

� 2s�
.��1/p0 :
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This and ˆj �ˆ0
Qj�1
iD0 i �ˆ0

QC1
iD0 i , which follows by iterating (6.26), lead to

sup
†\Br

w�1 � lim sup
j!C1

ˆj � C
1
p0 .2� r/

� 2s�
.��1/p0ˆ0

D C
1
p0 .2� r/

�
�1
p0

�
�

Z
†\B2

w.x/�p0 d�.x/
� 1
p0 ;

with �1 WD 2s�=.� � 1/. From this, inequality (6.22) follows.

We proceed with a second lemma, where we get a uniform bound for the BMO
seminorm of the logarithm of the supersolution w. This will essentially allow us to
control the integrals of small positive powers of w with those of small negative pow-
ers. Its proof follows a similar strategy to the one of Lemma 6.3, showing that gener-
alized pointwise supersolutions are weak supersolutions.

LEMMA 6.6
Let w be a supersolution of (6.8) in †\B2R, for some R 2 .0;R0=2/. Suppose that

w �R2sd C " in †\B2R (6.27)

for some " > 0.
Then there exists a constant C depending only on n, s, c?, C?, ƒ, and b�, such

that

�

Z
†\BR

ˇ̌
logw.x/� .logw/†\BR

ˇ̌
d�.x/� C: (6.28)

Proof
Without loss of generality, we may restrict ourselves to the case RD 1. Take a cutoff
� 2 C1.RnC1/ such that 0 � � � 1 in R

nC1, supp.�/ � B3=2, � D 1 in B1, and
jr�j � 4 in R

nC1. Testing inequality (6.9) with the function ' D �2w�1 and arguing
as we did at the beginning of the proof of Lemma 6.3, one obtains thatZ

†\B1

Z
†\B1

jw.x/�w.y/j2

w.x/w.y/

d�.x/d�.y/

jx � yjnC2s
� C; (6.29)

for some constant C depending only on the quantities declared in the statement. Note
that, instead of proceeding as in (6.15), to estimate the right-hand side and zeroth
order term of (6.9) one needs to take advantage of (6.27) and (6.4), obtainingZ

†

�
R�2s0 b�w.x/C d

��2.x/
w.x/

d�.x/� .b�C 1/

Z
†\B2

�2.x/d�.x/� C:
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Due to Lemma A.3, it follows from (6.29) that

Œlogw�H s.†\B1/ � C:

Using Jensen’s inequality, the left bound in (6.4), and Proposition 5.1, we then deduce
that

�

Z
†\B1

ˇ̌
logw.x/� .logw/†\B1

ˇ̌
d�.x/�

k logw � .logw/†\B1kL2.†\B1/

Hn.†\B1/
1
2

� CŒlogw�H s.†\B1/ � C:

Thus, (6.28) is established.

Finally, we connect small positive powers of w with the possibly larger power p
appearing in the statement of Theorem 6.4. Moreover, we obtain a bound from below
for the L1 norm of w in terms of its tail, that is, a quantity like the second term on the
right-hand side of the conclusion of Theorem 6.4.

LEMMA 6.7
Let p1 2 .0; �/ be given, with � > 1 as in (6.19). Let w be a supersolution of (6.8) in
†\BR, for some R 2 .0;R0=2/, satisfying

w �R2sd C " in †\� (6.30)

for some " > 0.
Then there exist two constants �2 > 0 and C > 0 such that, for every

p 2
�
0;
p1

�

i
(6.31)

and every r 2 ŒR=2;R/, it holds that�
�

Z
†\Br

wp1.x/d�.x/
� 1
p1

�
°
C
� R

R� r

��2± 1p� 1
p1

�
�

Z
†\BR

wp.x/d�.x/
� 1
p

: (6.32)

The constant �2 depends only on n and s, while C depends only on n, s, c?, C?, ƒ,
p1, and b�. Furthermore,

inf
x2†\BR=2

Z
†nBR

w.y/K.x;y/d�.y/�
C 0

R2s
�

Z
†\BR

w.x/d�.x/; (6.33)

for some constant C 0 depending only on n, s, c?, C?, ƒ, and b�.
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Proof
By scaling, we may assume that RD 1. Let 1=2� � < t � 1 be two radii, and let � 2
C1.RnC1/ be a cutoff function satisfying 0� �� 1 in R

nC1, supp.�/� B.2tC�/=3,
�D 1 in B.tC2�/=3, and jr�j � 6=.t � �/ in R

nC1. Let q 2 .0; 1/.
By testing (6.9) with the nonnegative function ' D �2w�q and taking advantage

of (6.1), we obtain that

I .1/C 2I .2/CD � 0; (6.34)

where

I .1/ WD

Z
†\Bt

Z
†\Bt

�
w.x/�w.y/

�� �2.x/
wq.x/

�
�2.y/

wq.y/

�
d	;

I .2/ WD

Z
†\Bt

�2.x/

wq.x/

�Z
†nBt

�
w.x/�w.y/

�
K.x;y/d�.y/

�
d�.x/

and

D WD 2

Z
†

�
R�2s0 b�w.x/C d

� �2.x/
wq.x/

d�.x/:

