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Introduction

In these notes we describe the Alexandro��Bakelman�Pucci estimate and the Krylov�

Safonov Harnack inequality for solutions of Lu 
 f�x�� where L is a second order

uniformly elliptic operator in nondivergence form

Lu 
 aij�x��iju� bi�x��iu� c�x�u�

with bounded measurable coe�cients in a domain of Rn � These inequalities do not

require any regularity of the coe�cients of L� and this makes them powerful tools in

the study of second order nonlinear elliptic equations� It is the purpose of these notes

to present several of their applications in this �eld�

The �rst topic is the study of the maximum principle for the operator L and its

applications to symmetry properties of positive solutions of semilinear problems�
�u� f�u� 
 � in �

u 
 � on ���

Using the moving planes method� we prove the symmetry result of Gidas� Ni and

Nirenberg ����� in the improved version of Berestycki and Nirenberg ��� which uses the

maximum principle in domains of small measure� In ���� �� the same method is used

to prove symmetry results for some fully nonlinear elliptic equations

F �x� u�Du�D�u� 
 ��

Next� we present a short proof of several estimates and maximum principles �taken

from ��� and ���� for solutions in �narrow� domains� We discuss also recent work of

Berestycki� Ca�arelli and Nirenberg ��� on qualitative properties of positive solutions

in some unbounded domains of cylindrical type�

The second topic that we treat is the regularity theory for solutions of fully nonlinear

elliptic equations� Our presentation is only a �rst and short introduction to this topic�

see ��	� ��� for more detailed expositions� We start giving important examples of fully

nonlinear elliptic equations� Bellman equations in stochastic control theory� Isaacs

equations in di�erential games� the Monge�Amp�ere equation� and the equation of

prescribed Gauss curvature� We prove a C��� estimate for classical solutions of fully

nonlinear equations of the form

F �D�u� 
 ��

The main tool employed here is the C� regularity for solutions of linear equations

Lu 
 � with bounded measurable coe�cients� which is a consequence of the Krylov�

Safonov Harnack inequality�

�



Next� we introduce the notion of viscosity solution of a fully nonlinear elliptic equa�

tion and we give the basic properties of this class of solutions� Finally� we present

Jensen�s approximate solutions ����� They constitute a key tool when proving unique�

ness and regularity for viscosity solutions � a topic that we omit here� We also omit

the important C��� regularity theory of Evans and Krylov for convex fully nonlinear

equations �see ��	� �����

The results presented in these notes are a sample from the vast literature on the

maximum principle� symmetry properties and regularity theory for fully nonlinear

equations� Some of them are fundamental results in these theories� Others have been

selected to illustrate the main techniques used in these �elds of research�

These notes are based on courses given at the  Ecole Doctorale de Math ematiques

et de M ecanique de l�Universit e Paul Sabatier �Toulouse�� and at the CIMPA Interna�

tional School in PDE�s �Temuco� Chile� organized by the Universidad de Chile� The

author would like to thank these institutions for their invitations� He also thanks Ian

Schindler for his valuable help typing and correcting the �rst draft of these notes�

� The Alexandro��Bakelman�Pucci estimate

Throughout these notes� L will denote an elliptic operator in a domain � � R
n � of the

form

Lu 
 aij�x��iju� bi�x��iu� c�x�u

�where summation over repeated indices is understood�� We assume that L is uni�

formly elliptic and that it has bounded measurable coe�cients� That is� we suppose

that there exist constants � � c� � C�� b � � and !b � � such that

c�j�j
� � aij�x��i�j � C�j�j

�

�
P

bi�x�
��

���
� b

jc�x�j � !b�

for all x � � and � � Rn � Hence� the matrix A�x� 
 �aij�x�� �which is assumed to be

symmetric� has all its eigenvalues in the interval �c�� C���

For a given function f � � � R� we consider the linear equation Lu 
 f�x�� It is

called a second order uniformly elliptic equation in nondivergence form with bounded

measurable coe�cients� Under no further assumptions on the coe�cients of L� the

following basic estimate �which we call APB estimate� was proven independently by

