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Introduction

In these notes we describe the Alexandroff-Bakelman-Pucci estimate and the Krylov-
Safonov Harnack inequality for solutions of Lu = f(z), where L is a second order

uniformly elliptic operator in nondivergence form
Lu = a;j(x)0;ju + bi(x)0iu + c(z)u,

with bounded measurable coefficients in a domain of R”. These inequalities do not
require any regularity of the coefficients of L, and this makes them powerful tools in
the study of second order nonlinear elliptic equations. It is the purpose of these notes
to present several of their applications in this field.

The first topic is the study of the maximum principle for the operator L and its
applications to symmetry properties of positive solutions of semilinear problems

Au+ f(u) = 0 inQ
v = 0 on 0N.

Using the moving planes method, we prove the symmetry result of Gidas, Ni and
Nirenberg [16], in the improved version of Berestycki and Nirenberg [7] which uses the
maximum principle in domains of small measure. In [16, 7] the same method is used

to prove symmetry results for some fully nonlinear elliptic equations
F(z,u, Du, D*u) = 0.

Next, we present a short proof of several estimates and maximum principles (taken
from [8] and [9]) for solutions in “narrow” domains. We discuss also recent work of
Berestycki, Caffarelli and Nirenberg [5] on qualitative properties of positive solutions
in some unbounded domains of cylindrical type.

The second topic that we treat is the regularity theory for solutions of fully nonlinear
elliptic equations. Our presentation is only a first and short introduction to this topic;
see [12, 17] for more detailed expositions. We start giving important examples of fully
nonlinear elliptic equations: Bellman equations in stochastic control theory, Isaacs
equations in differential games, the Monge-Ampere equation, and the equation of
prescribed Gauss curvature. We prove a C1® estimate for classical solutions of fully

nonlinear equations of the form
F(D?*u) = 0.

The main tool employed here is the C'* regularity for solutions of linear equations
Lu = 0 with bounded measurable coefficients, which is a consequence of the Krylov-
Safonov Harnack inequality.



Next, we introduce the notion of viscosity solution of a fully nonlinear elliptic equa-
tion and we give the basic properties of this class of solutions. Finally, we present
Jensen’s approximate solutions [19]. They constitute a key tool when proving unique-
ness and regularity for viscosity solutions — a topic that we omit here. We also omit
the important C?® regularity theory of Evans and Krylov for convex fully nonlinear
equations (see [12, 17]).

The results presented in these notes are a sample from the vast literature on the
maximum principle, symmetry properties and regularity theory for fully nonlinear
equations. Some of them are fundamental results in these theories. Others have been
selected to illustrate the main techniques used in these fields of research.

These notes are based on courses given at the Ecole Doctorale de Mathématiques
et de Mécanique de I’Université Paul Sabatier (Toulouse), and at the CIMPA Interna-
tional School in PDE’s (Temuco, Chile) organized by the Universidad de Chile. The
author would like to thank these institutions for their invitations. He also thanks Ian
Schindler for his valuable help typing and correcting the first draft of these notes.

1 The Alexandroff-Bakelman-Pucci estimate

Throughout these notes, L will denote an elliptic operator in a domain 2 C R”, of the

form
Lu = a;;(x)0;;u + bi(x)0u + c(r)u

(where summation over repeated indices is understood). We assume that L is uni-
formly elliptic and that it has bounded measurable coefficients. That is, we suppose
that there exist constants 0 < ¢y < Cp, b > 0 and b > 0 such that

col€]? < aij(2)&& < Coléf?
(S bi()?)? < b
le(z)] < b.

for all z € 2 and £ € R*. Hence, the matrix A(z) = [a;j(z)] (which is assumed to be
symmetric) has all its eigenvalues in the interval [cy, Cy).

For a given function f : @ — R, we consider the linear equation Lu = f(x). It is
called a second order uniformly elliptic equation in nondivergence form with bounded
measurable coefficients. Under no further assumptions on the coefficients of L, the
following basic estimate (which we call APB estimate) was proven independently by
Alexandroff, Bakelman and Pucci in the sixties [1, 2, 3, 25].



Theorem 1.1. (Alexandroff, Bakelman, Pucci) We assume that ? is a bounded do-
main of R* and that ¢ < 0 in Q. Let d be a constant such that diam(Q) < d. Let
we W2MNQ) and f € L™(Q) satisfy Lu > f in Q and limsup,_, 5o u(z) < 0. Then

loc

sgpu < Cdiam(Q) || f |z~ (2,

where C' = C(n, cy,bd) is a constant depending only on n, ¢y and bd.

Here W.27(Q) denotes the Sobolev space of functions that, together with their
second derivatives, belong to L!.(€2). Recall that n is the dimension of the space and

that W27 (Q) C C() — the space of continuous functions in Q. If u € C(Q) then the
condition lim sup,_, 5o u(z) < 0 means simply that u < 0 on 0f.

When Lu > f we say that u is a subsolution of the equation Lu = f. If Lu > f
in 2 but the assumption limsup,_, 4, u(z) < 0 is not satisfied, an estimate for supg u
may be obtained by applying Theorem 1.1 to u — limsup,_, 5o u™*(z). We have

supu < limsupu™(z) + C diam(Q) || ||z ()
Q z— 00

where u* = max(u,0) denotes the positive part of u. In what follows we will also
denote ©~ = max(—wu,0), so that u = u™ —u ™.

Proof of Theorem 1.1.

Step 1. By a simple argument, we may further assume ¢ = 0. Indeed, we replace 2
by any connected component of ) := {z € Q : u(z) > 0} C Q, and the operator L
by Lo := a;j(z)0;; + b;(z)0; (which has no zero order terms). Then Lyu = Lu — cu >
Lu > f in €, since ¢ < 0. Note also that limsup,_, 55 u(z) = 0.

Next we make the assumption b; = 0. The proof in the general case is slightly more
elaborate. For this, see Chapter 9 of [17] and our remark below, in Step 3. Finally, it is
easy to reduce the proof to the case u € C%(Q) NC () by an approximation argument
(see [17]).

Hence, from now on, we assume that supg u > 0, u € C2(2) N C(Q) and

Lu = a;j(z)0;u > f(z) inQ
u < 0 on (.

Step 2. Let z¢ € 2 be such that
M :=supu = u(zg) > 0.
Q

We define the upper contact set of u by
Iy ={yeQ:u(z) <uly)+Vuly) - (zr —y) VeeQ}.
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It is the set of points y in 2 such that the tangent hyperplane to the graph of u at y
lies above « in all 2. We claim that

Bugjal0) € Vu(T,) (1)

(recall that d satisfies diam(§2) < d). To show (1), take any p € R* with |p| < M/d.
Consider the family of parallel hyperplanes given by

l(z)=p-z+a for z € Q,

where a € R is any constant. If a is very big then u < [, in 2. We let the constant a get
smaller until the graph of [, touches the graph of u for first time at some point (possibly
one of many) y € Q. Let ay be such value of a, and [, the hyperplane corresponding
to a = ag. This argument shows in a geometric way the following obvious fact. There
exists a unique value aq of a, in fact given by the Legendre transform of u
ag = sup{u(z) — p -z},
zeQl

such that for a = ay, we have

v < [, in Q
_ o (2)
u(y) = I,(y) for somey € (.

Using |p| < M/d we show that necessarily y € Q. For this, the idea is that the
hyperplanes [, have constant “slope” smaller than M/d = u(zy)/d < u(z¢)/diam(2)
and hence they will touch (when we decrease the value of a) the graph of u at the
point (g, u(zo)) before touching it at a point y € 9Q. Formally, the argument is the
following. Suppose that y € Q2. Then u(y) < 0; using (2) we have

M =u(zg) < I(zo)

= Ip(y) +p-(z0—y)

u(y) +p- (zo —y)

< p- (20 —y) < |p|diam($2)
pld < M,

IA A

a contradiction.
Since y € Q, (2) implies that

p=Vi(y)=Vuly), yel,
and

D?*u(y) <0



(i.e., D*u(y) is a nonpositive definite matrix).
In particular, p € Vu(T',) and hence our claim (1) is proved. Considering the
Lebesgue measure of the sets in (1), we deduce

on (M) < [Vu(T) = [ dp ®)
Vu(Ty)
where w,, = |By]|.

Step 3. To proceed, we compute the right hand side of (3) using the “change of
variables”

p=Vu(z) forzel,.

We use the area formula (see Theorems 1 and 2 in Section 3.3 of [15]). It states that
if p: ACR* — R” is a Lipschitz map, then

/Rn Z g9(z) dP:/A|Jac o(z)| g(z) dx

TC€A, p(x)=p

for any integrable function g : A — R; here Jac ¢ = det D¢. We apply this formula
with ¢ = Vu, A =T, and g = 1. We obtain the inequality

/V s / det (- DPu(a)) de (4)

where we have used that |JacVu(z)| = |det D*u(z)| = det (—D?u(z)) for x € T,,.