We begin by dealing with I .1/. Taking advantage of Lemma A.4, we have that

I .1/ ��
q

2

Z
†\Bt

Z
†\Bt

ˇ̌
w
1�q
2 .x/�w

1�q
2 .y/

ˇ̌2
min

®
�.x/; �.y/

¯2
d	

C
4

q

Z
†\Bt

Z
†\Bt

max
®
w.x/;w.y/

¯1�q ˇ̌
�.x/� �.y/

ˇ̌2
d	:

On the one hand, by taking advantage of hypotheses (6.2)–(6.5), and applying Corol-
lary 3.5, we estimate thatZ

†\Bt

Z
†\Bt

max
®
w.x/;w.y/

¯1�q ˇ̌
�.x/� �.y/

ˇ̌2
d	

� 2ƒ

Z
†\Bt

w1�q.x/
�Z
†\�

j�.x/� �.y/j2

jx � yjnC2s
d�.y/

�
d�.x/

� C
kw1�qkL1.†\Bt /

.t � �/2s
;

where, from here on, C � 1 depends only on n, s, c?, C?, ƒ, and b�. On the other
hand, (6.2) yieldsZ

†\Bt

Z
†\Bt

ˇ̌
w
1�q
2 .x/�w

1�q
2 .y/

ˇ̌2
min

®
�.x/; �.y/

¯2
d	

�ƒ�1Œw
1�q
2 �2H s.†\B tC2�

3

/:
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By the last three inequalities, we deduce that

I .1/ ��
q

C
Œw

1�q
2 �2H s.†\B tC2�

3

/C
Cq�1

.t � �/2s
kw1�qkL1.†\Bt /: (6.35)

We now look at the term I .2/. We split it as I .2/ D I .21/ � I .22/, with

I .21/ WD

Z
†\Bt

�2.x/w1�q.x/
�Z
†nBt

K.x;y/d�.y/
�
d�.x/;

I .22/ WD

Z
†\Bt

�2.x/

wq.x/

�Z
†nBt

w.y/K.x;y/d�.y/
�
d�.x/:

To bound I .21/, we use (6.2)–(6.5) and Lemma 3.3. We obtain that

I .21/ �ƒ

Z
†\B.2tC�/=3

�2.x/w1�q.x/
�Z
.†\�/nB.t��/=3.x/

d�.y/

jy � xjnC2s

�
d�.x/

�
C

.t � �/2s
kw1�qkL1.†\Bt /:

On the other hand, using that, by (6.30),w � " > 0 in†\� and, once again, hypothe-
ses (6.3) and (6.5), we have

I .22/ �

Z
†\B.tC2�/=3

w�q.x/
�Z
†nBt

w.y/K.x;y/d�.y/
�
d�.x/

� kw�qkL1.†\B� /

�
inf

x2†\B�

Z
†nBt

w.y/K.x;y/d�.y/
�
:

The combination of the last two inequalities gives that

I .2/ � C
kw1�qkL1.†\Bt /

.t � �/2s
� kw�qkL1.†\B� /

�
inf

x2†\B�

Z
†nBt

w.y/K.x;y/d�.y/
�
:

To estimate D, we simply use (6.30) to deduce that

D � 2.b�C 1/

Z
†

�2.x/

wq�1.x/
d�.x/�

C

.t � �/2s
kw1�qkL1.†\Bt /:

By putting together the last two bounds with (6.34) and (6.35), we get

qŒw
1�q
2 �2H s.†\B tC2�

3

/Ckw
�qkL1.†\B� /

�
inf

x2†\B�

Z
†nBt

w.y/K.x;y/d�.y/
�

�
Cq�1

.t � �/2s
kw1�qkL1.†\Bt /: (6.36)
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At this stage (but not at a further one), we discard the second term on the left-hand
side of (6.36) and we infer, with the aid of inequality (6.20), that

kw1�qkL� .†\B� / �
C

q2.t � �/2s
kw1�qkL1.†\Bt / (6.37)

for every 1=2 � � < t � 1. Let p and p1 be as in the statement, and let Nk be the
positive integer for which

p1�
� Nk � p < p1�

� NkC1: (6.38)

We consider the two finite sequences ¹pkº and ¹rkº defined by

pk WD �
�kC1p1 and rk WD r C 2

k� Nk�1.1� r/

for every integer k D 1; : : : ; Nk C 1. Applying (6.37) with � D rk , t D rkC1, q D 1�
pkC1 and recalling hypothesis (6.4), it is not hard to see that, for every k D 1; : : : ; Nk,�

�

Z
†\Brk

wpk .x/d�.x/
� 1
pk � k

�
�

Z
†\BrkC1

wpkC1.x/d�.x/
� 1
pkC1 ;

with

k WD
° 22s.

