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Abstract. We consider the class of stable solutions to semilinear equations
��u = f(u) in a bounded smooth domain of Rn. Since 2010 an interior a
priori L1 bound for stable solutions is known to hold in dimensions n  4 for
all C1 nonlinearities f . In the radial case, the same is true for n  9. Here we
provide with a new, simpler, and unified proof of these results. It establishes,
in addition, some new estimates in higher dimensions —for instance Lp bounds
for every finite p in dimension 5.

Since the mid nineties, the existence of an L1 bound holding for all C1

nonlinearities when 5  n  9 was a challenging open problem. This has
been recently solved by A. Figalli, X. Ros-Oton, J. Serra, and the author, for
nonnegative nonlinearities, in a forthcoming paper.

1. Introduction and results. We consider the semilinear elliptic equation

��u = f(u) in ⌦, (1.1)

as well as the associated Dirichlet problem
⇢

��u = f(u) in ⌦
u = 0 on @⌦,

(1.2)

where ⌦ ⇢ Rn is a smooth bounded domain and f is a C
1 nonlinearity. A smooth

solution u of (1.1), or of (1.2), is said to be stable if
Z

⌦

f
0(u)⇠2 dx 

Z

⌦

|r⇠|2 dx (1.3)

for all C1(⌦) functions ⇠ such that ⇠|@⌦ ⌘ 0. This is equivalent to assuming the
nonnegativeness of the first Dirichlet eigenvalue in ⌦ for the linearized operator
���f

0(u) (or second variation of energy) at u. As a consequence, local minimizers

of the energy (i.e., minimizers under small perturbations having same boundary
values as u) are stable solutions.
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Below we will present another interesting class of solutions —the so called ex-
tremal solutions— which provides with many examples of stable solutions.

This article is concerned with the existence of a priori L1 bounds for stable
solutions of (1.1), or of (1.2), that hold for all C1 nonlinearities f . It is Häım Brezis
who stressed, since the mid-nineties, the significance of obtaining L

1 bounds for
stable solutions to problem (1.6) below with f satisfying (1.5).

It is well known that L1 estimates can only hold in dimensions n  9. Indeed,
when

n � 10, u = �2 log |x|, and f(u) = 2(n� 2)eu, (1.4)

we are in the presence of a singular H1
0
(B1) stable weak solution of (1.2) in ⌦ = B1.

On the other hand, the results of Capella and the author [7] show that, in the radial
case, such example can not exist for n  9. More precisely, in 2006, [7] established
the boundedness of any H

1
0
(B1) stable weak solution of (1.2) in the unit ball, for

every C
1 nonlinearity f , whenever n  9. The result gave also an L

1(B1) a priori
bound with constants independent of f .

In the nonradial case, instead, an L
1 bound holding for all nonlinearities was

known to hold only in dimensions n  4. This was established in 2010 by the
author [5]. Since the mid nineties, the existence of an L

1 bound holding for all
smooth nonlinearities when 5  n  9 was an open problem that has been very
recently solved by Figalli, Ros-Oton, Serra, and the author [8], for nonnegative
nonlinearities.

The purpose of the current article is to provide a new and simpler proof of the
L
1 bound up to dimension 4 from [5]. It no longer relies on the Michael-Simon and

Allard Sobolev inequality —a quite deep result that was applied on every level set
of the solution in [5]— but instead on a new weighted Hardy inequality for functions
defined on hypersurfaces. It will be applied to the hypersurfaces given by the level
sets of the solution. Besides being simpler, the new proof is of interest also by the
following features that the proof in [5] did not have, namely:

• The new proof gives also the bound up to dimension 9 in the radial case —in
a unified way with the one for n  4 in general domains.

• It provides with estimates in dimensions n � 5, such as (1.12) below under
assumption (1.11). This estimate leads to L

p bounds for every finite p in
dimension 5. It also gives Lp estimates in higher dimensions which, however,
are not optimal except for the radial case.

• The new proof allows for first time to consider stable solutions of equation
(1.1) independently of their boundary values. This will also be the case in the
forthcoming article [8].

• Finally, the new proof allows for extensions to other nonlinear elliptic prob-
lems. This will be done in the forthcoming works [11, 16].

1.1. Available results. Let us briefly comment on the main known L
1 bounds

for stable solutions to problem (1.2). For more details, we refer to the book [14] by
Dupaigne, and to the recent surveys [6, 10] by the author.

There is a large literature on a priori estimates for stable solutions, beginning
with the seminal work of Crandall and Rabinowitz [13]. In [13] and subsequent
works, a standard assumption is that u is positive in ⌦ and that the nonlinearity
satisfies

f(0) > 0, f is nondecreasing, convex, and lim
t!+1

f(t)

t
= 1. (1.5)
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This assumption provides with examples of stable solutions u satisfying u > 0 in ⌦.
Indeed, introduce now a parameter � � 0 and consider the problem

⇢
��u = �f(u) in ⌦

u = 0 on @⌦.
(1.6)

Then, assuming that f 2 C
1 satisfies (1.5), there exists an extremal parameter

�
⇤ 2 (0,+1) such that if 0 < � < �

⇤ then (1.6) admits a smooth positive stable
solution u�. This family is increasing in � and its limit as � " �

⇤ is a stable
weak solution u

⇤ = u�⇤ of (1.6) for � = �
⇤. It is called the extremal solution of

(1.6) and may be bounded or unbounded depending on the dimension, domain,
and nonlinearity. In [4], Brezis and Vázquez raised several open questions —see
also the open problems raised by Brezis in [2]— regarding the extremal solution,
in particular about its boundedness. Next we explain the available results on this
question.