At this point, we make two remarks. First, when the coefficients b; are not identi-
cally zero, the proof proceeds by applying the area formula to g(z) := §(Vu(z)) = g(p)
for an appropriate g, instead of g = 1 as in the case b; = 0 (see [17]).

Second, we have used the area formula applied to the map Vu, which is not neces-
sarily one-to-one on I',. In an alternative way, (4) could have been obtained using the
classical change of variables formula applied, for any € > 0, to the map z — Vu(z)—ex
(that can be shown to have nonzero Jacobian on T'y, and to be one-to-one on I',) and
then letting e — 0. This alternative argument shows that, in fact, equality holds in
(4).

Step 4. Combining (3) and (4), and using that all the eigenvalues of A(z) = [a;j(z)]
are greater than or equal to ¢y, we deduce

w,,(M/d)" < /Fdet(—DZu(x))dx
< (/en) / det[A(z)(— D?u(z))|dz.
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We use now a simple fact from linear algebra. If A and B are symmetric matrices with
A >0 and B > 0 then

det(AB) < {tr(AB)/n}"

— a generalization of the arithmetic and geometric means inequality. Here tr denotes
the trace.
Note that

tr{A(e)(~D’u(z))} = —ay(z)dyu
= —Lu < —f(z) <|f(z)]-

M\" 1\"
) < — n
wn<d> B (”%) T 71

We conclude that

and hence
1
supu=M < 71/nd||f||Ln(Q)
Q NCoWr
= C(n,co)diam(Q) || f]l (),
which is the desired inequality. O

We now introduce a standard terminology concerning the maximum principle.

Definition 1.2. We say that the maximum principle holds for the operator L in € if
u € W2HRQ), supg u < 00,

loc

Lu>0in Q and limsupu(z) <0
z—00

imply u < 0 in (.

Note that, when (2 is bounded, the condition supg u < oo is automatically satisfied,
since it is a consequence of the assumptions u € W;2r(Q) and lim sup,_, 50 u(z) < 0.
The following result is a well known sufficient condition for the maximum principle

to hold. It is an immediate consequence of Theorem 1.1.

Corollary 1.3. If ) is bounded and ¢ < 0 in € then the mazimum principle holds for
L in Q.

The condition ¢ < 0 in €2 is, however, too restrictive for some applications, for
instance when studying symmetry properties of positive solutions of nonlinear prob-
lems (see next section). Instead, the following maximum principle in domains of small
measure does not make any assumption on the sign of ¢(z), and it will be very useful
in the study of symmetry properties.



Theorem 1.4. Assume that 2 is bounded and diam(Q) < d for a positive constant d.
Then there exists a constant 6 > 0, depending only on n, cq, b, b and d, such that the

mazimum principle holds for L in  if the measure of Q, |Q|, satisfies
Q] <o

In this maximum principle ¢ may change sign, but the measure of || is required
to be small depending on various quantities which include the upper bound b for
|| (@) In fact, the proof will show that the weaker assumption c(z) < b in Q
suffices. Theorem 1.4 is a consequence of the ABP estimate that was first noted by
Bakelman and later by Varadhan.

Proof of Theorem 1.4. Let u satisfy Lu > 0 in Q and limsup, 5o u(z) < 0. Let
¢ =c" —c 7, and consider the operator Ly = a;;(x)0;; + b;(x)0;. Writing Lu > 0 in the

form
(Ly — ¢ )u> —cu> —ctut,
we may apply the ABP estimate to the operator Ly — ¢~ and obtain

supu < C(n,co,b,d)||cTu|Ln(q)
Q

< C(m,co,b, b, d)|QY" sup u*.
Q

If C(n, co,b,b,d)|Q'/" < 1/2, we conclude that v < 0 in Q. O

In Section 4 we will prove other sufficient conditions for the maximum principle to
hold. They will improve Theorem 1.4.

The ABP estimate can also be used to prove the following strong maximum principle
for supersolutions in W>"(Q2) (see Chapters 3 and 9 of [17]). Here, we make no
assumption on the sign of ¢ but we assume that v > 0 in €.

Proposition 1.5. If u € W2I(Q) satisfies u > 0 in Q and Lu < 0 in Q, then either
u=0oru>0:1n

2 Symmetry properties of positive solutions in bounded do-

mains

The goal of this section is to prove the following symmetry result for positive solutions
of semilinear problems. It is taken from [7].



Theorem 2.1. (Berestycki-Nirenberg) Let Q2 be any bounded domain of R* (not nec-
essarily smooth) which is convez in the x; direction and symmetric with respect to the

hyperplane {z; = 0}. Let u € W2(Q) N C(Q) be a solution of the problem

loc
Au+ f(u) = 0 inQ
u > 0 mQ
v = 0 on Of).

We assume that f is Lipschitz continuous. Then u is symmetric with respect to xq,
i.e., u(zy,y) = u(—x1,y) for any (z1,y) € Q. Moreover, the partial derivative of u
with respect to x; satisfies

Uy, <0 forx; > 0.

When (2 is a smooth domain, this symmetry result was already proven in the classi-
cal paper of Gidas, Ni and Nirenberg [16] in 1979. Their proof did not apply, however,
to some nonsmooth domains such as cubes. Theorem 2.1 answers affirmatively the
symmetry question in nonsmooth domains, including the case when {2 is a cube.

An immediate consequence of Theorem 2.1 is the radial symmetry of positive solu-
tions when 2 is a ball. To prove it, one applies Theorem 2.1 to all hyperplanes passing
through 0.

Corollary 2.2. (Gidas-Ni-Nirenberg) Let Bg = {|z| < R} C R™ be a ball, and u be a
positive solution in C*(Bg) of

Au + f(u) = 0 in Bg, u =0 on 0Bg.
If f is Lipschitz then u is radially symmetric (i.e., u(z) = u(|z|)) and u, < 0 for
0<r=|z| <R.

The proof of these symmetry results uses the maximum principle and a method of
Alexandroff called the moving planes method. The proof given in [16] used a version
of the maximum principle — the Hopf boundary lemma — that did not allow some
domains €2 with corners. We now present the improved method found in [7]. It replaces
the use of the Hopf boundary lemma by the maximum principle in domains of small
measure; in this way, the proof applies to nonsmooth domains.

Proof of Theorem 2.1. We denote points € R* by z = (z1,y), y € R* 1. It suffices
to show

u(zy,y) <ulzl,y) if —z <z} <z (5)
and

Ug, <0 ifzg >0 (6)



whenever (z1,y) € Q. Indeed, letting 2] — —z; we get u(zy1,y) < u(—z1,y). The
same result with the coordinate z; changed by —z; gives the symmetry: u(z;,y) =

u(—z1,y).
To show (5) and (6), we use the method of moving planes. Let a = supg ;. For
0 < A < a, we consider the hyperplane T and the set ¥, defined by

T)\ = {IL’lz)\}
Y = {IL’GQZIL'1>)\}CQ.

For x € R" we denote by
A
T = (2A — T, y)
the reflection of x with respect to 7. We consider the reflection of ¥,
¥\ ={r*:z e} CQ,
which is contained in 2 by the assumptions of the theorem. Hence, the function
wy(z) := u(z) —u(z*) for z € Ty

is well defined.
Since the Laplacian is invariant under reflections, the function z — u(z*) satisfies
the same semilinear equation Av + f(v) = 0. Thus, the difference w, satisfies the

linear equation

0 = Awy+ f(u(z)) — f(u(z?))

= Awy + ex(z)wy,

where

f(w(@)) = f(u(®))

u(z) —u(z?)
Note that 0¥, has two parts, one contained in 7 and the other in 0€2. Using that
v =0on 002 and u > 0 in 2, we conclude

ea(z) =

{AwAch)\(a:)w)\ = 0 in X, (7)

wy < 0 ond¥,, w,#D0.

Moreover, |cy| < b for some constant b which we can take to be the Lipschitz constant
of f on [0,supgq ul.
To prove (5) and (6) it suffices to verify

wy <0 for any A € (0,a). (8)



Indeed, it then follows from the Hopf lemma (see [17]) that on T\ N, where wy = 0,
we have 0 > (wy)z, = 2Ug, -

Now, if a— A is small then ¥y C QN{\ < z; < a}, and hence ¥, has small measure.
In particular, the maximum principle holds for the operator A 4+ ¢y in X, if a — X is
small (by Theorem 1.4). We deduce from (7) that wy < 0 in ¥,. Now, the strong
maximum principle (Proposition 1.5) gives that wy < 0in X,. We have proved (8) for
a — A small.

Let (Ao, a) be the largest open interval of parameters for which (8) holds. We want
to show that Ay = 0. We suppose Ay > 0 and we show that it leads to contradiction.
First, by continuity we have w,, < 0 in X, and, by the strong maximum principle,
wy, < 01in Xy,.

Next, let 6 > 0 be the constant of Theorem 1.4. Let K C X, be a compact set such
that Xy, \ K| < /2. We then have wy, < —n < 0 in K for some constant 7, since K
is compact. Hence, wy,— < 0in K and |2y, \ K| < § for € > 0 small enough.