Nk�k/C

.1� pkC1/2.1� r/2s

± 1
pkC1 :

Therefore,

�
�

Z
†\Br1

wp1.x/d�.x/
� 1
p1 �

� NkY
kD1

k

��
�

Z
†\B1

wp NkC1.x/d�.x/
� 1
p NkC1 :

Thus, using (6.4) once again and, possibly, Hölder’s inequality, we obtain that

�
�

Z
†\Br

wp1.x/d�.x/
� 1
p1 � C

� NkY
kD1

k

��
�

Z
†\B1

wp.x/d�.x/
� 1
p

; (6.39)

since 1=2� r � r1 � 1 and p NkC1 � p, by the way Nk was chosen in (6.38).
As it can be easily checked, (6.38) and (6.31) lead to

1

p NkC1
�
1

p1
<
�

p
�
1

p1
� .� C 1/

� 1
p
�
1

p1

�
:

Thanks to this inequality, we have
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NkX
kD1

1

pkC1
D

1

p1

NkX
kD1

�k D
1

p1

�.�
Nk � 1/

� � 1
D

�

� � 1

� 1

p NkC1
�
1

p1

�
�
�2

2s

� 1
p
�
1

p1

�
; (6.40)

where we set �2 WD 2�.� C 1/s=.� � 1/. On the other hand, a simple but tedious
computation reveals that

2s

NkX
kD1

Nk � k

pkC1
�

2�s

.� � 1/2

� 1

p NkC1
�
1

p1

�
�

�2

� � 1

� 1
p
�
1

p1

�
:

Here the first inequality can be checked by induction on Nk, for instance. Thanks to this,
(6.40), and the inequality 1 � pkC1 � 1 � p2 D .� � p1/=� for every k D 1; : : : ; Nk,
we have

NkY
kD1

k �
° C�2

.� � p1/2.1� r/2s

±P Nk
kD1

1
pkC1 2

2s
P Nk
kD1

Nk�k
pkC1

�
° C

.� � p1/
�2
s .1� r/�2

± 1
p�

1
p1 :

By combining this with (6.39), we arrive at estimate (6.32), provided C is taken to
depend also on p1.

We now go back to (6.36). By dropping this time the first term on its left-hand
side, and applying it with � D 1=2, t D 1, and q D 1=2, we find that

inf
x2†\B1=2

Z
†nB1

w.y/K.x;y/d�.y/� C 0kw1=2kL1.†\B1/kw
�1=2k�1

L1.†\B1=2/
:

By taking advantage of Lemma 6.5, hypothesis (6.4), and Hölder’s inequality, we then
obtain

inf
x2†\B1=2

Z
†nB1

w.y/K.x;y/d�.y/� C 0kw1=2kL1.†\B1/ inf
†\B1=4

w1=2

� C 0kw1=2k2
L1.†\B1/

� C 0kwkL1.†\B1/;

which gives (6.33).

We are now in position to put together the last three lemmas and conclude The-
orem 6.4. To do this, we need one more ingredient: an abstract lemma from [64] that
plays the role of the classical John–Nirenberg inequality originally used by Moser in
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[60]. Note that we use this lemma in place of, say, [9, Theorem 4], due to the slightly
better flexibility of the former. Indeed, the result of [64] allows for the presence of
different exponents (�1 vs. �2) in the constants that govern the estimates of Lemmas
6.5 and 6.7. See also [2] for a variant of this abstract lemma set in a nonlocal parabolic
framework.

We include next the statement of this abstract result for the convenience of the
reader. Note that, in our setting, the space X will be the surface † endowed with the
measure 	 D Hn�† and ¹U	º will be the intersection of † with ambient balls of
R
nC1.

LEMMA 6.8 ([64, Lemma 2.2.6])
Let .X;	/ be a measure space, and let ¹U	º	2Œ1;2� be a collection of measurable
subsets of X satisfying U	 0 � U	 for every 1 � � 0 � � � 2. Let C] > 0, � > 0, and
0 < q0 � q1 �C1.

Let f W U2!R be a positive measurable function satisfying

kf kLq1 .U�0 Id
/ �
°C]	.U2/�1
.� � � 0/�

± 1
q�

1
q1 kf kLq.U� Id
/ (6.41)

for every 1� � 0 < � � 2 and every 0 < q �min¹1; q1=2º. Assume further that

	
�
¹logf > º

�
�
C]	.U2/


for every  > 0: (6.42)

Then

kf kLq1 .U1Id
/ � C	.U2/
1
q1

for some constant C depending only on C], � , and q0.

With this in hand, we can complete the proof of the weak Harnack inequality.

Proof of Theorem 6.4
As usual, we assume without loss of generality that RD 1. Set Nw WDwC 22sd C ",
with " > 0 small. Note that Nw is also a weak supersolution of (6.8) in †\ B4 (with
bC in place of b) and that it satisfies Nw � 22sd C " in †\�, thanks to assumption
(6.18).

First of all, we claim that, for every p1 2 .0; �/, it holds that

inf
†\B1

Nw � c
�
�

Z
†\B1

Nwp1.x/d�.x/
� 1
p1 ; (6.43)

for some constant c 2 .0; 1� depending only on n, s, c?, C?, ƒ, b�, and p1. To prove
this claim, we may assume that p1 � 1, thanks to Hölder’s inequality. Following the
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proof of [64, Theorem 2.3.1], we apply Lemma 6.8 to the functions e�� Nw and e� Nw�1,
with � WD .log Nw/†\B2 , 	DHn�†, and U	 D † \ B	 . We observe that condition
(6.42) is fulfilled by both these functions, since by Lemma 6.6 (applied here with
RD 2),