Alexandro�� Bakelman and Pucci in the sixties ��� 	� "� 	���

�



Theorem ���� �Alexandro�� Bakelman� Pucci� We assume that � is a bounded do�

main of Rn and that c � � in �� Let d be a constant such that diam��� � d� Let

u � W ��n
loc ��� and f � Ln��� satisfy Lu � f in � and lim supx��� u�x� � �� Then

sup
�

u � C diam��� kfkLn����

where C 
 C�n� c�� bd� is a constant depending only on n� c� and bd�

Here W ��n
loc ��� denotes the Sobolev space of functions that� together with their

second derivatives� belong to Lnloc���� Recall that n is the dimension of the space and

that W ��n
loc ��� � C��� � the space of continuous functions in �� If u � C��� then the

condition lim supx��� u�x� � � means simply that u � � on ���

When Lu � f we say that u is a subsolution of the equation Lu 
 f � If Lu � f

in � but the assumption lim supx��� u�x� � � is not satis�ed� an estimate for sup� u

may be obtained by applying Theorem ��� to u� lim supx��� u
��x�� We have

sup
�

u � lim sup
x���

u��x� � C diam��� kfkLn����

where u� 
 max�u� �� denotes the positive part of u� In what follows we will also

denote u� 
 max��u� ��� so that u 
 u� � u��

Proof of Theorem ����

Step �� By a simple argument� we may further assume c � �� Indeed� we replace �

by any connected component of !� �
 fx � � � u�x� � �g � �� and the operator L

by L� �
 aij�x��ij � bi�x��i �which has no zero order terms�� Then L�u 
 Lu� cu �

Lu � f in !�� since c � �� Note also that lim supx�� �� u�x� 
 ��

Next we make the assumption bi � �� The proof in the general case is slightly more

elaborate� For this� see Chapter � of ���� and our remark below� in Step "� Finally� it is

easy to reduce the proof to the case u � C�����C��� by an approximation argument

�see ������

Hence� from now on� we assume that sup� u � �� u � C���� � C��� and�
Lu 
 aij�x��iju � f�x� in �

u � � on ��

Step 	� Let x� � � be such that

M �
 sup
�

u 
 u�x�� � ��

We de�ne the upper contact set of u by

#u �
 fy � � � u�x� � u�y� �ru�y� 	 �x� y� 
x � �g �

�



It is the set of points y in � such that the tangent hyperplane to the graph of u at y

lies above u in all �� We claim that

BM�d��� � ru�#u� ���

�recall that d satis�es diam��� � d�� To show ���� take any p � R
n with jpj � M�d�

Consider the family of parallel hyperplanes given by

lp�x� 
 p 	 x � a for x � ��

where a � R is any constant� If a is very big then u � lp in �� We let the constant a get

smaller until the graph of lp touches the graph of u for �rst time at some point �possibly

one of many� y � �� Let a� be such value of a� and lp the hyperplane corresponding

to a 
 a�� This argument shows in a geometric way the following obvious fact� There

exists a unique value a� of a� in fact given by the Legendre transform of u

a� 
 sup
x��

fu�x�� p 	 xg�

such that for a 
 a� we have�
u � lp in �

u�y� 
 lp�y� for some y � ��
�	�

Using jpj � M�d we show that necessarily y � �� For this� the idea is that the

hyperplanes lp have constant �slope� smaller than M�d 
 u�x���d � u�x���diam���

and hence they will touch �when we decrease the value of a� the graph of u at the

point �x�� u�x��� before touching it at a point y � ��� Formally� the argument is the