The following results from [13, 18, 17] were proven for the smooth stable solutions
of (1.6) corresponding to � < �

⇤. They led, by letting � " �⇤, to the boundedness of
the extremal solution u

⇤ under di↵erent hypothesis on f , as stated next. The proofs
work, however, for any smooth stable solution to problem (1.2) under the same
assumptions on f . From now on in the paper, we adopt this framework and describe
a priori estimates for smooth stable solutions. In this direction, an interesting
question is whether a stable weak solution of (1.2) can be approximated by smooth
stable solutions to similar problems —to which we could apply the available a
priori estimates and in this way deduce regularity of the given weak solution. A
nice answer was given in [3] (see also Corollary 3.2.1 of the monograph [14]) and
states that this is always possible if u 2 H

1
0
(⌦) is a stable weak solution of (1.2)

and f is nonnegative and convex. The approximating functions can be taken to be
smooth stable solutions to problem (1.2) with f replaced by (1� ")f , where " # 0.

In 1975, Crandall and Rabinowitz [13] proved an L
1(⌦) bound for stable solu-

tions whenever n  9 and f(u) = �e
u —as well as for f(u) = �(1 + u)m, m > 1.

This was improved by Sanchón [18], who established that u 2 L
1(⌦) whenever

n  9 and f 2 C
2 satisfies (1.5) as well as that

the limit lim
t!+1

f(t)f 00(t)

f 0(t)2
exists. (1.7)

On the other hand, in the radial case ⌦ = B1 Capella and the author [7] proved
an L

1 bound when n  9 for every C
1 nonlinearity f .

The work of Nedev [17] established the L
1(⌦) bound for n = 2 and 3 when f

satisfies (1.5). When 2  n  4, in 2010 the author [5] established that the L
1

bound holds for every smooth f if in addition ⌦ is convex. Villegas [21] extended
this bound for n = 4 to nonconvex domains if f is assumed to satisfy (1.5) —in
particular f must be convex. He used both the results of [5] and [17].

The proof in [5] relied on a quite delicate application of the Michael-Simon and
Allard Sobolev inequality on every level set of the solution. In addition, the proof is
very di↵erent from that of the radial case up to dimension 9. These two points will
be overcome with the new proof in the current paper, which we start describing in
next subsection.

When 5  n  9, the existence of an L
1 bound holding for all smooth nonlinear-

ities was an open question since the mid nineties. It has been very recently solved
by Figalli, Ros-Oton, Serra, and the author [8], for nonnegative nonlinearities, using
di↵erent ideas from those of the current article.
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Let us address now an important issue: the choice of test function ⇠ to be used
in the stability condition (1.3) to deduce the estimates. In the works of Crandall-
Rabinowitz, Sanchón, and Nedev the test function was

⇠ = h(u)

for a certain, well chosen, function h that depends only on the nonlinearity f .
Instead, in the radial result by Capella and the author, we chose

⇠ = urr
��
⇣

for an appropriate exponent � > 0. Here r = |x| and ⇣ is a function identically
one except in small a neighborhood of @⌦, where it vanishes —and also vanishing
in a small ball around {x = 0} in order to regularize the singularity of r�� , though
this has no implication in the final computations. For the estimate in [5] up to
dimension 4 in the nonradial case we used

⇠ = |ru|'(u),

with ' chosen in a quite subtle way depending on the solution u itself. In the proof
of the current paper we will use instead

⇠(x) = |ru(x)| |x� y|��
⇣(x),

with y 2 ⌦, � > 0, and ⇣ a cut-o↵ function vanishing on @⌦. With y = 0,
in the radial case this test function becomes the radial test function above. The
forthcoming paper by Figalli, Ros-Oton, Serra, and the author [8] will use still a
di↵erent test function to get a new key estimate.

1.2. New results and description of their proof. The following is the main
result of the article. It establishes an L

1 a priori estimate for all nonlinearities
and domains in dimensions 3 and 4. After its statement, we will comment on the
analogous result in dimension 2.

Theorem 1.1. Let f be any C
1
nonlinearity, ⌦ ⇢ Rn

a smooth bounded domain,

and u a smooth stable solution of equation (1.1). Assume that 3  n  4.
Then, given any � > 0, we have that

kukL1(K�)
 C

�
kukL1(⌦) + krukL2(⌦\K�)

�
, (1.8)

where

K� := {x 2 ⌦ : dist(x, @⌦) � �}
and C is a constant depending only on ⌦ and �. In particular, C is independent

of f .

If in addition ⌦ is convex, u solves problem (1.2), and u > 0 in ⌦, then

kukL1(⌦)  C (1.9)

for some constant C depending only on ⌦, f , and kukL1(⌦).

If ⌦ is a ball, the same bounds (1.8)-(1.9) hold if 2  n  9. Here, the assumption

u > 0 in ⌦ is not needed to ensure (1.9).