We now apply the maximum principle in Xy, . \ K. We have

Awy, ¢+ ey e(@)wyy, e = 0 in3y, \ K
Wrg—e < 0 ond(Xy,—e\ K);

note that 9(2,,_. \ K) has one part contained in K, and we have used that wy,_ < 0
in K. Since Xy, \ K| < §, Theorem 1.4 and Proposition 1.5 give wy,— < 0 in
Y—e \ K. Therefore, wy,_ < 0 in X, ., which contradicts the maximality of the
interval (A, a). O

We point out that the problem

{Au—i—f(u) = 0 inBgCR"®

9
v = 0 on 0Bg ()

may admit solutions that change sign and are not radially symmetric. As a simple
example, there exist eigenfunctions of the Laplacian in a ball:

Au+Au=0in Bg, u=0on 0Bg

which are not radially symmetric. Hence, the condition v > 0 in  in the previous
theorems is, in general, necessary to conclude symmetry.

Obviously, if one knows that problem (9) has a unique solution ug then wug is neces-
sarily radial. Indeed, the composition ug o R of uy with any rotation is also a solution
of (9) and, if there is uniqueness, it must coincide with ug. Hence uq is radially
symmetric.

The following is a more interesting remark. For some nonlinearities f, the symmetry
result of Gidas-Ni-Nirenberg (Corollary 2.2) may be used to prove that (9) has a unique
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positive solution. The idea is that, by Corollary 2.2, one knows that any positive
solution of (9) is radial. As a consequence, it suffices to show uniqueness among
positive radial solutions — an easier task. As an example, this can be carried out to
prove that

Au+v? = 0 in Bg, p>1,
v = 0 on0Bpg

has a unique positive solution (see Section 2.8 of [16]).

Remark 2.3. One can prove radial symmetry in a very simple way for stable solutions
(not necessarily positive) of (9). We say that a solution u of (9) is stable if the first
eigenvalue in Bg of the linearized operator —A — f'(u) of (9) at u, defined by

o JollVoP - fwe} de
/\1(A + fl(u)’ Q= BR) = OzUIEI;If&(Q) fQ Uz dx ,

(10)

is positive.
We claim that any stable solution u of (9) is radially symmetric. Indeed, for any

given couple of indices ¢ # j, consider the vector field 0; = z;0,, — z;0,,, which is

i
everywhere normal to the radial direction 0,. Defining v := 0yu, we see that v is a

solution of the linearized equation of (9):

Av = A(ziug, — zjuy,)

= T;Aug; + 2V - Vug, — 2;Auy, — 2V - Vg,

= w(Au),, — (M),

= —fuw{zive;, — zjus} = —f'(u)v.

Moreover, since u = 0 on 0Bpg and 0, is a tangential derivative on 0 Bg, we have that

v =0 on 0Bg. Hence v € H}(Bg); multiplying —Av — f'(u)v = 0 by v and integrating
by parts, we obtain [; {|Vu|* — f'(u)v*}dz = 0. Since A\i(A + f'(u); Bg) > 0 by
assumption, we deduce v = 0. From this (and since the indices i # j are arbitrary),

we conclude that u is radial.

We refer to [16, 6, 7, 4] and references therein for symmetry results concerning more
general equations, such as fully nonlinear elliptic equations

F(z,u, Du, D*u) = 0,

and more general domains (for instance, some unbounded domains).
In [6] and [7] a new method was introduced — the sliding method — for equations
in infinite and finite cylinders. In Section 5 we will discuss a more recent result from

[5] that uses the moving planes method in infinite cylinders.
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3 C“ estimate: the Krylov-Safonov Harnack inequality

Let L = a;j(x)0;;+b;(x)0;+c(z) be a uniformly elliptic operator in nondivergence form
and with bounded measurable coefficients as described in the beginning of Section 1.

In 1979, Krylov and Safonov [23, 24] proved the following deep result — a Harnack
inequality for the operator L under no regularity assumptions on its coefficients. We
will use it extensively throughout these notes. We point out that here ¢(z) may change
sign.

Theorem 3.1. (Krylov-Safonov) Let Bg be a ball of radius R in R™, and denote by
Bsr the concentric ball of radius 2R. Let u € W?"(Bag) and f € L™(Bag) satisfy
u >0 in Bsg and Lu = f in Byg. Then

supu < € ipfut R v |
R

Br
where C' is a constant depending only on n, ¢y, Cy, bR and bR2.

Roughly speaking, the inequality states that, for any nonnegative solution u, the
value of u at one point controls the values of u in any given interior compact set.
The proof of Theorem 3.1, that we omit, uses two ingredients: the ABP estimate
(Theorem 1.1) and the Calderén-Zygmund cube decomposition; see [12] and [17] for
the proof of Theorem 3.1.

An important consequence of the Krylov-Safonov Harnack inequality is the Holder
continuity of solutions of Lu = f.

Corollary 3.2. Let u € W?"(B;) and f € L"(B,) satisfy Lu = f in By.

(i) Suppose ¢ = 0. Then there ezists a constant 0 < p < 1, depending only on n, cy,
Cy and b, such that

0scp, ,u < poscp, U+ || flLnsy),
where oscppu = supg, u — infp, u denotes the oscillation of u.
(if) For any c € L®(By), we have that u € C*(By2) and
ullcad, ) < C {lullie(s) + [l }
where 0 < a < 1 and C depend only on n, cy, Cy, b and b.
Proof. Let
M, := supp, u, my = infp, u, 01 := My — mq,

M1/2 = sume u, m1/2 = inme u, 01/2 = M1/2 — ml/g.

12



Theorem 3.1 applied to u — m; > 0 in By and to M; —u > 0 in B; (here we assume
c =0) gives

1
Mij—my <C {m1/2 —my + §||f||L"(B1)}
and
1
My —my, <C My — My, + §||f||L"(B1) .
Adding these two inequalities, we obtain

01+ 012 < C{o1— o012+ || fllenmy) }

and hence

_C-1 C £l
(0] 01+ n
V2=0c11™ T o4 VB

which proves (i).
Part (ii) (in the general case ¢ # 0) follows easily from (i), with the aid of a simple
lemma of real analysis (see Lemma 8.23 and Corollary 9.24 of [17]). O

While the Harnack inequality applies only to nonnegative solutions of Lu = f, there
are related inequalities that apply to subsolutions and to nonnegative supersolutions.
In fact, the proof of the Harnack inequality may be divided into two parts; the first
applies to subsolutions (see Theorem 9.20 of [17] and Theorem 4.8(2) of [12]). The
second part is more delicate to prove; it applies to nonnegative supersolutions and it
is called the weak Harnack inequality. Its statement is the following.

Theorem 3.3. Let u € W™ (Bsyg) and f € L™(Bag) satisfy u > 0 in Bog and Lu < f

in Bagr. Then
1 1/e
— € <Clinfu+ R n ,
(1 ) =0 s msloa

where € > 0 and C are constants depending only on n, ¢y, Cy, bR and bR2.

This result is Theorem 9.22 of [17] and Theorem 4.8(1) of [12]. We will use a
boundary version of Theorem 3.3 in the next section.

4 Maximum principle in “narrow” domains

In this section we present a maximum principle (Theorem 2.5 of [8]) that improves the
maximum principle for domains of small measure (Theorem 1.4 of these notes). We
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present a short proof of this new maximum principle following an idea from [9]. We
also give an improved version of the ABP estimate (Theorem 1.4 of [9]) that applies
in some unbounded domains.

We start recalling some useful facts about the maximum principle.

(a) Suppose that Q is bounded and that there exists a function ¢ € W2*(Q) N C(Q)
such that ¢ > 0in Q and L¢ < 0 in Q. Then the maximum principle holds for L
in Q.

This is a well-known sufficient condition for the maximum principle to hold; see, for

instance, [8]. In fact, within the proof of Theorem 5.5 below, we will encounter the

argument that shows (a).

(b) Assume that a;; € C(2) and that Q is a smooth bounded domain. Berestycki,
Nirenberg and Varadhan [8] introduce the quantity A;, also denoted by A;(L, §2),
defined as follows:

Ap =sup{A:3¢>0in Q and (L+ N)¢p < 01in Q}.

A1 is called the principal eigenvalue of L in ). They show that the maximum
principle holds for L in © if and only if A;(L; ) > 0. In particular, it follows
from Corollary 1.3 that A;(Lg;€2) > 0, where Ly = L — ¢(z) = a;;(x)0;; + bi(x)0;.
They also prove that there always exists a positive eigenfunction associated to
A1. That is, there exists ¢, € W2™(Q) N C(Q), ¢, > 0 in Q satisfying

loc

(L+)\1)¢1 = 0 inQ
¢1 = 0 on 0N.

Moreover, ¢; is unique up to a multiplicative constant (i.e., A; is simple).

For all these results, and many others on the maximum principle for operators in
nondivergence form (also in nonsmooth domains), see [8].