Hn
�
†\B2 \

®ˇ̌
log.e�� Nw/

ˇ̌
> 

¯�
�
1



Z
†\B2

ˇ̌
log Nw.x/� �

ˇ̌
d�.x/

�
CHn.†\B2/



for every  > 0, where C � 1 depends only on n, s, c?, C?, ƒ, b�, and p1.
Next, we claim that e�� Nw satisfies (6.41) with q1 D p1, q0 D 1, and � D �2 > 0

as in the statement of Lemma 6.7 and depending only on n and s. Indeed, estimate
(6.32), condition (6.4), and the fact that � � 2 ensure the validity of the estimate�Z

†\Br

ˇ̌
e�� Nw.x/

ˇ̌p1 d�.x/� 1
p1

�
°CHn.†\B2/

�1

.
� r/�2

± 1
q�

1
p1

�Z
†\B�

ˇ̌
e�� Nw.x/

ˇ̌q
d�.x/

� 1
q

for every 1� r < 
 � 2 and q 2 .0;p1=2�. On the other hand, by Lemma 6.5,

sup
†\Br

je� Nw�1j �
°CHn.†\B2/

�1

.
� r/�1

± 1
q
�Z
†\B�

ˇ̌
e� Nw�1.x/

ˇ̌q
d�.x/

� 1
q

for every 1� r < 
 � 2, q 2 .0; 1�, and with �1 > 0 (as in the statement of Lemma 6.5)
depending only on n and s. Hence (6.41) is also verified by e� Nw�1, this time with
� D �1 and q1 DC1.

In light of Lemma 6.8, we infer that�
�

Z
†\B1

ˇ̌
e�� Nw.x/

ˇ̌p1 d�.x/� 1
p1 � C and sup

†\B1

je� Nw�1j � C:

The combination of these two inequalities leads us to (6.43).
Next, we note that, by taking p1 D 1 in (6.43) and recalling estimate (6.33) in

Lemma 6.7 (applied with RD 1), it immediately follows that

inf
†\B1

Nw � c inf
x2†\B1=2

Z
†nB1

Nw.y/K.x;y/d�.y/:

Since Nw D wC 22sd C ", the conclusion of Theorem 6.4 (with p D p1 2 .0; �/
and Np D � ) can be reached by putting together the last inequality with (6.43) and
letting "! 0C.
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6.2. The weak Harnack inequality on nonlocal minimal surfaces and graphs
We now apply the results of the previous subsection to ˛-minimal surfaces and, in
particular, ˛-minimal graphs. The sets � and �0 considered in the next result will be
later taken to be either all of RnC1 or vertical cylinders C�.

COROLLARY 6.9
Let n� 1, let ���0 be two open subsets of RnC1, and suppose that

dist.�;RnC1 n�0/� 	0 for some 	0 2 .0;C1�I

when�0 DR
nC1, we take 	0 DC1. For ˛ 2 .0; 1/, let @E �R

nC1 be an ˛-minimal
surface in �0, and set † WD @�E , with @�E the reduced boundary of E .

Let K W @�E � @�E ! R be a nonnegative kernel satisfying hypotheses (6.1)–
(6.3) for some R0 2 .0;	0=2�, ƒ � 1, and s 2 .1=2; 1/. Also assume the validity of
(6.5).

Let b;f W @�E \ BR0 ! R be two bounded Hn-measurable functions satisfy-
ing (6.6) and (6.7) for some b�; d � 0. Given a radius R 2 .0;R0=4/, let w be a
supersolution of

�LKvC bvD f in @�E \B4R

such that w � 0 in @�E \�.
Then there exists an exponent Np > 1 depending only on n and s, such that for

every p 2 .0; Np/ it holds that

inf
@�E\BR

wCR2sd � c
°�
�

Z
@�E\BR

wp.x/d�.x/
� 1
p

CR2s inf
x2@�E\BR=2

Z
@�EnBR

w.y/K.x;y/d�.y/
±

(6.44)

for some constant c 2 .0; 1� depending only on n, s, ˛, ƒ, b�, and p.

Proof
The corollary is an immediate consequence of Theorems 3.1 and 6.4. Indeed, by The-
orem 3.1, there exist two constants C? � c? > 0 depending only on n and ˛, for
which

c?

n �Hn

�
@�E \B�.x/

�
� C?


n for every x 2 @�E \� and 
 2
�
0;
	0

2

i
:

As, by assumption, R0 � 	0=2, the hypotheses of Theorem 6.4 are satisfied. Hence,
inequality (6.44) plainly follows.
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Note that, when �D�0 D R
nC1, b D f D 0, and the kernel K takes the form

K.x;y/D jx � yj�n�2s , Corollary 6.9 yields Theorem 1.7 of the Introduction.
We now present an application of the weak Harnack inequality to ˛-minimal sur-

faces in bounded cylinders. This result will be of key importance in the next section,
where we will establish the gradient estimate for nonlocal minimal graphs.

COROLLARY 6.10
Let n � 1 and ˛ 2 .0; 1/. Let @E be an ˛-minimal surface in the cylinder C32r , and
suppose that

@�E \Cr �B
0
r � .�M;M/; (6.45)

for some positive constants r and M . Let b W @�E \ C8r ! R be a bounded Hn-
measurable function satisfying b � r�2sb� in @�E \C8r for some b� � 0, and let K
be the truncated kernel given by

K.x;y/ WD
�C16r .x/�C16r .y/

jx � yjnC2s
for all x;y 2 @�E;

for some s 2 .1=2; 1/.
Let w be a nonnegative supersolution of (6.8) in @�E \C8r , with f D 0. Assume

further that, for some constant c[ > 0,Z
@�E\Cr

w.y/d�.y/� c[r
n: (6.46)

Then

inf
@�E\Cr

w � c
�
1C

M

r

��n�2s
(6.47)

for some constant c > 0 depending only on n, s, ˛, b�, and c[.