Estimate (1.9), which will follow from (1.8), was first established in [5] by the
author. In that paper, however, it followed from the estimate

kukL1(⌦)  t+
C

t
|⌦|(4�n)/(2n)

 Z

{u<t}
|ru|4 dx

!1/2

for every t > 0 (1.10)



BOUNDEDNESS OF STABLE SOLUTIONS 7253

—instead of from (1.8). In (1.10), C is a universal constant, in particular indepen-
dent of f and ⌦.

For the application to the global estimate (1.9) in convex domains, it is essential
that the L

2 and L
4 norms of ru in (1.8) and (1.10), respectively, are computed in

a small neighborhood of @⌦ —which is the case if � and t, respectively, are small
enough.

In the nonradial case, (1.8) is the first interior L1 estimate for stable solutions
of equation (1.1) which holds independently of their boundary values.

In [5], (1.10) and (1.9) were proven also for n = 2, as a rather simple consequence
of Proposition 1.4 below and the Gauss-Bonnet formula. Instead, the proof in the
current paper only gives an estimate for n = 2 in the radial case. However, it is
immediate to see that if u = u(x1, x2) is a stable solution in a domain ⌦ of R2, then
the function v(x1, x2, x3) := u(x1, x2) is also a stable solution of the same equation
in any domain of R3 contained in ⌦ ⇥ R. As a consequence, from estimate (1.8)
in dimension 3, we deduce the same bound (1.8) in dimension 2 but with its right
hand side replaced by CkukH1(⌦).

Theorem 1.1 will follow easily from the following key estimate. It is a bound on
a weighted Dirichlet integral for stable solutions in every dimension.

Proposition 1.2. Let f be any C
1
nonlinearity, ⌦ ⇢ Rn

a smooth bounded domain,

and u a smooth stable solution of equation (1.1).
Let ↵ satisfy

0  ↵ < n� 1 and (↵� 2)2/4 < (n� 1� ↵)2/(n� 1). (1.11)

Then, for all � > 0 and y 2 K� := {x 2 ⌦ : dist(x, @⌦) � �}, we have that

Z

⌦

|ru(x)|2|x� y|�↵
dx  Ckruk2

L2(⌦\K�)
(1.12)

for some constant C depending only on ⌦, �, and ↵.
Finally, if ⌦ is a ball then (1.12) holds with y = 0 if instead of (1.11) we assume

0  ↵ < n� 1 and (↵� 2)2/4 < n� 1. (1.13)

This result will easily give, in dimension 5, an interior L
p bound for all finite

exponent p. To have an L
p bound up to the boundary we need to assume ⌦ to be

convex, as stated in the next result.

Corollary 1.3. Assume that n = 5. Let f be any C
1
nonlinearity, ⌦ ⇢ R5

a convex

smooth bounded domain, and u > 0 a smooth stable solution of problem (1.2).
Then,

kukLp(⌦)  Cp for every 1 < p < 1, (1.14)

where Cp is a constant depending only on p, ⌦, f , and kukL1(⌦).

Our key estimate in Proposition 1.2 will follow from two tools:

• the bound (1.19) for stable solutions of Sternberg-Zumbrun, explained below,
and

• a new geometric Hardy inequality on hypersurfaces of Rn, (1.23) below, having
universal constants —as in the Michael-Simon and Allard Sobolev inequality.
Its proof will be simpler than the one of the Michael-Simon and Allard Sobolev
inequality. Once it is applied to every level set of an arbitrary function u, it
becomes Theorem 1.5 below.
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To describe these two tools, we need to introduce some geometric objects. First
recall that since u is smooth, by Sard’s theorem, almost every t 2 R is a regular
value of u. By definition, if t is a regular value of u, then |ru(x)| > 0 for all x 2 ⌦
such that u(x) = t. In particular, if t is a regular value, {u = t} is (if not empty) a
smooth embedded hypersurface of Rn.

In the set of regular points of u, {x 2 ⌦ : |ru(x)| > 0}, we consider the normal
vector to the level sets of u,

⌫ = ru/|ru|, (1.15)

as well as the tangential gradient along the level sets. That is, for a C
1(⌦) function

' we consider
rT' := r'� hr', ⌫i ⌫ (1.16)

—the projection of the full gradient of ' at x onto the tangent space to the level set
of u passing through x. We will also encounter the square of the second fundamental
form of the level sets,

|A|2 = |A(x)|2 =
n�1X

l=1


2

l
,

where l are the principal curvatures of the level set of u passing through x. In
other results, it will be of importance the mean curvature of the level sets, defined
as

H = H(x) =
n�1X

l=1

l. (1.17)

The level sets of a solution u, and their curvatures, appeared in the following
important result of Sternberg and Zumbrun [19, 20]. It is an inequality that follows
from the stability hypothesis (1.3) together with the identity

(�+ f
0(u)) |ru| = 1

|ru|

⇣
|rT |ru||2 + |A|2 |ru|2

⌘
in ⌦ \ {|ru| > 0} . (1.18)

By taking ⇠ = |ru| ⌘ in the stability hypothesis (1.3), the presence of f 0(u) in (1.3)
disappears, since the left hand side of (1.18) refers to �+ f

0(u). One then obtains
the following bound for stable solutions. See also [5] for a proof of the proposition.