following� Suppose that y � ��� Then u�y� � �� using �	� we have

M 
 u�x�� � lp�x��


 lp�y� � p 	 �x� � y�


 u�y� � p 	 �x� � y�

� p 	 �x� � y� � jpj diam���

� jpjd � M�

a contradiction�

Since y � �� �	� implies that

p 
 rlp�y� 
 ru�y� � y � #u

and

D�u�y� � �

�



�i�e�� D�u�y� is a nonpositive de�nite matrix��

In particular� p � ru�#u� and hence our claim ��� is proved� Considering the

Lebesgue measure of the sets in ���� we deduce

�n�M�d�n � jru�#u�j 


Z
ru�	u�

dp� �"�

where wn 
 jB�j�

Step "� To proceed� we compute the right hand side of �"� using the �change of

variables�

p 
 ru�x� for x � #u�

We use the area formula �see Theorems � and 	 in Section "�" of ������ It states that

if 	 � A � R
n �� R

n is a Lipschitz map� then

Z
Rn

��
�

X
x�A���x�
p

g�x�

��
� dp 


Z
A

jJac 	�x�j g�x� dx

for any integrable function g � A � R� here Jac 	 
 det D	� We apply this formula

with 	 
 ru� A 
 #u and g 
 �� We obtain the inequalityZ
ru�	u�

dp �

Z
	u

det ��D�u�x�� dx� ���

where we have used that jJacru�x�j 
 jdet D�u�x�j 
 det ��D�u�x�� for x � #u�

At this point� we make two remarks� First� when the coe�cients bi are not identi�

cally zero� the proof proceeds by applying the area formula to g�x� �
 !g�ru�x�� 
 !g�p�

for an appropriate !g� instead of g � � as in the case bi � � �see ������

Second� we have used the area formula applied to the map ru� which is not neces�

sarily one�to�one on #u� In an alternative way� ��� could have been obtained using the

classical change of variables formula applied� for any 
 � �� to the map x �� ru�x��
x

�that can be shown to have nonzero Jacobian on #u� and to be one�to�one on #u� and

then letting 
 � �� This alternative argument shows that� in fact� equality holds in

����

Step �� Combining �"� and ���� and using that all the eigenvalues of A�x� 
 �aij�x��

are greater than or equal to c�� we deduce

wn�M�d�n �

Z
	u

det��D�u�x��dx

� ���cn��

Z
	u

det�A�x���D�u�x���dx�

�



We use now a simple fact from linear algebra� If A and B are symmetric matrices with

A � � and B � � then

det�AB� � ftr�AB��ngn

� a generalization of the arithmetic and geometric means inequality� Here tr denotes

the trace�

Note that

trfA�x���D�u�x��g 
 �aij�x��iju


 �Lu � �f�x� � jf�x�j�

We conclude that

wn

�
M

d

	n

�

�
�

nc�

	n Z
	u

jf jn�

and hence

sup
�

u 
 M �
�

nc�w
��n
n

d kfkLn���


 C�n� c�� diam��� kfkLn����

which is the desired inequality�

We now introduce a standard terminology concerning the maximum principle�

De
nition ���� We say that the maximum principle holds for the operator L in � if

u � W ��n
loc ���� sup� u ���

Lu � � in � and lim sup
x���

u�x� � �

imply u � � in ��

Note that� when � is bounded� the condition sup� u �� is automatically satis�ed�

since it is a consequence of the assumptions u � W ��n
loc ��� and lim supx��� u�x� � ��

The following result is a well known su�cient condition for the maximum principle

to hold� It is an immediate consequence of Theorem ����

Corollary ���� If � is bounded and c � � in � then the maximum principle holds for

L in ��

The condition c � � in � is� however� too restrictive for some applications� for

instance when studying symmetry properties of positive solutions of nonlinear prob�

lems �see next section�� Instead� the following maximum principle in domains of small

measure does not make any assumption on the sign of c�x�� and it will be very useful

in the study of symmetry properties�

�



Theorem ���� Assume that � is bounded and diam��� � d for a positive constant d�

Then there exists a constant � � �� depending only on n� c�� b� !b and d� such that the