We point out that, when the operator L can also be written in divergence form, the
principal eigenvalue A; coincides with the first eigenvalue of L defined by the usual
variational formulation. For instance, when L = A + ¢(z) then A; coincides with the
variational expression (10).

Next, we define a geometric quantity of the domain 2 that will play a key role in
the rest of this section.

Definition 4.1. Let 2 C R" be a domain, not necessarily bounded. Given a constant
0 < o <1, we define R(Q2) to be the smallest positive constant R such that

|Br(z) \ Q| > o|Bg(z)| Vz € Q. (11)
We define R(€2) to be +o0 if no such radius R exists.
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Once the constant 0 < o < 1 is fixed, the quantity R({2) depends only on the
domain 2. We claim that

R(Q) < C(n,0)|Q''",

for a constant C(n, o) depending only on n and o. Indeed, defining R by the relation
(1 — 0)|Bgr| = 19| (in case |Q| < oo) we have that R = C(n,0)|Q["/" and (11) is
satisfied, since |Bg(z) \ Q2| > |Bgr(z)| — |©2] = o|Bgr(z)|. This proves the claim.
Obviously, |2|/" < C(n) diam(Q2). The quantity R(f2) is therefore a more precise
geometric constant of (2 than the measure or the diameter of (2. There exist domains
with infinite measure for which the quantity R(2) is finite (or even small). This is the
case, for example, when (2 is contained between two parallel hyperplanes, or when {2

is contained in, say,

R™ \ U Byj10(p)
pPEL™
where Z denotes the integer numbers. See [9] for some other examples, and [8, 9] for
a more refined version of the quantity R().
The following is a maximum principle in domains (not necessarily bounded) for
which R(?) is sufficiently small. Here, no assumption on the sign of ¢(z) is made. It
is essentially Theorem 2.5 of [8].

Theorem 4.2. (Berestycki-Nirenberg-Varadhan) Let 0 < 0 < 1 be a constant. Then:

(1) There exists a constant R*, depending only on n, ¢y, Cy, b, b and o, such that the
mazimum principle holds for L in Q if R(?) < R*.

(ii) Assume that Q is a smooth bounded domain and that a;; € C(2). Consider the
operator Ly = L — c(x). Then

Ai1(Lo; ) > R

(and in particular Ay (Lo; Q) > 7|Q|~2/™), where T is a positive constant depending

only on n, ¢y, Cy, bR(Y) and o.

This result is proved in [8] using a variant of the Krylov-Safonov Harnack inequality.
Below we present a short proof of Theorem 4.2 following an idea from [9] that uses a
boundary version of the Krylov-Safonov weak Harnack inequality (Theorem 3.3).

We will easily deduce Theorem 4.2 from the following improved ABP estimate. It
applies in any domain (not necessarily bounded) satisfying R(Q2) < oo.
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Theorem 4.3. ([9]) Let 0 < 0 < 1 be a constant and let Q be a domain such that
R(Q) < co. We assume that ¢ < 0 in Q. Let u € W2(Q) and f € L™(Q) satisfy

loc

supg u < 00, Lu > f in Q and limsup,_, 5o u(z) < 0. Then

s?zpu < CR) Ifllzre

and

Supu < C R(Q)* Ifllz=(5), (12)

where C' is a constant depending only on n, ¢y, Cy, bR(Q) and o.

Proof.  Considering any connected component g of the set {z € Q : u(z) > 0}
and the operator Ly = L — ¢(z) (as in Step 1 of the proof of the ABP estimate,
Theorem 1.1), it is easy to reduce the problem to the case ¢ =0, v > 0 in 2 and

Lu > f inQ
v = 0 on 0.

Here it is important to note that R(€g) < R((2).
Suppose first that 2 is bounded. Then the supremum of u is achieved, so that

M :=supu = u(zy) >0
Q

for some zy € Q. To simplify notation, we write R := R(Q2) and Bg := Bg(zp). We
know (see Definition 4.1) that

|Br \ Q|
_— 1 > 13
|Br| — (13)
We consider the function
v=M —u,

which satisfies 0 < v < M in Q, v(zg) =0, v = M on 0Q and Lv = —Lu < —f
in Q. We extend the function v to be identically M in R \ €2, obtaining in this way a
continuous function, still denoted by v, in all R*. We also extend f by zero outside (2.

Note that the graph of the extended function v may have “corners” on 0f2, and
hence v may not belong to W>"(Byg), since Bap \ Q # ¢ by (13). However, since
0 <v<MinQ and v = M on 01, the extended function v is still a “generalized”
nonnegative supersolution of Lv < —f in R”, in the sense that it satisfies the weak
Harnack inequality (Theorem 3.3). See Theorem 9.27 of [17] for this boundary version
of the weak Harnack inequality. Alternatively, the extended function v satisfies Lv <
—f in R™ in the viscosity sense (see Section 8, Proposition 8.4).
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Now, we conclude easily. Using (13), v(zp) = 0 and Theorem 3.3 applied to v in

1/e 1/e
<|BR\Q|> MS( 1 ve)
| Br] |Br| JBm\a
1 1/e
< — v
B <|BR| Br >

< C {infv +R ||f||L"(B2R)}
Br

= CR||fll(Borne);
where € > 0 and C depend only on n, ¢y, Cy and bR. This proves the desired inequal-

Bsg, we have

ol M

IN

ities.

In case that €2 is unbounded, the proof is the same with minor changes. We define
M := supq u (recall that M < oo by assumption) and we take, for any n > 0, a point
zo € 2 such that M —n < u(z). We now have that v(zy) < n. We proceed as before
and we get the desired estimate by letting n — 0 at the end of the proof. O

Finally, we easily deduce the maximum principle of Theorem 4.2 from estimate (12).

Proof of Theorem 4.2. To show (i), we use the same idea as in the proof of the
maximum principle for domains of small measure — Theorem 1.4. If Lu > 0 in ,
lim sup,_, 9 u(z) < 0 and supg u < 0o, we have
(Lo — ¢ )u > —ctu>—ctu’.
By estimate (12) applied to the operator Ly — ¢~, we have

supu < CR(Q)?|lctut||r=(o
Q

< CbR(Q)? suput
Q

where C' = C(n, ¢y, Co,bR(Q),0). If CbR(Q)? < Ch(R*)*> < 1/2 we conclude that
u < 0in Q. Here the dependence of C on bR(2) may be replaced by dependence only
on b, since R(2) < R* and we can take R* < 1.

To prove (ii), we know (see the beginning of this section) that Ay = A;(Lg; ) > 0
and that there exists ¢; > 0 in ) such that

Lopr = —Xi¢1 inQ
pr = 0 on 09.

Applying estimate (12) to this problem, we obtain
sup ¢ < C R(2)% Ay sup ¢y
Q Q

with C = C(n, ¢y, Cy, bR(Q), 7). We conclude \; > 7R(Q) 2. O
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5 Positive solutions in some unbounded domains

In this section we discuss some questions concerning a symmetry result in unbounded

domains of cylindrical type, recently proved in [5]. We consider domains of the form
N=R""7 xw,

where w C R’ is a smooth bounded domain. We denote the points in Q by (z,y) =
(T1,. .oy Tnejy Y1, .-, Yj) € . We consider the semilinear problem

Au+ f(u) = 0 inQ
= 0 on 00 (14)
> 0 in Q,

and we assume that u € C’foé‘(ﬂ) for some 0 < p < 1, and that f is globally Lipschitz.
No assumption is made on the behavior of the solution u near infinity.
Note that, when j = n —1, Q is a cylinder whose (n — 1)-dimensional cross section
is bounded. If 7 = 1 then 2 is the domain contained between two parallel hyperplanes.
The symmetry result in [5] is the following.

Theorem 5.1. (Berestycki-Caffarelli-Nirenberg) Assume that w is convex in the y;
direction and that it is symmetric with respect to the hyperplane {y, = 0}. Suppose
that j > 2, or that j = 1 and f(0) > 0. Then, any solution u of (14) is symmetric in
Y1, and u,, <0 fory, > 0.

Therefore, the solution u satisfies u(z,y1,%2,...,y;) = w(z,—y1,¥2,...,y;). Asin
Section 2, this yields the radial symmetry of « when w is a ball. That is, we have:

Corollary 5.2. Suppose that w = {|y| < R} C R’ is a ball. Assume also that j > 2,
orthat j =1 and f(0) > 0. Then u is radially symmetric iny (i.e., u(z,y) = u(z, |y|)),
and u, < 0 for 0 < p=|y| < R.

Theorem 5.1 is proved using the moving planes method (see Section 2). We do not
present its entire proof but, following [5], we show in detail the preliminary results on
the behavior of u near infinity (and on the maximum principle) needed to start the
moving planes method. By “starting the moving planes method” we mean (using the
notation of the proof of Theorem 2.1 with z; replaced by y;) to verify (8) for a — A
small enough.