Proposition 1.4 (Sternberg-Zumbrun [19, 20]). Let f be any C
1
nonlinearity,

⌦ ⇢ Rn
a smooth bounded domain, and u a smooth stable solution of equation

(1.1).
Then,

Z

⌦\{|ru|>0}

�
|rT |ru||2 + |A|2|ru|2

�
⌘
2
dx 

Z

⌦

|ru|2|r⌘|2 dx (1.19)

for every C
1(⌦) function ⌘ with ⌘|@⌦ ⌘ 0.

In [5], this result was used choosing ⌘ = '(u), applying then the coarea formula,
and estimating by below the left hand side of (1.19) through the Michael-Simon
and Allard Sobolev inequality applied on every level set of u. Recall that this is a
remarkable Sobolev inequality for functions defined in general hypersurfaces of Rn.
The constants appearing in the inequality are universal. This is accomplished by
adding to the usual Dirichlet norm on the hypersurface, an additional L2 norm
weighted with the mean curvature of the hypersurface.

Instead, in this paper we bound by below the left hand side of (1.19) through a
simpler tool: a new Hardy inequality on hypersurfaces, also with universal constants
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and an additional term involving the mean curvature. In fact, what we need is the
following geometric Hardy inequality on the foliation of hypersurfaces given by the
level sets of a function u. To state it, given y 2 Rn we introduce the functions (of x)

ry = ry(x) = |x� y|

and

ury = ury (x) = ru(x) · x� y

|x� y| .

The following is the new geometric Hardy inequality. Recall (1.15)-(1.17) for the
meaning of rT and H (which refer to the level sets of u) in the statement. As we
will explain later, our inequalities have the best constants in the flat case, i.e., when
the level sets of u are hyperplanes.

Theorem 1.5. Let ⌦ ⇢ Rn
be a smooth bounded domain, u any C

1(⌦) function,

' 2 C
1(⌦), ↵ 2 [0, n� 1), and y 2 Rn

. Assume that either u|@⌦ ⌘ 0 or '|@⌦ ⌘ 0.
Then, we have

(n� 1� ↵)

Z

⌦

|ru|'2
r
�↵

y
dx+ ↵

Z

⌦

u
2
ry

|ru|'
2
r
�↵

y
dx


✓Z

⌦

|ru|'2
r
�↵

y
dx

◆1/2
 Z

⌦\{|ru|>0}
|ru|

�
4|rT'|2 +H

2
'
2
�
r
2�↵

y
dx

!1/2

.

(1.20)

In particular,

(n� 1� ↵)2
Z

⌦

|ru|'2
r
�↵

y
dx 

Z

⌦\{|ru|>0}
|ru|

�
4|rT'|2 +H

2
'
2
�
r
2�↵

y
dx.

(1.21)
In addition, if u = u(ry) is radially symmetric about the point y, then

(n� 1)2
Z

⌦

|ury |'2
r
�↵

y
dx 

Z

⌦\{|ru|>0}
|ury |

�
4|rT'|2 +H

2
'
2
�
r
2�↵

y
dx. (1.22)

To deduce our results on stable solutions, we will apply these inequalities with

' = |ru|1/2⇣

—appropriately regularized at critical points of u and with ⇣ being a cut-o↵. The
values of the constants in the inequalities of Theorem 1.5 will determine the di-
mensions in which we can prove boundedness of stable solutions. In particular, the
larger constant in the left hand side of (1.22) —with respect to that in (1.21)— will
allow to reach the optimal dimension 9 in the radial case.

Note that, as in the Michael-Simon and Allard inequality, the constants in the
previous inequalities are universal and the geometry of the level sets of u only
appears through the term involving their mean curvature. In fact, the level sets
of u are what matters in the inequalities, and not u itself. More precisely, given
a hypersurface M of Rn, consider its parallel hypersurfaces (in a "-neighborhood
of M) and the function u = u" to be "�1 dist(·,M) in the "-neighborhood of M .
Letting " ! 0 in the inequalities (1.20) and (1.21) corresponding to u = u" (and
↵ = 2 and y = 0 to simplify), one obtains (thanks to the coarea formula) the
following Hardy inequality for functions defined on a single hypersurface M ⇢ Rn.



7256 XAVIER CABRÉ

For every C
1 function ' with compact support in M , a hypersurface of Rn, we have

((n� 1)� 2)

Z

M

'
2

|x|2 dV + 2

Z

M

✓
x

|x| · ⌫
◆2

'
2

|x|2 dV


✓Z

M

'
2

|x|2 dV

◆1/2✓Z

M

�
4|rT'|2 +H

2
'
2
�
dV

◆1/2

, (1.23)

where H is the mean curvature of M and ⌫ the normal to M . In particular,

((n� 1)� 2)2

4

Z

M

'
2

|x|2 dV 
Z

M

✓
|rT'|2 +

1

4
H

2
'
2

◆
dV. (1.24)

And vice versa, from the inequalities (1.23) and (1.24) in a (general) single hy-
persurface M , we can deduce Theorem 1.5. For this, we just write the integrals in
(1.20) and (1.21) through the coarea formula and recall Sard’s theorem as described
above. For instance, we have

Z

⌦

|ru| '
2

|x|2 dx =

Z

R

 Z

⌦\{u=t}

'
2

|x|2 dV

!
dt.