maximum principle holds for L in � if the measure of �� j�j� satis�es

j�j � ��

In this maximum principle c may change sign� but the measure of j�j is required

to be small depending on various quantities which include the upper bound !b for

kckL����� In fact� the proof will show that the weaker assumption c�x� � !b in �

su�ces� Theorem ��� is a consequence of the ABP estimate that was �rst noted by

Bakelman and later by Varadhan�

Proof of Theorem ���� Let u satisfy Lu � � in � and lim supx��� u�x� � �� Let

c 
 c�� c�� and consider the operator L� 
 aij�x��ij � bi�x��i� Writing Lu � � in the

form

�L� � c��u � �c�u � �c�u��

we may apply the ABP estimate to the operator L� � c� and obtain

sup
�

u � C�n� c�� b� d�kc
�u�kLn���

� C�n� c�� b�!b� d�j�j
��n sup

�
u��

If C�n� c�� b�!b� d�j�j
��n � ��	� we conclude that u � � in ��

In Section � we will prove other su�cient conditions for the maximum principle to

hold� They will improve Theorem ����

The ABP estimate can also be used to prove the following strong maximum principle

for supersolutions in W ��n
loc ��� �see Chapters " and � of ������ Here� we make no

assumption on the sign of c but we assume that u � � in ��

Proposition ���� If u � W ��n
loc ��� satis�es u � � in � and Lu � � in �� then either

u � � or u � � in ��

� Symmetry properties of positive solutions in bounded do�

mains

The goal of this section is to prove the following symmetry result for positive solutions

of semilinear problems� It is taken from ����

�



Theorem ���� �Berestycki�Nirenberg� Let � be any bounded domain of Rn �not nec�

essarily smooth� which is convex in the x� direction and symmetric with respect to the

hyperplane fx� 
 �g� Let u � W ��n
loc ��� � C��� be a solution of the problem�
�


�
�u� f�u� 
 � in �

u � � in �

u 
 � on ���

We assume that f is Lipschitz continuous� Then u is symmetric with respect to x��

i�e�� u�x�� y� 
 u��x�� y� for any �x�� y� � �� Moreover� the partial derivative of u

with respect to x� satis�es

ux� � � for x� � ��

When � is a smooth domain� this symmetry result was already proven in the classi�

cal paper of Gidas� Ni and Nirenberg ���� in ����� Their proof did not apply� however�

to some nonsmooth domains such as cubes� Theorem 	�� answers a�rmatively the

symmetry question in nonsmooth domains� including the case when � is a cube�

An immediate consequence of Theorem 	�� is the radial symmetry of positive solu�

tions when � is a ball� To prove it� one applies Theorem 	�� to all hyperplanes passing

through ��

Corollary ���� �Gidas�Ni�Nirenberg� Let BR 
 fjxj � Rg � R
n be a ball� and u be a

positive solution in C��BR� of

�u� f�u� 
 � in BR� u 
 � on �BR�

If f is Lipschitz then u is radially symmetric �i�e�� u�x� 
 u�jxj�� and ur � � for

� � r 
 jxj � R�

The proof of these symmetry results uses the maximum principle and a method of

Alexandro� called the moving planes method� The proof given in ���� used a version

of the maximum principle � the Hopf boundary lemma � that did not allow some

domains � with corners� We now present the improved method found in ���� It replaces

the use of the Hopf boundary lemma by the maximum principle in domains of small

measure� in this way� the proof applies to nonsmooth domains�

Proof of Theorem 	��� We denote points x � Rn by x 
 �x�� y�� y � R
n�� � It su�ces

to show

u�x�� y� � u�x��� y� if � x� � x�� � x� ���

and

ux� � � if x� � � ���

�



whenever �x�� y� � �� Indeed� letting x�� � �x� we get u�x�� y� � u��x�� y�� The

same result with the coordinate x� changed by �x� gives the symmetry� u�x�� y� 


u��x�� y��

To show ��� and ���� we use the method of moving planes� Let a 
 sup� x�� For

� � � � a� we consider the hyperplane T� and the set $� de�ned by

T� 
 fx� 
 �g

$� 
 fx � � � x� � �g � ��

For x � Rn we denote by

x� 
 �	�� x�� y�

the re%ection of x with respect to T�� We consider the re%ection of $��

$�
� 
 fx� � x � $�g � ��

which is contained in � by the assumptions of the theorem� Hence� the function

w��x� �
 u�x�� u�x�� for x � $�

is well de�ned�

Since the Laplacian is invariant under re%ections� the function x �� u�x�� satis�es