Proof
Up to a rescaling, we can assume that r D 1. We apply Corollary 6.9 as follows.
Take any point Nx 2 @�E \ C1. We translate Nx to the origin and note that, in this new
reference frame, @.E� Nx/ is an ˛-minimal surface inside the cylinder C32.� Nx/, while
w.	 C Nx/ is a nonnegative supersolution of (6.8) in @�.E � Nx/\C8.� Nx/, with f D 0
and kernelK Nx.x; y/ WD �C16.� Nx/.x/�C16.� Nx/.y/jx�yj

�n�2s . Hence, the hypotheses
of Corollary 6.9 are satisfied withE� Nx in place ofE ,�D C16.� Nx/,�0 D C32.� Nx/,
and R0 D 4. Applying (6.44) with p D 1 and R D 1=2, and switching back to the
original coordinates, we conclude that
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inf
@�E\B1=2. Nx/

w � c
�
�

Z
@�E\B1=2. Nx/

w.x/d�.x/

C inf
x2@�E\B1=4. Nx/

Z
.@�E\C1/nB1=2. Nx/

w.y/

jx � yjnC2s
d�.y/

�
(6.48)

for a constant c > 0 depending only on n, s, ˛, and b�.
In view of Theorem 3.1,

�

Z
@�E\B1=2. Nx/

w.x/d�.x/� c

Z
.@�E\C1/\B1=2. Nx/

w.x/d�.x/: (6.49)

Moreover, by hypothesis (6.45) and the fact that Nx 2 @�E \C1, it holds that

jx � yj � jx � Nxj C j Nxj C jyj � 1=4C 2
p
1CM 2 � 3.1CM/

for every x 2 @�E \B1=4. Nx/ and y 2 @�E \C1. Thus,

inf
x2@�E\B1=4. Nx/

Z
.@�E\C1/nB1=2. Nx/

w.y/

jx � yjnC2s
d�.y/

�
c

.1CM/nC2s

Z
.@�E\C1/nB1=2. Nx/

w.y/d�.y/:

In light of the above estimate, (6.48), (6.49), and hypothesis (6.46), we get that

inf
@�E\B1=2. Nx/

w �
c

.1CM/nC2s

Z
@�E\C1

w.y/d�.y/�
c

.1CM/nC2s
:

By the arbitrariness of Nx 2 @�E \C1, we deduce that (6.47) holds true.

Under the hypotheses of the last corollary and with the additional assumption
that † is connected—which holds, for instance, when † is the graph of a continuous
function, as in our application—one can obtain the estimate

inf
@�E\Cr

w � exp
°
�C

�
1C

M

r

�±
(6.50)

with a different proof based on a chaining method appearing, for example, in [29,
Corollary 3.2]. We stress that this technique only makes use of the bound for the
first term appearing on the right-hand side of the weak Harnack inequality (6.44). As
a result, it produces the exponential estimate (6.50) that is weaker than the power-
type bound (6.47) in its dependence on M . Arguing as in the proof of Theorem 1.1
presented in Section 7, one easily sees that (6.50) yields a gradient bound for nonlocal
minimal graphs depending exponentially on the oscillation, analogous to the sharp
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estimate (1.2) for classical minimal graphs. We present here below a brief sketch of
the argument leading to (6.50).

First, we cover † WD @�E \Cr with a family of Euclidean balls B WD ¹B.j /ºNjD1
centered on † and with radii equal to a small (but universal) fraction of r . Thanks to
hypothesis (6.45), the cardinality N can be chosen to be of order M=r .

Take now two ballsB.i/ andB.j / having nonempty intersection. Applying Corol-
lary 6.9, it is easy to get thatZ

@�E\B.i/
w.x/d�.x/� C

Z
@�E\B.j /

w.x/d�.x/

for some constant C > 1 depending only on n, s, ˛, and b�. As † is connected, any
two balls B.i/ and B.j / can be joined by a connected chain of balls in B. By iterating
the above inequality along this chain, we obtain a new estimate in which the constant
C is now replaced by C 1CM=r .

Claim (6.50) follows using (6.44)—with only the first term in its right-hand
side—and observing that hypothesis (6.46) ensures the existence of an index i for
which Z

@�E\B.i/
w.x/d�.x/� c

�
1C

M

r

��1
rn;

for some c 2 .0; 1� depending only on n, s, ˛, b�, and c[.

7. Regularity results
We combine here the weak Harnack inequality of Section 6 with the results on the
Jacobi operator presented in Section 4 to deduce a gradient bound for nonlocal min-
imal graphs and, as a consequence, their smoothness. More specifically, we prove
Theorems 1.1 and 1.2 of the Introduction.