Carron [12] had already established a universal Hardy inequality in hypersurfaces
of Rn. However, it di↵ers from ours, (1.24), in the mean curvature term. His
estimate states that if n�1 � 3 and ' is a C

1 function with compact support in M ,
then

((n� 1)� 2)2

4

Z

M

'
2

|x|2 dV 
Z

M

✓
|rT'|2 +

(n� 1)� 2

2

|H|
|x| '

2

◆
dV. (1.25)

Note that this inequality and Cauchy-Schwarz lead to one like ours, of the form
(1.24), but with worst constants —and recall that the value of constants are crucial
in our applications. In addition, our inequality (1.23) with an extra term in the left
hand side will be needed to reach dimension 9 in the radial case.

Note also that, if M = Rn�1, both (1.24) and (1.25) become the classical Hardy
inequality in Rn�1 with its best constant.

Further geometric Hardy-Sobolev inequalities in hypersurfaces of Rn will be stud-
ied in collaboration with P. Miraglio in [9].

2. The geometric Hardy inequality. To prove Theorem 1.5 we will use the
tangential derivatives to the level sets of u, defined by

�i' := @i'� (@k')⌫
k
⌫
i

for i = 1, . . . , n. Here, as in the rest of the paper, we used the standard summation
convention over repeated indices. Recalling the definition (1.16) of the tangential
gradient rT , it is easy to verify that

nX

i=1

(�i')
2 = |rT'|2. (2.1)

Using that ⌫i@k⌫i = 0 (a consequence of |⌫|2 ⌘ 1), one can verify the following
identities defining the mean curvature of the level sets of u:

H :=
nX

i=1

�i⌫
i =

nX

i=1

@i⌫
i = div ⌫.
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We are now ready to state and prove the formula of integration by parts on the
whole family of level sets of u. Since ⌫i and �i are only defined where |ru| does not
vanish, the next integrals are computed on this set.

Lemma 2.1. Let ⌦ ⇢ Rn
be a smooth bounded domain and u be any C

1(⌦)
function. Let ' and  belong to C

1(⌦). Assume that either u|@⌦ ⌘ 0 or '|@⌦ ⌘ 0.
Then, for every i 2 {1, . . . , n}, we have

Z

⌦\{|ru|>0}
|ru|(�i') dx = �

Z

⌦\{|ru|>0}
|ru|' �i dx+

Z

⌦\{|ru|>0}
|ru|H⌫i' dx.

(2.2)

Through the coarea formula, (2.2) follows directly from the well known formula
of integration by parts on hypersurfaces of Euclidean space. However, for com-
pleteness, we next give a simple proof of it where we take advantage of having the
foliation by level sets.

Proof of Lemma 2.1. It su�ces to prove the identity with  ⌘ 1, that is,
Z

⌦\{|ru|>0}
|ru|�i' dx =

Z

⌦\{|ru|>0}
|ru|H⌫i' dx. (2.3)

Indeed, by replacing here ' by ' , one concludes (2.2). Through the rest of the
paper, sometimes we will use the notation

�i := @i� and �ij := @ij�

for first and second order partial derivatives.
Since we will integrate by parts in R := {x 2 ⌦ : |ru(x)| > 0} (a set that might

not be smooth), we consider the open sets

R" := {x 2 ⌦ : |ru(x)| > "}

for " > 0. Since |ru| is a smooth function in R, Sard’s theorem ensures that
⌦ \ @R" = R \ @R" is a smooth hypersurface for almost all ". Denote by ⌫R" the
exterior unit normal to R" —not to be confused with the normal ⌫ = ru/|ru| to
the level sets of u. Since part of @R" could be contained in @⌦, and another part
in ⌦, the open set R" is piecewise smooth. Hence, we can integrate by parts in R"

to get
Z

R"

|ru|�i' dx =

Z

R"

|ru|
�
'i � 'k⌫

k
⌫
i
�
dx (2.4)

= �
Z

R"

�
@i|ru|� @k(|ru|⌫k⌫i)

�
' dx (2.5)

+

Z

@R"

|ru|'
�
⌫
i

R"
� ⌫

k
⌫
i
⌫
k

R"

�
dV. (2.6)

Note that the first integral in (2.4) tends to the left hand side of (2.3) as "! 0.
Next, we deal with (2.5). Since

@j |ru| = ukjuk

|ru| = ukj⌫
k
,

we deduce Z

R"

�
@i|ru|� @k(|ru|⌫k⌫i)

�
' dx
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=

Z

R"

�
uki⌫

k � ujk⌫
j
⌫
k
⌫
i � |ru|@k(⌫k⌫i)

�
' dx

=

Z

R"

�
uki⌫

k � ujk⌫
j
⌫
k
⌫
i � |ru|�k(⌫k⌫i)� |ru|@j(⌫k⌫i)⌫j⌫k

�
' dx.

From this, using that ⌫k�k ⌘ 0 for all functions  , that ⌫k@j⌫k ⌘ 0, and that

@j⌫
i = @j

✓
ui

|ru|

◆
=

uij

|ru| �
ukjukui

|ru|3 , (2.7)

we concludeZ

R"

�
@i|ru|� @k(|ru|⌫k⌫i)

�
' dx

=

Z

R"

�
uki⌫

k � ujk⌫
j
⌫
k
⌫
i � |ru|H⌫i � ⌫

j(uij � ukj⌫
k
⌫
i)
�
' dx

= �
Z

R"

|ru|H⌫i' dx.