the same semilinear equation �v � f�v� 
 �� Thus� the di�erence w� satis�es the

linear equation

� 
 �w� � f�u�x��� f�u�x���


 �w� � c��x�w��

where

c��x� 

f�u�x��� f�u�x���

u�x�� u�x��
�

Note that �$� has two parts� one contained in T� and the other in ��� Using that

u 
 � on �� and u � � in �� we conclude�
�w� � c��x�w� 
 � in $�

w� � � on �$�� w� 
� ��
���

Moreover� jc�j � !b for some constant !b which we can take to be the Lipschitz constant

of f on ��� sup� u��

To prove ��� and ��� it su�ces to verify

w� � � for any � � ��� a�� ���

	



Indeed� it then follows from the Hopf lemma �see ����� that on T� ��� where w� 
 ��

we have � � �w��x� 
 	ux��

Now� if a�� is small then $� � ��f� � x� � ag� and hence $� has small measure�

In particular� the maximum principle holds for the operator � � c� in $� if a � � is

small �by Theorem ����� We deduce from ��� that w� � � in $�� Now� the strong

maximum principle �Proposition ���� gives that w� � � in $�� We have proved ��� for

a� � small�

Let ���� a� be the largest open interval of parameters for which ��� holds� We want

to show that �� 
 �� We suppose �� � � and we show that it leads to contradiction�

First� by continuity we have w�� � � in $�� and� by the strong maximum principle�

w�� � � in $�� �

Next� let � � � be the constant of Theorem ���� Let K � $�� be a compact set such

that j$�� nKj � ��	� We then have w�� � �
 � � in K for some constant 
� since K

is compact� Hence� w���� � � in K and j$���� nKj � � for 
 � � small enough�

We now apply the maximum principle in $���� nK� We have�
�w���� � c�����x�w���� 
 � in $���� nK

w���� � � on ��$���� nK��

note that ��$���� nK� has one part contained in K� and we have used that w���� � �

in K� Since j$���� n Kj � �� Theorem ��� and Proposition ��� give w���� � � in

$���� n K� Therefore� w���� � � in $����� which contradicts the maximality of the

interval ���� a��

We point out that the problem�
�u� f�u� 
 � in BR � R

n

u 
 � on �BR

���

may admit solutions that change sign and are not radially symmetric� As a simple

example� there exist eigenfunctions of the Laplacian in a ball�

�u� �u 
 � in BR� u 
 � on �BR

which are not radially symmetric� Hence� the condition u � � in � in the previous

theorems is� in general� necessary to conclude symmetry�

Obviously� if one knows that problem ��� has a unique solution u� then u� is neces�

sarily radial� Indeed� the composition u� �R of u� with any rotation is also a solution

of ��� and� if there is uniqueness� it must coincide with u�� Hence u� is radially

symmetric�

The following is a more interesting remark� For some nonlinearities f � the symmetry

result of Gidas�Ni�Nirenberg �Corollary 	�	� may be used to prove that ��� has a unique

�




positive solution� The idea is that� by Corollary 	�	� one knows that any positive

solution of ��� is radial� As a consequence� it su�ces to show uniqueness among

positive radial solutions � an easier task� As an example� this can be carried out to

prove that �
�u� up 
 � in BR� p � ��

u 
 � on �BR

has a unique positive solution �see Section 	�� of ������

Remark ���� One can prove radial symmetry in a very simple way for stable solutions