Proof of Theorem 1.1
Up to a covering argument, we may assume that @E minimizes the ˛-perimeter
in the cylinder C64r , instead of C2r as in the statement. Indeed, suppose that we
have proved the gradient estimate (1.1) in this case. Going back to the hypothe-
ses of Theorem 1.1, we pick a ball B 0

r=64
. Nx0/ � B 0r such that krx0ukL1.B0r /=2 �

krx0ukL1.B0
r=64

. Nx0//. Then B 0
64.r=64/

. Nx0/DB 0r . Nx
0/�B 02r and we may apply the gra-

dient bound in B 0
r=64

. Nx0/ obtaining that

krx0ukL1.B0r / � C
�
1C

oscB0
r=64

. Nx0/ u

r=64

�nC1C˛
� C

�
1C

oscB0r u

r

�nC1C˛
;

as desired.
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We now prove (1.1) assuming that @E is ˛-minimal in C64r . By Theorem 3.2, we
know that @E \ C32r is of class C1 outside of a closed singular set S of Hausdorff
dimension at most n� 2. By Proposition 3.7, we also have´

S D∅ if nD 1;

Cap
†\C32r ;

1C˛
2
.S/D 0 if n� 2:

(7.1)

Denote by � 0 WRnC1!R the projection along the .nC1/th coordinate direction, and
let S 0 WD � 0.S \ Cr/. This is a closed set relative to B 0r , by a compactness argument
using that u is bounded in B 0r . In addition, as S is at most .n � 2/-dimensional, we
have that S 0 satisfies

Hd .S 0/D 0 for all d > n� 2: (7.2)

(See, e.g., [35, Corollary 1, Section 2.4.1] for a proof of this simple fact.)
We can now proceed to prove the theorem. Observe that, up to a vertical transla-

tion, we may suppose that u.0/D 0. This means in particular that

oscB0r u� kukL1.B0r /: (7.3)

Consider the truncated kernel

Kr.x; y/ WD
�C16r .x/�C16r .y/

jx � yjnC1C˛
for all x;y 2RnC1;

and the corresponding truncated fractional Laplace-type operator given by

Lrv.x/ WD P:V:
Z
@�E

�
v.y/� v.x/

�
Kr.x; y/dy for x 2 @�E:

Let w WD �nC1E be the .nC 1/th component of the outer unit normal �E to E , defined
on @�E . The function w is smooth in .@E n S/\C32r and given by

w
�
x0; u.x0/

�
D

1p
1C jrx0u.x0/j2

for x0 2B 0r n S
0: (7.4)

In view of Theorem 1.3(ii), it holds that

�Lrw.x/C
C

r1C˛
w.x/� 0 for x 2 .@E n S/\C8r ;

for some constant C > 0 depending only on n and ˛. Recalling (7.1), this means
that w is a generalized pointwise supersolution of (6.8) in @�E \ C8r (in the sense
of Definition 6.2), with K DKr , s D .1C ˛/=2, f D 0, and b D Cr�1�˛ . Observe
that the limit defining the principal value involved in the definition of Lr converges
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uniformly away from S , by the regularity of @�E . Moreover, w is nonnegative in
@�E \ C32r , since E is a global subgraph. As @E \ Cr is the graph of u and (7.3) is
in force, we see that (6.45) holds with, say,M D 2oscB0r u. Finally, by (7.2) and (7.4),Z
@�E\Cr

w.y/d�.y/D

Z
B0rnS

0

w
�
y0; u.y0/

�q
1C

ˇ̌
rx0u.y0/

ˇ̌2
dy0 D jB 0r j D jB

0
1jr

n:

Hence, condition (6.46) is satisfied.
As a consequence of these facts, we may apply Corollary 6.10 to deduce that

inf
x02B0rnS

0
w
�
x0; u.x0/

�
� c

�
1C

oscB0r u

r

��n�1�˛
for some constant c 2 .0; 1� depending only on n and ˛. Recalling (7.4), we infer that
u 2W 1;1.B 0r n S

0/ and

krx0ukL1.B0rnS 0/ � c
�1
�
1C

oscB0r u

r

�nC1C˛
:

Since S 0 is closed in B 0r and Hn�1.S 0/ D 0 by (7.2), this W 1;1 bound in B 0r n S
0

yields that u is actually Lipschitz in the whole B 0r and that estimate (1.1) holds. This
is a consequence of a known removability result for the Sobolev space W 1;1 (see,
e.g., [55, Theorem 1.2.5]). The fact that u is actually smooth is a consequence of [39,
Theorem 1.1].

As noted in [9] for the case of classical minimal surfaces, estimate (1.1) can be
improved when dealing with graphs that are minimal in the whole space. In such a
situation, the gradient of u can be bounded in terms of a better power of the oscillation,
as claimed in Theorem 1.2 of the Introduction. Here is a proof of this result.