Since by (2.7) we have that |ru||H|  C|D2
u|  C for some constants C, the last

integral tends, up to its sign and as "! 0, to the right hand side of (2.3).
Finally, we deal with the boundary term (2.6), which is the most delicate. Recall

that we are assuming that either u|@⌦ ⌘ 0 or '|@⌦ ⌘ 0, and that ⌫ is a normal to
the level sets of u. Thus, in the first case u|@⌦ ⌘ 0, we will have ⌫ = ±⌫R" at every
point on @R" \ @⌦. Hence

R
@R"\@⌦

|ru|'(⌫i
R"

� ⌫
k
⌫
i
⌫
k

R"
) dV = 0. In the second

case, '|@⌦ ⌘ 0, this last integral will vanish. Therefore, (2.6) is equal to
Z

⌦\@R"

|ru|'(⌫i
R"

� ⌫
k
⌫
i
⌫
k

R"
) dV =

Z

⌦\{|ru|="}
|ru|'(⌫i

R"
� ⌫

k
⌫
i
⌫
k

R"
) dV. (2.8)

Even that the absolute value of the integrand is bounded by a constant times ", we
can not conclude that (2.8) tends to zero as "! 0 —since we do not have control on
the surface measure of {|ru| = "}. To remedy this, given � > 0, we average (2.4)-
(2.6) in " 2 (0, �). We already know that the terms (2.4) and (2.5) will converge,
as � # 0, to the desired quantities in (2.3). Therefore, it su�ces to check that

1

�

Z
�

0

d"

Z

⌦\{|ru|="}
dV |ru|'(⌫i

R"
� ⌫

k
⌫
i
⌫
k

R"
)

tends to zero as � # 0. But using the coarea formula, the absolute value of this
quantity can be bounded by

C

�

Z
�

0

d"

Z

⌦\{|ru|="}
dV |ru|

 C

�

Z

{0<|ru|<�}
|r|ru|| |ru| dx =

C

�

Z

{0<|ru|<�}

��r(|ru|2/2)
�� dx

 C

�

Z

{0<|ru|<�}
|D2

u||ru| dx  C

�

Z

{0<|ru|<�}
|ru| dx

 C |{0 < |ru| < �}|

for di↵erent constants C. The last quantity tends to zero as � # 0, and thus the
proof is finished.

We can now establish the geometric Hardy inequality.
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Proof of Theorem 1.5. First, note that (denoting by �ik the Kronecker delta)

�ixi :=
nX

i=1

�ixi =
nX

i=1

(1� �ik⌫
k
⌫
i) = n� 1. (2.9)

We next use this fact and the geometric integration by parts formula of Lemma 2.1
to compute

R
⌦
|ru|'2

r
�↵

y
dx. We may assume, after a translation, that y = 0; we

will denote then ry = r = |x|. Recall that ↵ 2 [0, n � 1), ' 2 C
1(⌦), and either

u|@⌦ ⌘ 0 or '|@⌦ ⌘ 0. The following computations must be done with r
�↵ replaced

by a nice regularization ⇣" of it in an "-neighborhood of y = 0. Since all terms in
the following computations are given by integrable functions, through dominated
convergence we can let " ! 0 to justify the following equalities, which we write
directly for r�↵ instead of ⇣".

Since

xi�ir
�↵ =

nX

i=1

xi�ir
�↵ = �↵r�↵

⇣
1� (x · ⌫/r)2

⌘
,

we have

(n� 1)

Z

⌦\{|ru|>0}
|ru|'2

r
�↵

dx =

Z

⌦\{|ru|>0}
|ru|'2

r
�↵
�ixi dx

= �
Z

⌦\{|ru|>0}
|ru|

⇣
2'(�i')r

�↵
xi + '

2
xi�ir

�↵ �H'
2
r
�↵

xi⌫
i
⌘
dx

= �
Z

⌦\{|ru|>0}
|ru|

⇣
2'(�i')r

�↵
xi � ↵'

2
r
�↵ �1� (x · ⌫/r)2

�
�H'

2
r
�↵

xi⌫
i
⌘
dx.

Therefore,

(n� 1)

Z

⌦\{|ru|>0}
|ru|'2

r
�↵

dx� ↵

Z

⌦\{|ru|>0}
|ru|'2

r
�↵

⇣
1� (x · ⌫/r)2

⌘
dx

= �
Z

⌦\{|ru|>0}
|ru|'r1�↵

xi

r

�
2�i'�H'⌫

i
�
dx.

Finally, note that

nX

i=1

(2�i'�H'⌫
i)2 =

nX

i=1

�
4(�i')

2 � 4H(�i')'⌫
i +H

2
'
2(⌫i)2

�

=
nX

i=1

�
4(�i')

2 +H
2
'
2(⌫i)2

�

= 4|rT'|2 +H
2
'
2
,

where we have used (2.1). We now conclude, using the Cauchy-Schwarz inequality,

(n� 1� ↵)

Z

⌦\{|ru|>0}
|ru|'2

r
�↵

dx+ ↵

Z

⌦\{|ru|>0}

u
2
r

|ru|'
2
r
�↵

dx


 Z

⌦\{|ru|>0}
|ru|'2

r
�↵

dx

!1/2 Z

⌦\{|ru|>0}
|ru|

�
4|rT'|2 +H

2
'

2�
r
2�↵

dx

!1/2

.