The first result concerns the growth of w at infinity. Note that (14) may have
solutions that grow exponentially at infinity. For example, the function u(zq,y;) =
e™ cosy; is positive and harmonic in & = R x (—n/2,7/2) and vanishes on 0. The
first result of [5] states that, in fact, any solution of (14) grows at most at an exponential
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rate. Here, the condition u > 0 in  is important (see [5] for a changing sign solution
that grows faster than any exponential).

Proposition 5.3. If u is a solution of (14) then there exist positive constants o and
C such that

u(z,y) < Cell in Q.

The main tool in the proof of this result is a new and useful boundary Harnack
inequality found in [5]. It is an extension up to the boundary of the Krylov-Safonov
Harnack inequality. Recall that another boundary version of the Harnack inequality
was also very useful in Section 4. Also, we point out that very similar (in their
statement but not in their proof!) interior and boundary Harnack inequalities hold
for operators in divergence form, Mu = 8, (aij(x)0s;u), with bounded measurable
coefficients; this is the DeGiorgi-Nash-Moser theory (see Chapter 8 of [17]).

Here we consider an elliptic operator Mu = a;j(x)0;;u with bounded coefficients,
satisfying the uniform ellipticity condition of Section 1 with constants ¢y and Cy. We
assume that a;; are continuous in Q (this will merely be a qualitative assumption since

the estimates will not depend on the modulus of continuity of the a;;).

Theorem 5.4. (Berestycki-Caffarelli-Nirenberg) Let Q be any domain of R* and let
Y C 002 be a smooth open subset of 0. Suppose that u € WZ’p(Q UX),p>n,u>0

loc
m Q, u=0on, and

|Mu| < A(|Vu|+u+k) inQ, (15)

for some constants A and Kk > 0. Let K C € be a compact subset of Q, and let
G C QUX be a compact subset of QU Y. Then

supu < C{infu + &},
G K
where C is a constant depending only on Q, %, K, G, ¢y, Cy and A.

For the proof of Theorem 5.4, see [5]. Using it, we easily deduce Proposition 5.3.
Proof of Proposition 5.3. We have that

|Au| = |f(uw)] < [f(u) — f(0)]+ [ £(0)]
< Au+[f(0)] = A(u + k)

for k := |f(0)|/A, where A is the Lipschitz constant of f. Hence (15) is satisfied with
M = A. We fix a point yp € w. Applying Theorem 5.4 with ¥ = {|z| < 2} X Jw,
G ={|z|] <1} xwand K = {(0,y0)}, we obtain

u(z,y) + k < C{u(0,y0) + k} for (z,y) € {|z| < 1} x &,
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for some constant C. We fix any direction e; in R*7  |e;| = 1. Applying the pre-
vious inequality with u replaced by u(z + e;,y) (note that €2 is invariant by such a
translation), we have

u(z,y) + & < Cluler, o) + £} for (z,y) € {[z —er| <1} x W,

for the same constant C.
Putting both inequalities together, we obtain

u(z,y) + K < C*{u(0,y0) + k} for (z,y) € {|z —e1| < 1} x @.
It is now easy to deduce, by induction, that
u(z,y) + k < C™Hu(0,y) + k}  for (z,9) € {|z —me;| < 1} x w.

This inequality yields at most exponential growth in the direction e;. Since e; is
arbitrary, we obtain the conclusion. O

To start the moving planes method for problem (14), we consider a = sup, yi,
wy={ycew:y > A} Ty =R xwy, CQ, and wr(z,y) = u(z,y) — u(z,y*)
where y* is the reflection of y in the plane {y; = A}. The function w) satisfies
Awy + cx(z,y)wy = 0 in ¥y and wy < 0 on 9%,. To start the method we need a
maximum principle in cylinders ¥, with section w) of small measure. Such a maximum
principle has been proved in the previous section for bounded functions w) since, using
the notation of that section, R(X,) is small if |w)| is small. However, we cannot apply
here such maximum principle since the function w, may be unbounded; in fact, we
know that it may grow exponentially.

The starting point for the moving planes method is accomplished with the following
maximum principle for subsolutions with at most exponential growth in “cylinders”

with cross section of small measure; it is Theorem 1.6 of [5].

Theorem 5.5. Let O = R* 7 x w, where w C R is a smooth bounded domain. Let

w € W2MQ) N C(Q) (here w is not necessarily bounded) satisfy

loc

Aw+c(z,y)w > 0 inQ
w < 0 on 01,

with ¢ < l~), and
w < Ce®l inQ

for some positive constants b, & and C. Then there ezists a constant § > 0, depending
only on n, 7, b and a, such that

w| <8
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implies w < 0 in Q.
Proof. The function w satisfies
w < Cet (mil++lznj])
for some p' > 0. Since w is smooth, we can take a domain @, such that w C @,

with measure arbitrarily close to |w|. Since |@| ~ |w| < § is small, we know that the
principal eigenvalue of A, in @ is large. Indeed, by Theorem 4.2 (ii), we have

3 N ) I ) I €)

Hence, we can choose § = §(n, j,b,a) > 0 sufficiently small such that A\; > (u')*(n —
) +b.
Let 3 be a constant such that
B>py and  B*n—j)+b— )\ <O.

Let ¢; be the principal eigenfunction of A, in @ (see Section 4):

Aypi(y) = —Mgy inw
¢1 =0 on 0
¢1 > 0 in @.

We consider the function

g(z,y) = ¢1(y) cosh(Bz) ... cosh(Bz,_;).
It satisfies g > 0 in Q (since w C @) and
(Ate(zy)g = {F(n—j)+c— M}y
< {B(n—j)+b-M}g<0inQ

(compare this with condition (a) mentioned in the beginning of Section 4). To prove
w < 0, we consider the function

w
Zi=—.
Y

Using the classical maximum principle for z, we show that z < 0 and hence w < 0.
Indeed, we have g?°Vz = gVw — wVyg, and hence g?Az + 2gVg - Vz = div(g?Vz) =
gAw — wAg > —cgw — wAg = —g[(A + ¢)g|z. Therefore, z satisfies

Az+297'Vg-Vz+ g [(A+c)glz 0 in Q

>
< 0 on 99

z
lim SUP|z| 00 Z(.’E, y) < 07
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where we have used that 8 > y’ to deduce the last inequality.

Note that the zero order coefficient, g *(A+c)g, is negative in 2. We then conclude,
by the classical maximum principle, that z < 0 in © (and hence w < 0 in ). Indeed,
if z was positive somewhere, it would achieve its supremum at an interior point — a

contradiction with the elliptic inequality satisfied by z. O

To start the moving planes method, we apply Theorem 5.5 to ¥y = R* 7 x wy when
a — A is small enough. Note that w, has corners; however, the proof of Theorem 5.5
still applies to X since wy has an e-neighborhood with small measure.

To continue moving the plane until A reaches 0, a delicate analysis is needed since
¥, is not compact (see [5]). It is here where the condition f(0) > 0, if j = 1, enters.

6 Fully nonlinear equations: definitions and examples

We consider equations of the form
F(D*u,z) = f(x),

where z belongs to a bounded domain Q of R*, D?u denotes the Hessian of the function
u:Q — R, and F(M,z) is a real valued function defined on S,, x Q2. Here S,, denotes
the space of real n X n symmetric matrices.

We assume that F' and f are continuous in z, and that F' is a uniformly elliptic
operator; that is:

Definition 6.1. We say that F is uniformly elliptic if there exist two constants (called
the ellipticity constants) 0 < ¢g < Cp such that

co||N|| < F(M + N,z) — F(M,z) < Co||N||

for any x € Q) and any pair M, N of symmetric matrices with N > 0. Here, N > 0
means that N is nonnegative definite, and ||IV|| denotes the largest eigenvalue of N
(i.e., the spectral radius or (L?, L?)-norm of N).

We recall that any M € S, can be uniquely decomposed as M = M+ — M, where
M*>0,M >0and M*M~ = 0. Using this, it is easy to check that F is uniformly
elliptic if and only if

F(Mo + M, z) < F(Mo, ) + Co|| M| — of[M™|

forany x € Q, My € S, and M € S,,.
In particular, any uniformly elliptic operator F' is a monotone increasing and Lip-

schitz continuous function of M € §,,. Here we consider the usual order in §,, i.e.,
M; < M, if My — M; > 0.
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Suppose now that F is of class C'. We extend F to the space of all real n x n
matrices, for instance by F(A,z) = F((A+ A")/2,z). Then F is a function of n x n
real variables a;;, and of z € 2. We consider the first derivative of F' with respect to
a;; and we denote it by Fj;, i.e.,

oF

aij

Fij(A7m) = (4,z).

It is clear that if M and N are symmetric then DF(M,z)- N = F;;(M, z)N;; does not
depend on the previous extension of F' (since this is a directional derivative of F in a
direction given by a symmetric matrix).