Proof of Theorem 1.2
By Theorem 1.1, we already know that u is smooth in the whole R

n. As in the previ-
ous proof, we may assume after a vertical translation that

oscB0r u� kukL1.B0r /: (7.5)

We consider the outer unit normal �E to E and let w WD �nC1E be its .nC 1/th
component. We have (7.4) for every x0 2 Rn and w � 0 in the whole @E . Moreover,
by Theorem 1.3(i) we know that

�Lw.x/� 0 for x 2 @E;

where



838 CABRÉ and COZZI

Lv.x/ WD P:V:
Z
@E

v.y/� v.x/

jx � yjnC1C˛
d�.y/:

Therefore, w is a supersolution of (6.8) in the whole @E , with b D f D 0. Accord-
ingly, we may apply Corollary 6.9 (with �D�0 DR

nC1, R0 DC1, and p D 1) to
obtain, for every R > 0,

inf
BR
w � c�

Z
@E\BR

w.x/d�.x/ (7.6)

for some c 2 .0; 1� depending only on n and ˛.
Let now r > 0, and set

R WD
q
r2Ckuk2

L1.B0r /
: (7.7)

With this choice we have that B 0r � �
0.@E \ BR/, where � 0 W RnC1 ! R

n is the
vertical projection. By this, (7.6), (7.4), and the perimeter bound (3.1) of Theorem 3.1,
we get that

sup
B0r

p
1C jrx0uj2 � c

�1Hn.@E \BR/
�Z
@E\BR

d�.x/p
1C jrx0u.x0/j2

��1
D c�1

Hn.@E \BR/

j� 0.@E \BR/j
� c�1

�R
r

�n
for some possibly smaller c. Estimate (1.3) follows from (7.5) and (7.7).

8. Rigidity results
We prove here two flatness results for entire nonlocal minimal graphs.

Consider the operator H˛ defined in (1.6), and note that if u is smooth at x0 2Rn,
then H˛u.x

0/ is well defined in the principal value sense. One can see this by adding
and subtracting the term

P:V:
Z
B0�.x

0/

G˛

�
rx0u.x

0/ 	
y0 � x0

jy0 � x0j

� dy0

jy0 � x0jnC˛
;

for any given radius 
 > 0, from the definition of H˛u.x0/. Note that this term van-
ishes by symmetry—recall that G˛ is odd. Hence, we may write H˛u.x

0/ in the formZ
Rn

°
G˛

�u.x0/� u.y0/
jx0 � y0j

�
� �B0�.x0/.y

0/G˛

�
rx0u.x

0/ 	
x0 � y0

jx0 � y0j

�± dy0

jx0 � y0jnC˛
: (8.1)
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From this representation, it easily follows that H˛u is well defined if u is C 2 at x0

(see, e.g., [14, Remark B.2] for a thorough verification of this fact). Note that, unlike
the fractional Laplacian, the operator H˛ does not require any boundedness or growth
assumption at infinity on the function u to be well defined. This is the case because
G˛ is bounded.

The following is a Liouville-type theorem for globally Lipschitz nonlocal mini-
mal graphs. A more general version of it has been established very recently by Farina
and Valdinoci [36]. Independently of their work, we had found the result below, with
a different proof based on the Harnack inequality for integro-differential operators in
Euclidean space with kernels bounded above and below by multiples of that of the
fractional Laplacian. We stress that our proof, as theirs, does not rely on any of the
results presented in the previous sections.

THEOREM 8.1 ([36, Theorem 4])
Let n� 1 and ˛ 2 .0; 1/. Let E be the subgraph

E D
®
.x0; xnC1/ 2R

n �R W xnC1 < u.x
0/
¯

of a globally Lipschitz function u W Rn! R, and suppose that @E is an ˛-minimal
surface in R

nC1. Then u is affine, or, equivalently, @E is a hyperplane.

Proof
By [39, Theorem 1.1], a result on Lipschitz nonlocal minimal surfaces, the function
u is actually smooth. By the uniform Lipschitz assumption it holds thatˇ̌

rx0u.x
0/
ˇ̌
� C0 for x0 2Rn; (8.2)

for some constant C0. Recalling that H˛u.x0/ may be written as in (8.1), we haveZ
Rn

°
G˛

�u.x0C z0/� u.x0/
jz0j

�
� �B0

1
.z0/G˛

�
rx0u.x

0/ 	
z0

jz0j

�± dz0

jz0jnC˛
D 0:

We differentiate this identity with respect to xi , for i D 1; : : : ; n. We getZ
Rn

°
G0˛

�u.x0C z0/� u.x0/
jz0j

��
uxi .x

0C z0/� uxi .x
0/
�

� �B0
1
.z0/G0˛

�
rx0u.x

0/ 	
z0

jz0j

��
rx0uxi .x

0/ 	 z0
�± dz0

jz0jnC1C˛
D 0: (8.3)

Note now that, since G0˛ is even,

P:V:
Z
B0
1

G0˛

�
rx0u.x

0/ 	
z0

jz0j

��
rx0uxi .x

0/ 	 z0
� dz0

jz0jnC1C˛
D 0:
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Accordingly, (8.3) becomes

P:V:
Z
Rn

G0˛

�u.x0C z0/� u.x0/
jz0j

��
uxi .x

0C z0/� uxi .x
0/
� dz0

jz0jnC1C˛
D 0:

Switching back to the old variables, we conclude that

P:V:
Z
Rn

�
uxi .x

0/� uxi .y
0/
� eK.x0; y0/ dy0 D 0 for every x0 2Rn and i D 1; : : : ; n;

where we set

eK.x0; y0/ WDG0˛�u.x0/� u.y0/jx0 � y0j

� 1

jx0 � y0jnC1C˛
:

Let ˇi WD infRn uxi , for i D 1; : : : ; n, and define v.i/.x0/ WD uxi .x
0/� ˇi . These

are bounded C 2-functions which are nonnegative in R
n and satisfy

inf
Rn
v.i/ D 0 (8.4)

and

P:V:
Z
Rn

�
v.i/.x0/� v.i/.y0/

� eK.x0; y0/ dy0 D 0 for x0 2Rn: (8.5)

Observe now that the kernel eK is symmetric (since G0˛ is even) and that it satisfies

Qc

jx0 � y0jnC1C˛
� eK.x0; y0/� 1

jx0 � y0jnC1C˛
for x0; y0 2Rn;

for some constant Qc 2 .0; 1�, since, by (8.2),

1�G0˛

�u.x0/� u.y0/
jx0 � y0j

�
D
°
1C

� ju.x0/� u.y0/j
jx0 � y0j

�2±�nC1C˛
2

� .1CC 20 /
�nC1C˛2 :

In light of this, the operator of the left-hand side of (8.5) is uniformly elliptic and
thus, by, for example, [24, Theorem 2.5], each v.i/ satisfies the Harnack inequality.
Recall that v.i/ � 0 in all of Rn. We deduce that

sup
B0r

v.i/ � C inf
B0r

v.i/ for every r > 0 and i D 1; : : : ; n;

for some constant C independent of r . Letting now r!C1 and recalling (8.4), we
deduce that

0� sup
Rn

v.i/ � C inf
Rn
v.i/ D 0 for every i D 1; : : : ; nI

that is, each v.i/ is identically zero. The gradient of u is thus constant and u is affine.
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By combining Theorem 8.1 with our gradient estimate for nonlocal minimal
graphs, we can easily prove Theorem 1.6.

Proof of Theorem 1.6
By Theorem 1.2, we know that u 2 C1.Rn/. Taking advantage of (1.3) and (1.20),
we infer that

krx0ukL1.B0r / � C
�
1C

2kukL1.B0r /

r

�n
� C

�
1C

2C.1C r/

r

�n
� C

for every r � 1 and for some constant C independent of r . Hence, u is globally
Lipschitz, and the conclusion follows by virtue of Theorem 8.1.

Appendix. Numerical inequalities
The next three results have been used in the Moser iteration performed in Section 6.
We begin with the following estimate due to Kassmann [46].

LEMMA A.2 ([46, Lemma 2.5])
Let q > 1. Then for every a; b > 0 and �; � � 0, it holds that

.b � a/
��qC1
aq
�
�qC1

bq

�
�

��

q � 1

°��
b

� q�1
2

�
��
a

� q�1
2
±2

�max
°
4;
6q � 5

2

±
.� � �/2

°��
a

�q�1
C
��
b

�q�1±
:

The following simple result appeared, in a stronger version, in [46, Lemma 2.6].

LEMMA A.3
For every a; b > 0, it holds that

.loga� logb/2 �
.a� b/2

ab
: (A.1)

Proof
Inequality (A.1) is equivalent to the fact that

 .t/ WD log t �
p
t C

1
p
t
� 0 for every t � 1: (A.2)

We differentiate  and obtain that

 0.t/D
1

t
�

1

2
p
t
�

1

2t
p
t
D�

1

2t
p
t
.�2
p
t C t C 1/D�

1

2t
p
t
.
p
t � 1/2 � 0

for every t � 1. Therefore,  .t/� .1/D 0 for every t � 1, and (A.2) follows.
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We finish with another numerical inequality in the spirit of the two previous ones.

LEMMA A.4
Let q 2 .0; 1/. Then for every a; b > 0 and �; � � 0, it holds that

.a� b/
��2
aq
�
�2

bq

�
��

q

2
.a

1�q
2 � b

1�q
2 /2min¹�; �º2C

4

q
max¹a; bº1�q.� � �/2:

Proof
Our argument follows a path similar to the one traced throughout the first part of the
proof of [30, Lemma 5.1].

Clearly, we may assume that a > b. We write

.a� b/
��2
aq
�
�2

bq

�
D
a� b

aq

�
�2 �

aq

bq
�2
�
: (A.3)

An application of the weighted Young’s inequality yields

�2 D �2C .� � �/2C 2�.� � �/� .1C "/�2C
2

"
.� � �/2

for every " 2 .0; 1�. By taking advantage of this estimate in (A.3) with the choice

" WD ı
a� b

a
2 .0; 1/;

for some ı 2 .0; 1/ to be chosen later, we obtain

.a� b/
��2
aq
�
�2

bq

�
�
a� b

aq

°�
1C ı

a� b

a
�
aq

bq

�
�2C

2

ı

a

a� b
.� � �/2

±
D
.a� b/2

a1Cq

°
ı �

�aq
bq
� 1

� a

a� b

±
�2C

2

ı
a1�q.� � �/2: (A.4)

We now compute

ı �
�aq
bq
� 1

� a

a� b
D ı �

�a
b

�q 1� . b
a
/q

1� b
a

� ı � q; (A.5)

where the last inequality is a consequence of the fact that 1� tq � q.1� t /tq for every
t 2 Œ0; 1�. By choosing ıD q=2 from inequalities (A.4) and (A.5), we get

.a� b/
��2
aq
�
�2

bq

�
��

q

2

.a� b/2

a1Cq
�2C

4

q
a1�q.� � �/2:

Then the conclusion of the lemma easily follows.
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