Since u
2
r
/|ru|  |ru| vanishes in the critical set {|ru| = 0}, we can replace by

the whole ⌦ the sets of integration in the left hand side of the inequality. This
establishes (1.20). From it, the last two statements of the theorem follow easily.
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3. Proof of the L
1 bounds. Here we use the geometric Hardy inequality together

with the Sternberg-Zumbrun stability condition to prove our main estimates.

Proof of Proposition 1.2. Given � > 0, let K� = {x 2 ⌦ : dist(x, @⌦) � �}. For
↵ 2 [0, n� 1), we apply the geometric Hardy inequality (1.20) with

' := |ru|1/2⇣,

where
⇣|@⌦ ⌘ 0 and ⇣ ⌘ 1 in K�/2. (3.1)

To be totally rigorous, the proof should be carried out with ' replaced by

'" := (|ru|2 + 
2)1/4⇣,

and letting  tend to zero at the end. The function ⇣, which depends only on ⌦
and �, is taken to be smooth and satisfy

|r⇣|  3/�. (3.2)

To simplify notation, for y 2 K�, define

I :=

Z

⌦

|ru|2r�↵

y
⇣
2
dx

and

Ir :=

Z

⌦

u
2

ry
r
�↵

y
⇣
2
dx.

Given " > 0, inequality (1.20) and Cauchy-Schwarz give that

((n� 1� ↵)I + ↵Ir)
2  I

Z

⌦\{|ru|>0}

�
4|ru| |rT (|ru|1/2⇣)|2 +H

2|ru|2⇣2
�
r
2�↵
y dx

 I

Z

⌦\{|ru|>0}

�
4|ru|

����
1
2
|ru|�1/2(rT |ru|)⇣ + |ru|1/2rT ⇣

����
2

+H
2|ru|2⇣2

�
r
2�↵
y dx

 I

Z

⌦\{|ru|>0}

�
(1 + ")|rT |ru||2 +H

2|ru|2
�
r
2�↵
y ⇣

2
dx

+ I
C

"

Z

⌦\K�/2

|ru|2|r⇣|2r2�↵
y dx

 I

Z

⌦\{|ru|>0}

�
(1 + ")|rT |ru||2 +H

2|ru|2
�
r
2�↵
y ⇣

2
dx+ I

C

"

Z

⌦\K�/2

|ru|2 dx;

in the last inequality we have used (3.2) and that

�/2  ry(x) = |x� y|  diam(⌦) for x 2 ⌦ \K�/2 and y 2 K� (3.3)

—both the lower and the upper bound are needed here, since the sign of 2� ↵ will
depend on the dimension (once we choose ↵). The constant C depends only on ⌦
and �.

Taking into account that H2  (n� 1)|A|2 and ⌦ \K�/2 ⇢ ⌦ \K�, we deduce

((n� 1� ↵)I + ↵Ir)
2

 I(1 + ")(n� 1)

Z

⌦\{|ru|>0}

�
|rT |ru||2 + |A|2|ru|2

�
r
2�↵
y ⇣

2
dx+ I

C

"
kruk2L2(⌦\K�)

.

Note that the previous bound is sharp in the radial case since H2 = (n�1)|A|2 and
rT |ru| = 0 when the level sets are concentric spheres.
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We now use the stability condition in the geometric form, estimate (1.19), with

⌘ = r
(2�↵)/2

y
⇣.

The following computations must be done with r
(2�↵)/2

y replaced by a nice regu-
larization of it in a small -neighborhood of y. Since all terms in the following
computations are given by integrable functions, through dominated convergence we

can let ! 0 to justify the following equalities written directly for r(2�↵)/2

y .
We deduce that

((n� 1� ↵)I + ↵Ir)
2

 I(1 + ")(n� 1)

Z

⌦

|ru|2
���r
⇣
r
(2�↵)/2

y
⇣

⌘���
2

dx+ I
C

"
kruk2

L2(⌦\K�)

 (1 + 2")(n� 1)
(↵� 2)2

4
I
2 + I

C

"

Z

⌦

|ru|2r2�↵

y
|r⇣|2 dx+ I

C

"
kruk2

L2(⌦\K�)

 (1 + 2")(n� 1)
(↵� 2)2

4
I
2 + I

C

"
kruk2

L2(⌦\K�)
;

as before, we have used Cauchy-Schwarz, (3.1), (3.2), and (3.3). The constant C

still depends only on ⌦ and �.
Let now ↵ 2 [0, n� 1) satisfy (1.11). We can choose " > 0 to depend only on n

and ↵ such that (1 + 2")(n� 1)(↵� 2)2/4 < (n� 1� ↵)2. Since (n� 1� ↵)2I2 
((n�1�↵)I+↵Ir)2, our last estimate establishes (1.12). We have used again (3.1)
and (3.3).

Finally, if ⌦ is a ball centered at the origin, the stability of the solution u leads
to its radial symmetry —there is no need to assume that u is positive here; see
Proposition 1.3.4 of [14]. As a consequence, with y = 0, we have Ir = I and our
last bound gives

(n� 1)2I2  (1 + 2")(n� 1)
(↵� 2)2

4
I
2 + I

C

"
kruk2

L2(⌦\K�)
.