It is easy to verify that if F' is uniformly elliptic, with ellipticity constants ¢y and
Cy, then

col€)? < Fij(M,z)&&5 < Colé? V(M,z,€) € S, x Q x R". (16)

On the other hand, if (16) is satisfied then F' is uniformly elliptic (as in Definition 6.1)
with ellipticity constants ¢y and nCj.
For a uniformly elliptic functional F' (not necessarily of class C'), we say that F is

concave (respectively, convex) if F' is a concave (resp., convex) function of M € S,,,
ie., F((My + My)/2,z) > {F(M,x) + F(Ms,x)}/2 (resp., <) for any My, M, € S,
and any z € ().

The following are important examples of fully nonlinear elliptic equations.

1. Pucci’s equations. For any fixed constants 0 < ¢g < Cy and for M € §,,, we define

M_(M) = M_(M; Co,Co) = Cp Z €; + CO Z €;
e; >0 e; <0
and
MF (M) = M (M;¢o,Co) = Co Zei + ¢o Z €45
e; >0 e; <0

where e; = e;(M) are the eigenvalues of M. Now let A = (a;;) be a symmetric matrix
with all its eigenvalues in [cg, Cp], i.e., such that ¢p|€]? < a;;&& < Colé|* for any
¢ € R*. We say in this case that A € A, ¢,- Consider the linear functional L4 on S,
defined by

LAM == CLZ]MZ] == tI‘(AM) for M € Sn,
where tr denotes the trace. Alternatively, we may consider L4 acting on functions:
LAU = LA(D2U) = aijaiju.
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Using that M = ODO?, where O is an orthogonal matrix and D is diagonal with
diagonal elements equal to the eigenvalues e; of M, it is easy to verify that

M~ (M) = inf LM

A€A.y,cp

and

M*T(M)= sup LysM.
A€Ac,co

Using these expressions, we easily deduce that M~ and M™ are uniformly elliptic
operators with ellipticity constants ¢y and nCy. Moreover, M~ is concave (since it
is the infimum of linear functionals) and M™ is convex; see Lemma 2.10 of [12].
These expressions also show that M~ and M™ are extremal with respect to all linear
operators with fixed ellipticity constants ¢y and Cy. They are called Pucci’s extremal
operators.

The corresponding fully nonlinear equations are

M~ (D*u) = f(z) and M1 (D%u) = f(z).

2. Bellman equations. These are the equations for the optimal cost in a stochastic
control problem. They are of the form

F(D?u,z) := ;Iela{Lau(x) — fa(z)} =0,

where A is any set, f, is a real function in €2, and Lou = ag(z)0;u is, for each
a € A, a uniformly elliptic operator with bounded measurable coefficients and with
given ellipticity constants ¢y and Cy. It is easy to check that the Bellman operator is
uniformly elliptic and concave.

Note that if all af; and f, are constant functions then the corresponding Bellman
equation is of the form F(D?u) = 0.
3. Isaacs equations. These equations arise in the theory of differential games. They
are of the form

F(D?u, ) := sup inf { Lagu(z) — fas(z)} =0,
seB acA

where L, is an arbitrary family of elliptic operators (with fixed ellipticity constants)
as in the previous example. Isaacs equations are still uniformly elliptic, but no longer

concave nor convex.

4. The Monge-Ampére equation. This equation is

det D*u = f(z). (17)
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The functional in consideration is F'(M) = det M. Hence F;;(M) is the cofactor of the
i,j—entry M;; of M. Thus F;; = (det M)M" (by Cramer’s rule) where M are the
entries of the inverse of M (in case it exists). It follows that (17) is elliptic only for
positive definite matrices M; equivalently, (17) is elliptic on the set of strictly convex
functions u. Note that, for a strictly convex solution u of (17) to exist, we must have
f positive.

In this case, we write (17) in the form

G(D?u) := logdet D*u = log f(z).
We have that G;;(M) = M*%. Hence

Z Gir Mrs - 5is

and
Z Girga Mys + G 05 = 0,

where G, ;1 denote the second partial derivatives of G. We deduce that

Gijp + M* Mt = Z Girju M, s M + Z G 05y M* =0,

r,s s

and thus Gijr = —M*™ M7, We obtain
Gij,kl(M)Niijl <0 \V/M,N € Sn,

and hence that G(M) = log det M is a concave operator in the cone of positive definite
matrices.

Even that the Monge-Ampere equation is not uniformly elliptic in all S,,, many of

the methods for concave uniformly elliptic operators may be adapted to equation (17)
when f > 0.
5. The equation of prescribed Gauss curvature. Given a function K(z) > 0 in Q, we
look for a function u € C%(€2) such that K(z) is the Gauss curvature of the graph of
u at the point (z,u(z)). We recall that the Gauss curvature is the product of all the
principal curvatures. It follows that u satisfies

F(D*u, Du, ) := det D*u — K (z)(1 4 |Du|?)"?/2 = 0.
This is an elliptic operator on the set of strictly convex functions u. Here, F' depends
also on Du.

To simplify our exposition we limit ourselves to the case F = F(D?u,z), but the
results presented below can be easily generalized to the case F(D?u, Du,x) (see [17]).
For more details and references on these equations, see [17, 12].
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7 CbY* estimate for classical solutions of F(D?u) = 0

For a solution of a second order elliptic equation one expects, in general, to control
the second derivatives of the solution by the oscillation of the solution itself. More
precisely, the following C** and W?P interior “a priori” estimates hold. Let u be a
solution of a linear uniformly elliptic equation of the form

aij(:p)&-ju = f(.’l?) in B; C R™.
Then we have:

(a) Schauder’s estimates: if a;; and f belong to C%(B;), for some 0 < a < 1, then
ue 2 (Byy) and [ullguagz, ) < Olullimen + [Fcogay), where C depends
on the ellipticity constants and the C%(B;)-norm of a;;; see Chapter 6 of [17].

(b) Calderén-Zygmund estimates: if a;; € C(B;) and f € LP(B,), for some 1 <
p < 09, then u € W2’p(Bl/2) and ||u||W2,p(Bl/2) < C(“U“Loo(Bl) + ||f||LP(B1));
where C' depends on the ellipticity constants and the modulus of continuity of
the coefficients a;;; see Chapter 9 of [17].

These statements should be understood as regularity results for appropriate linear
small perturbations of the Laplacian. Indeed, these estimates are proven by regarding
the equation a;;(z)0;;u = f(z) as

aij(0)Oi5u = [aij(zo) — aij(z)] Oiju + f(z).

One then applies to this equation the corresponding estimates for the constant coeffi-
cients operator a;;(z)0;; (that one can think of as the Laplacian), observing that the
factor a;j(zo) — a;j(x) is small (locally around z,) in some appropriate norm, due to
the regularity assumptions made on a;;. Thus, the key point is to prove C** and W?2?
estimates for Poisson’s equation Au = f(z).

The goal is to extend these regularity theories to fully nonlinear elliptic equations
F(D%u,z) = f(z). As we will explain in more detail below, this can be accomplished
for any uniformly elliptic operator F(M,z) which is concave (or convex) in M.

The previous discussion shows that one should start considering the case of equa-
tions with constant “coefficients” F(D?u) = f(z) (here, we think of F(D?u) as being
equal to F(D?u(z),z,) for a fixed z,). In fact, the key ideas already appear by con-
sidering the simpler equation

F(D?*u) = 0.

In this section we prove C™* estimates (for some 0 < a < 1) for any uniformly
elliptic equation of the form F(D?u) = 0; here no concavity or convexity assumption
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on F'is needed. The tool that we use is the Krylov-Safonov Harnack inequality and
its corollary on Holder continuity of solutions of elliptic equations in nondivergence
form with measurable coeflicients (see Section 3).

Indeed, suppose that u € C3(B;) satisfies F(D?u) = 0, with F € C*. Differentiate
this equation with respect to a direction xy. Writing u; = Oyu, we have

E](D2U($)) 8ij’ll,k =0 in Bl.

This can be regarded as a linear equation Lu; = 0 for the function ug, where L =
aij(z)0;; and a;j(z) = F;;(D*u(z)). By (16), we know that L is uniformly elliptic.
Note that a regularity hypothesis on the coefficients a;;(z) would mean to make a
regularity assumption on the second derivatives of u — that we need to avoid. The
key point is that the Krylov-Safonov theory makes no assumption on the regularity
of a;;. Hence, from Corollary 3.2 (ii) applied to the equation Lu, = 0, we obtain
||uk||ca(§1/2) < C||lukl|zeo(B,), where 0 < o < 1 and C depend only on n, ¢y and Cp.
Thus, we have the C1® estimate for u

||u||cl,a(§1/2) < C||U||cl(§1)- (18)
This “a priori” estimate may be improved in the following way.

Theorem 7.1. Let F be uniformly elliptic (see Definition 6.1) and assume that F €
C'. Let u € C*(B,) be a solution of F(D*u) = 0 in B,. Then there exist constants
0 <a<1andC, depending only on n, ¢y and Cy, such that

[ullgrags, ) < Clllullesy + [F(0)[}-

This result may be obtained from a version of (18) involving more refined (in fact,
weighted) Holder norms and from an interpolation inequality (see [17]).