Assuming now the weaker condition (1.13) on ↵, we conclude (1.12) with y = 0 as
before.

With this bound in hand, we can now prove our main result.

Proof of Theorem 1.1. Assume that an exponent ↵ can be chosen (depending only
on n) such that

n� 2 < ↵ < n� 1 and (↵� 2)2/4 < (n� 1� ↵)2/(n� 1). (3.4)

Then, by Proposition 1.2,
Z

⌦

|ru|2r�↵

y
dx  Ckruk2

L2(⌦\K�)
for all y 2 K�, (3.5)

i.e., such that dist(y, @⌦) � �. Here C is a constant depending only on ⌦ and �.
It is easy to see that (3.4) can be accomplished for some ↵ if n = 3 or n = 4. For

this just take, in both cases, ↵ = n� 2 + " for some small " > 0.
In the radial case, Proposition 1.2 ensures (3.5) if there is an exponent ↵ such

that
n� 2 < ↵ < n� 1 and (↵� 2)2/4 < n� 1. (3.6)

Its existence can be checked to hold if 2  n  9.
In both the nonradial and radial cases, it is simple to deduce the L

1 bound
in K� from (3.5) and the fact that ↵ > n � 2. Indeed, take any y 2 K� and use
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Lemma 7.16 of [15] with ⌦ in that lemma replaced by the ball B�/2(y). We deduce
that

|u(y)� uSy |  C

Z

⌦

|x� y|1�n|ru(x)| dx = C

Z

⌦

r
1�n

y
|ru| dx, (3.7)

where

uSy :=
1

|B�/2(y)|

Z

B�/2(y)

u dx (3.8)

and C is a constant depending only on n and �. Now, using (3.5), the Cauchy-
Schwarz inequality in (3.7), and that

Z

⌦

|x� y|2�2n+↵
dx  |Sn�1|

↵� (n� 2)
diam(⌦)↵�(n�2)

,

from (3.7) and (3.8) we conclude estimate (1.8), i.e.,

kukL1(K�)
 C

�
kukL1(⌦) + krukL2(⌦\K�)

�
(3.9)

with C depending only on ⌦ and �.
Assume now that ⌦ is a convex domain, u solves problem (1.2), and u is positive

in ⌦. Then, the moving planes method gives the existence of small truncated
cones of monotonicity for u —the cones having vertex at any point in a su�ciently
small neighborhood of @⌦. This is a result of de Figueiredo-Lions-Nussbaum; see
Proposition 3.2 of [5]. This leads to the bound

kukL1(⌦\K2�)
 CkukL1(⌦) (3.10)

for some constants � > 0 and C depending only on ⌦. We use this L
1 bound in

⌦ \ K2� to control f(u) in this set. We deduce, by interior and boundary elliptic
regularity for problem (1.2), stronger estimates in the smaller set ⌦ \K�. In partic-
ular, we have krukL2(⌦\K�)

 C for some constant C depending only on ⌦, f , and
kukL1(⌦). This, combined with (3.9), gives the desired bound (1.9) since we also
have kukL1(⌦\K�)

 kukL1(⌦\K2�)
 CkukL1(⌦) by (3.10).

In the radial case, the argument to prove (1.9) is the same, but there is no need
to assume the solution u to be positive. Indeed, Proposition 1.3.4 of [14] ensures
that u is radially symmetric and monotone in the radius r. Thus, up to changing
u by �u, we may assume the solution to be positive and radially decreasing. In
particular, it su�ces to estimate u(0), and this is done using (3.7) and (1.12) (with
y = 0) as in the general case.

Finally, we give the proof of the L
p estimates in dimension 5.

Proof of Corollary 1.3. Let us recall that, for 1  p < 1 and 0 < �  n, the
Morrey space M

p,� = M
p,�(Rn) is the space of Lp

loc
(Rn) functions w for which

kwkp
Mp,� := sup

y2Rn, ⇢>0

⇢
��n

Z

B⇢(y)

|w(x)|p < 1, (3.11)

equipped with this norm.
Assume that n = 5 and extend the functions u and ru by zero outside ⌦.

Condition (1.11) reads 0  ↵ < 4 and (↵� 2)2 < (4� ↵)2, and hence it is satisfied
for all ↵ 2 (2, 3). The boundary regularity on convex domains (see the last argument
in the proof of Theorem 1.1) together with estimate (1.12) of Proposition 1.2 give
that |ru| 2 M

2,� if 5� � = n� � 2 (2, 3), that is, if � 2 (2, 3). This result comes
with an estimate.
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Now, we invoke a result of D. R. Adams (see Proposition 3.1 and Theorems 3.1
and 3.2 in [1]) that gives the following optimal embedding:

if 2 < �  n and |ru| 2 M
2,�

, then u 2 M
2�

��2 ,�.

In particular, u 2 L
2�

��2 (⌦). Letting � # 2, the proof is completed.

Let us finish mentioning that this L
2�

��2 estimate can be proved easily using
the estimate for

R
⌦
|ru|2r�↵

y
dx without invoking Adams’ result. For this, one

uses (3.7) and a similar argument to that in the proof of Young’s inequality for
convolutions.
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