Here we present a simple proof of Theorem 7.1 found in [10]. It uses the technique of
increments and, of course, the Krylov-Safonov theory. It may be adapted to viscosity
solutions and also to the case when F is not C* (see [10, 12]). Note that it is interesting
to cover nondifferentiable functionals F', in order to include Pucci’s, Bellman’s and
Isaacs’ equations (note that these operators, presented in the previous section, are not
differentiable in general).

Proof of Theorem 7.1. Clearly we have

—F(0) = F(D*u(z))— F(0)
= [FDu(e))] = [ [ Foepuw) dt] Byul(z)
=: a”(x)awu(x)
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Note that a;; are uniformly elliptic. The Krylov-Safonov theory, Corollary 3.2 (ii),
yields

[ulloa(s,,,) < Clllullie(s,) + [F(0)[} =: CK, (19)

where 0 < @ < 1 and C (as well as all other constants C in the proof) depend only on
n, ¢p and Cy. The constant o will be the same throughout all the proof. To simplify
notation, we have denoted ||u||z~(s,) + |F(0)| by K.

We fix a direction e € R", |e| = 1, and consider the function uy(z) = u(x + he) for
h > 0 small enough. We have that both u and wu; satisfy the same nonlinear equation
F(D%u) = 0 = F(D%u), and hence the difference u, — u satisfies a linear equation.
Indeed,

0 = [F((1-1t)D*u(z)+ tD*us(x))]i
_ [ /0 Fiy((1 — t)D*u(z) + tD%up(x)) dt| 8y (un — u)(z)
aij(x) 05 (up — u)(x).

Hence, a;;(z)0;;[(up —u)/h*] = 0. Using Corollary 3.2 (ii) again (now rescaled, and

after a covering argument to apply it in By/4 C By/3) we deduce

1B~ (un = u)llcam, ) < ClUA™(un = v)l|z=(B,/4)

IN

CHUHCO‘(§1/2)
CK

IN

for h small enough, by (19). This C®(Bj4) estimate for A~*(us — u) (uniform in h)
implies

[ullc2am, ) < CK
with the aid of an easy lemma of real analysis — Lemma 3.1 of [10] or Lemma 5.6 of
[12].

The same argument applied now to h™2*(uj, — u) (which also solves a;;(z)d;;[(un —
u)/h**] = 0) gives

1A% (un — W)l cas, ,y < CIR**(un — w)llzoo(By6)
< C“u“C?“(Eus) < CK

uniformly in h. We deduce a C3* estimate for w.
Iterating this procedure a finite number of times (which depends only on n, ¢y and
Cy), we arrive at ||u|c1g,) < CK for some § = d(n,co,Co) > 0. Applying the same
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argument to A~ (up — u), we obtain a C'*(Bj/;) estimate for u in terms of K. This
inequality, applied in a family of balls (of sufficiently small radius) that cover By s,
leads to the desired C*(By ) estimate. O

Remark 7.2. A perturbation method due to Caffarelli [11] (see also Chapter 8 of
[12]) extends the C1* estimate of Theorem 7.1 to equations F(D?u,z) = f(z) under
appropriate dependence of F and f in z (and without any concavity hypothesis on

Remark 7.3. When the operator F' is concave or convex, Evans [14] and Krylov
[20, 21, 22] have shown in 1982 that classical solutions of F/(D?*u) = 0 satisfy the C**

estimate

[ull e, < C{llullies,) + [F(0)]},

where 0 < a < 1 and C depend only on n, ¢y and Cj (see [12]). Recall that Pucci’s
equations are concave (or convex), Bellman’s equations are concave, and the Monge-
Ampere operator is log-concave.

The proof of this C?? estimate is based on a delicate application of the Krylov-
Safonov weak Harnack inequality to C' — uyx, where ug; denote the pure second deriva-
tives of u. Note that, differentiating F(D?u) = 0 twice with respect to zz, we have

0 = Fij(D*u(@))dijurk + Fijrs(D*u())(Bijur) (Orsu)
< F}-(DQU(x))aijukk

(by the concavity of F') and hence ug are subsolutions of a linear equation.

In 1989, Caffarelli [11] generalized the Calderén-Zygmund and Schauder theories to
the context of fully nonlinear equations F(D?u,z) = f(z). Under the assumption of
concavity of F' and appropriate hypothesis on the dependence of F in x (see Chapters 7
and 8 of [12]), he proved the following. If f € L? with n < p < oo, then u € W?? in
the interior and there is a WP estimate. If f € C%, with 0 < a < 1 small enough
depending on the ellipticity constants, then v € C%? in the interior. The proofs also
apply to viscosity solutions and to nondifferentiable functionals.

8 Viscosity solutions and Jensen’s approximate solutions

In 1983 Crandall and Lions [13] developed a theory of weak solutions (so called viscos-
ity solutions) for nonlinear partial differential equations. They are very useful when
proving existence of solutions. For fully nonlinear equations, these weak solutions take
the place that energy (or H') solutions have in the divergence form theory.
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Definition 8.1. Let u be a continuous function in . We say that u is a viscosity
subsolution of F(D?*u,z) = f(r) in Q (or that u satisfies F(D?u,z) > f(z) in the
viscosity sense in ) if the following condition holds: whenever zo € Q, ¢ € C?(Q)

and u — ¢ has a local maximum at zy, then

F(D?*¢(x0), 20) > f(z0).

The definition of viscosity supersolution is analogous, replacing “local maximum” by
“local minimum” and the inequality > by <. We say that u is a wviscosity solution
when it is both a viscosity subsolution and supersolution.

It is useful to think of this definition in the following way.
Proposition 8.2. The following are equivalent:
(a) u is a viscosity subsolution of F(D*u,z) = f(x) in Q.
(b) Whenever zoy € Q, A is an open neighborhood of zy, ¢ € C*(A) and
< m A
{ “(3301; - Z(%)am 20)

then F(D%¢(x0),x0) > f(zo).
(¢) Same property as (b), with “p € C*(A)” replaced by “p is a paraboloid” (i.e., a

polynomial of at most degree 2).

Proof. The proofs (a) = (b) and (b) = (c) are trivial. To prove (¢) = (a),
let ¢ € C?(2) be such that u — ¢ has a local maximum at z, € Q. For any ¢ > 0, we
consider the paraboloid

P.(z) = u(zo) + Dé(z0) - (x — x9) + %(m — 10) D?*¢(xo)(z — xo) + §|a: — zo)%

Then u(z¢) = P.(zp) and v < P, in an open neighborhood of zy. Since we assume (c),
we have F(D?@(xq) + €I, 1) > f(xo), where I denotes the identity matrix. Letting
e — 0, we conclude F(D?¢(z),xo) > f(xo) since F(M,z) is a Lipschitz function of
M (see the remarks after Definition 6.1). O

We say that ¢ touches u from above at zy whenever there exists an open neighbor-
hood A of zy such that (20) holds.

The idea in the definition of viscosity solution is to take the maximum principle
itself as definition of solution. That is, the definition of viscosity solution requires the
maximum principle to hold whenever u € C(Q) is “tested” against C?({2) subsolutions

and supersolutions.
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Recall that a classical solution u of F(D?u,z) = f(z) in Q is a C?(Q2) function
u that satisfies this equation pointwise. The following result states that for C?(Q)
functions the classical and the viscosity notions of solution coincide. Its simple proof

is similar to the previous one.

Proposition 8.3. Assume that u € C*(Q2). Then u is a viscosity subsolution (resp.,
solution) of F(D%*u,z) = f(x) in Q if and only if F(D?u(z),z) > f(z) (resp.,
F(D?u(z),z) = f(z)) for any z € Q.

The next two results are very useful when trying to prove existence or estimates for
viscosity solutions. They show the “flexibility” of this weak notion of solution. Their
proofs are simple (see [12]).

Proposition 8.4. Ifu and v are viscosity subsolutions of F(D?u,z) = f(x) in Q then
sup(u, v) is also a viscosity subsolution of this equation in Q2. The same statement holds

for supersolutions, now with respect to inf(u,v).

Proposition 8.5. Let {Fi}r>1 be a sequence of uniformly elliptic operators with el-
lipticity constants ¢y and Cy. Let {ug}r>1 C C(Q) satisfy Fi.(D*uk,z) > fx(z) in the
viscosity sense in (). Assume that Fy, converges uniformly in compact sets of S,, X €2
to F, and that up and f converge uniformly to u and f, respectively, in compact sets
of Q. Then F(D?u,z) > f(z) in the viscosity sense in (.

Next, we present a very important tool in the theory of viscosity solutions: Jensen’s
approximate solutions. They constitute an essential technique to prove existence and
uniqueness results for the Dirichlet problem

F(D*u) = 0 inQ
u = ¢ on 0,

and also to extend the estimates of the previous section to viscosity solutions.
Let « be a continuous function in Q and let H be an open set such that H C Q.
For € > 0, we define the upper e-envelope of u (with respect to H) by

1
u(zg) = sup {u(z) + € — = |z — z|*} for zy € H.
zeH €

Explained in a geometric way, the graph of u® is the envelope of the graphs of the
family {P¢}, .z of concave paraboloids with vertex (z,u(z) + €) and Hessian equal to
—(2/e)I.

It turns out that u® is a good regularization of u when dealing with fully nonlinear
equations. In fact, we have:
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Theorem 8.6. (Jensen)
(a) uc € C(H) and u® | u uniformly in H as € — 0.

(b) Let € > 0 be fired. Then, for almost every xy € H there exists a paraboloid P
(i.e., a polynomial of at most degree 2) such that u(z) = P(z) + o(|z — zo|*) as
T — zy (ie., |z — x| 2|us(z) — P(z)] = 0 as z — x0). In this case, we define
D*uf(xy) = D?P.

(c) Suppose that u is a viscosity subsolution of F(D?u) = 0 in Q and that H; is an
open set such that Hy C H. Then, for € sufficiently small, u¢ is also a viscosity
subsolution of F(D*v) = 0 in Hy. In particular, F(D?u¢(z)) > 0 for a.e. x € H;.

Using convex paraboloids, we can define in a similar way the lower e-envelope u,
of u. We have that u, T u uniformly in H, and that F(D?uc(z)) < 0 a.e. in H; if
F(D?u) < 0 in the viscosity sense in ().

To prove Theorem 8.6, we will use the following properties of u¢.

Lemma 8.7. Let xg,x1 € H. Then
(i) 3z} € H such that u(xo) = u(z}) + € — |z — x0|*/e.
(ii) u(zo) > u(zo) + €.
(iii) |u(zo) — u(z1)| < (3/€) diam(H) |zg — x1].
(iv) 0 <e<ée = u(zo) < uf ().
(v) |zy — zo]? < eoschu.
(vi) 0 < uf(zo) — u(zo) < u(xf) — u(zo) + €.
Proof. (i), (ii), (iv) and (vi) are clear. To show (iii), let z € H and note that
u(zo) > wu(z)+e— %|:1: — o|?
> u(z) +e— 1|3: —z1]* - 1|a:1 —z0]? — g|3: — x|z — 0
€ € €
> u(x)+e— %|:1: — | - %diam(H) |z1 — 20

Taking the supremum over z € H, we conclude (iii).
To prove (v), note that we have

1 * * € *
—la — @o|* = u(25) + € — u(z0) < u(wp) — u(zo),

by (i) and (ii). 0
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To prove Theorem 8.6 we will also need the following result about convex functions.
Roughly speaking, it states that any convex function has second derivatives at almost
every point. Recall that, by definition, a continuous function v is convex in a ball B
whenever v((z + y)/2) < (v(z) + v(y))/2 for any z,y € B.

Theorem 8.8. (Alexandroff, Buselman, Feller) Let v be a convex function in a ball B.
Then, for almost every xo € B there exists a paraboloid P such that

v(z) = P(z) +o(|z — x|*) as z — mp, (21)
i.e., |z — x| ?jv(z) — P(z)| — 0 as = — zo.

For the proof of this result, see Theorem 1 in Section 6.4 of [15]. Now we use it to
give the:

Proof of Theorem 8.6. The assertions in (a) follow easily from Lemma 8.7. To show
(b), for any fixed zy € H we have

1
Py(z) = u(z}) + € — =]z — z}|* < uf(x) Ve e H
€

(by the definition of u¢) and Py(z9) = u(zo) (by (i) in Lemma 8.7). That is, the
paraboloid P, touches uf from below at x( in all H. In particular

2
Aju(zg) > A Po(zo) = 2

for any 2o € H, h > 0 and e € R" (|]e] = 1) such that zy + he € H and zq — he € H.
Here AZu(zg) = h™2{u(zo+he) +u(zo — he) —2u(xo)} denotes a second incremental
quotient of u® at xg.

Thus, the function vé(z) = u®(z) + |z|*/e satisfies AZv¢(zp) > 0 for any such z,
h and e. This implies that v¢ is a convex function in any ball contained in H. By
Theorem 8.8, we deduce that v has second order derivatives a.e. in H (in the sense
of Theorem 8.8). In particular, the same is true for u¢, since u¢(z) = v¢(z) — |z|*/e.

Finally, note that at a point zo where (21) holds, the paraboloid P is uniquely
determined by (21). Hence D*uf(zy) = D?P is a consistent definition.

To prove (c), let o € H; and let P be a paraboloid that touches u® from above
at zo (we are using criterion (c) of Proposition 8.2 to check that F(D?u¢) > 0 in the
viscosity sense). By property (v) of Lemma 8.7 and since zy € H;, we have that
zy € H for e sufficiently small.

Take any = € H sufficiently close to zj, so that +z¢—zj € H. Then, by definition

of uf, we have

1
u(z) < u(zx + xo — ) + E|a:0 —zp? —e
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Therefore, again for z close enough to zj,
1
u(z) < P(z + xo — x) + ;|$0 - $3|2 —e=:Q()

and u(z}) = Q(xF) (since P(zo) = u(xp)). Hence, the paraboloid @ touches u from
above at . Since F(D?u) > 0 in the viscosity sense in (2, we get

0 < F(D*Q) = F(D?P).

We have proved that u¢ is a viscosity subsolution of F(D?v) = 0 in H;. Finally, by
(b) we know that for a.e. zy € H there exists a paraboloid P such that

u(z) = P(z) + o(|z — zo]?) as z — .

Moreover, we have defined D?u¢(zy) = D?P. Fix such a point zy and some § > 0. Then
P(z) + 6|z — x|?/2 touches uf from above at xy. Hence F(D?P + §I) > 0, since u® is
a viscosity subsolution. Letting § — 0, we conclude F(D?u(z,)) = F(D?*P) >0. O

The proof of the C'* estimate (Theorem 7.1) relied on the fact that both u and
uy, = u(-+ he) were classical solutions of F(D?w) = 0 and, hence, the difference u —uy,
solved a linear uniformly elliptic equation.

To extend this estimate to viscosity solutions (and thus to prove the C** regularity
of viscosity solutions of F(D?*u) = 0), note that we have F(D?up) = 0 in the viscosity
sense. The key point is to prove that the difference v — uy solves (in a generalized or
viscosity sense) a linear equation. More precisely, one can prove (see Theorem 5.3 of
[12]) the following.

Theorem 8.9. Let u be a viscosity subsolution of F(D*w) = 0 in Q and v be a viscos-
ity supersolution of F(D*w) = 0 in Q. Then u—v satisfies M (D*(u—v);co/n,Co) >
0 in the viscosity sense in Q, where M™ denotes the extremal Pucci operator (see Sec-
tion 6).

To prove this theorem, one uses the Alexandroff-Bakelman-Pucci method (see The-
orem 1.1) applied to u¢ — v, where u® and v, denote, respectively, the upper and lower
e-envelopes of u and v. By property (c) in Theorem 8.6, F(D?u¢) > 0 and F(D?v,) <0
pointwise almost everywhere. This is the key point to obtain that M™(D?(u¢—wv,)) > 0
in the viscosity sense. Then, letting ¢ — 0 and using the stability of viscosity subsolu-
tions (Proposition 8.5), we obtain M™*(D?(u — v)) > 0 in the viscosity sense (see the
proof of Theorem 5.3 in [12]).

Note also that Theorem 8.9 is trivial when at least one of the functions u and v is
C?; in this case the theorem follows from the definition of viscosity solutions.
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The conclusion of Theorem 8.9 states that M™*(D?*(u — v)) > 0 in the viscosity
sense. In this case we say that u — v € S and we call S the class of viscosity sub-
solutions (see Chapter 2 of [12]). The idea is that we have replaced any particular
linear equation with given ellipticity constants by certain extremal inequalities given
by Pucci’s operators corresponding to these ellipticity constants.

Our previous proof of Theorem 7.1, together with Theorem 8.9, shows the following.
To conclude CH* estimates for viscosity solutions it remains to extend the Krylov-
Safonov theory to functions in the class S. This is explained in Chapters 3 and 4 of
[12]. In this way one finally proves that any viscosity solution of F(D?u) = 0 is C'®
in the interior, where 0 < o < 1 depends only on n, ¢y and Cy (see Corollary 5.7 of
[12]).

Moreover, if F is concave (or convex), then any viscosity solution u is C*® (see
Theorem 6.6 of [12]).

Theorem 8.9 has another important consequence, first proven by Jensen [19]. It

gives the uniqueness of viscosity solution in C(€2) for the Dirichlet problem

{F(D%,) = 0 inQ (2)

u = ¢ on 0€,

for any uniformly elliptic operator F' (not necessarily concave nor convex). Existence
of a viscosity solution for (22) was proved by Ishii [18] using Perron’s method and
Jensen’s uniqueness result. Therefore, using the notion of viscosity solution we have
an existence and uniqueness theory for problem (22), even for nonconcave functionals
F for which C?® estimates are not available.
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