�not necessarily positive� of ���� We say that a solution u of ��� is stable if the �rst

eigenvalue in BR of the linearized operator ��� f ��u� of ��� at u� de�ned by

���� � f ��u�� � 
 BR� �
 inf
���v�H�

�
���

R
�
fjrvj� � f ��u�v�g dxR

�
v� dx

� ����

is positive�

We claim that any stable solution u of ��� is radially symmetric� Indeed� for any

given couple of indices i 

 j� consider the vector �eld �t 
 xi�xj � xj�xi� which is

everywhere normal to the radial direction �r� De�ning v �
 �tu� we see that v is a

solution of the linearized equation of ����

�v 
 ��xiuxj � xjuxi�


 xi�uxj � 	rxi 	 ruxj � xj�uxi � 	rxj 	 ruxi


 xi��u�xj � xj��u�xi


 �f ��u�fxiuxj � xjuxig 
 �f ��u�v�

Moreover� since u 
 � on �BR and �t is a tangential derivative on �BR� we have that

v 
 � on �BR� Hence v � H�
� �BR�� multiplying ��v�f ��u�v 
 � by v and integrating

by parts� we obtain
R
BR
fjrvj� � f ��u�v�gdx 
 �� Since ���� � f ��u��BR� � � by

assumption� we deduce v � �� From this �and since the indices i 

 j are arbitrary��

we conclude that u is radial�

We refer to ���� �� �� �� and references therein for symmetry results concerning more

general equations� such as fully nonlinear elliptic equations

F �x� u�Du�D�u� 
 ��

and more general domains �for instance� some unbounded domains��

In ��� and ��� a new method was introduced � the sliding method � for equations

in in�nite and �nite cylinders� In Section � we will discuss a more recent result from

��� that uses the moving planes method in in�nite cylinders�

��



� C
� estimate� the Krylov�Safonov Harnack inequality

Let L 
 aij�x��ij�bi�x��i�c�x� be a uniformly elliptic operator in nondivergence form

and with bounded measurable coe�cients as described in the beginning of Section ��

In ����� Krylov and Safonov �	"� 	�� proved the following deep result � a Harnack

inequality for the operator L under no regularity assumptions on its coe�cients� We

will use it extensively throughout these notes� We point out that here c�x� may change

sign�

Theorem ���� �Krylov�Safonov� Let BR be a ball of radius R in Rn � and denote by

B�R the concentric ball of radius 	R� Let u � W ��n�B�R� and f � Ln�B�R� satisfy

u � � in B�R and Lu 
 f in B�R� Then

sup
BR

u � C

�
inf
BR

u�R kfkLn�B�R�

�
�

where C is a constant depending only on n� c�� C�� bR and !bR��

Roughly speaking� the inequality states that� for any nonnegative solution u� the

value of u at one point controls the values of u in any given interior compact set�

The proof of Theorem "��� that we omit� uses two ingredients� the ABP estimate

�Theorem ���� and the Calder on�Zygmund cube decomposition� see ��	� and ���� for

the proof of Theorem "���

An important consequence of the Krylov�Safonov Harnack inequality is the H&older

continuity of solutions of Lu 
 f �

Corollary ���� Let u � W ��n�B�� and f � Ln�B�� satisfy Lu 
 f in B��

�i� Suppose c � �� Then there exists a constant � � � � �� depending only on n� c��

C� and b� such that

oscB���
u � � oscB�

u� kfkLn�B���

where oscBR
u 
 supBR

u� infBR
u denotes the oscillation of u�

�ii� For any c � L��B��� we have that u � C��B���� and

kukC��B����
� C



kukL��B�� � kfkLn�B��

�
�

where � � � � � and C depend only on n� c�� C�� b and !b�

Proof� Let

M� �
 supB�
u� m� �
 infB�

u� o� �
 M� �m��

M��� �
 supB���
u� m��� �
 infB���

u� o��� �
 M��� �m����

��



Theorem "�� applied to u�m� � � in B� and to M� � u � � in B� �here we assume

c � �� gives

M��� �m� � C

�
m��� �m� �

�

	
kfkLn�B��

�

and

M� �m��� � C

�
M� �M��� �

�

	
kfkLn�B��

�
�

Adding these two inequalities� we obtain

o� � o��� � C


o� � o��� � kfkLn�B��

�
and hence

o��� �
C � �

C � �
o� �

C

C � �
kfkLn�B���

which proves �i��

Part �ii� �in the general case c 
� �� follows easily from �i�� with the aid of a simple

lemma of real analysis �see Lemma ��	" and Corollary ��	� of ������

While the Harnack inequality applies only to nonnegative solutions of Lu 
 f � there

are related inequalities that apply to subsolutions and to nonnegative supersolutions�

In fact� the proof of the Harnack inequality may be divided into two parts� the �rst

applies to subsolutions �see Theorem ��	� of ���� and Theorem ����	� of ��	��� The

second part is more delicate to prove� it applies to nonnegative supersolutions and it

is called the weak Harnack inequality� Its statement is the following�

Theorem ���� Let u � W ��n�B�R� and f � Ln�B�R� satisfy u � � in B�R and Lu � f

in B�R� Then �
�

jBRj

Z
BR

u�
	���

� C

�
inf
BR

u�R kfkLn�B�R�

�
�

where 
 � � and C are constants depending only on n� c�� C�� bR and !bR��

This result is Theorem ��		 of ���� and Theorem ������ of ��	�� We will use a

boundary version of Theorem "�" in the next section�

� Maximum principle in �narrow	 domains

In this section we present a maximum principle �Theorem 	�� of ���� that improves the

maximum principle for domains of small measure �Theorem ��� of these notes�� We

��



present a short proof of this new maximum principle following an idea from ���� We

also give an improved version of the ABP estimate �Theorem ��� of ���� that applies

in some unbounded domains�

We start recalling some useful facts about the maximum principle�

�a� Suppose that � is bounded and that there exists a function 	 � W ��n
loc ��� � C���

such that 	 � � in � and L	 � � in �� Then the maximum principle holds for L

in ��

This is a well�known su�cient condition for the maximum principle to hold� see� for

instance� ���� In fact� within the proof of Theorem ��� below� we will encounter the

argument that shows �a��

�b� Assume that aij � C��� and that � is a smooth bounded domain� Berestycki�

Nirenberg and Varadhan ��� introduce the quantity ��� also denoted by ���L����

de�ned as follows�

�� 
 supf� � �	 � � in � and �L� ��	 � � in �g�

�� is called the principal eigenvalue of L in �� They show that the maximum

principle holds for L in � if and only if ���L� �� � �� In particular� it follows

from Corollary ��" that ���L�� �� � �� where L� 
 L� c�x� 
 aij�x��ij � bi�x��i�

They also prove that there always exists a positive eigenfunction associated to

��� That is� there exists 	� � W ��n
loc ��� � C���� 	� � � in � satisfying�

�L� ���	� 
 � in �

	� 
 � on ���

Moreover� 	� is unique up to a multiplicative constant �i�e�� �� is simple��

For all these results� and many others on the maximum principle for operators in

nondivergence form �also in nonsmooth domains�� see ����

We point out that� when the operator L can also be written in divergence form� the

principal eigenvalue �� coincides with the �rst eigenvalue of L de�ned by the usual

variational formulation� For instance� when L 
 �� c�x� then �� coincides with the

variational expression �����

Next� we de�ne a geometric quantity of the domain � that will play a key role in

the rest of this section�

De
nition ���� Let � � R
n be a domain� not necessarily bounded� Given a constant

� � � � �� we de�ne R��� to be the smallest positive constant R such that

jBR�x� n �j � �jBR�x�j 
x � �� ����

We de�ne R��� to be �� if no such radius R exists�

��



Once the constant � � � � � is �xed� the quantity R��� depends only on the

domain �� We claim that

R��� � C�n� ��j�j��n�

for a constant C�n� �� depending only on n and �� Indeed� de�ning R by the relation

�� � ��jBRj 
 j�j �in case j�j � �� we have that R 
 C�n� ��j�j��n and ���� is

satis�ed� since jBR�x� n�j � jBR�x�j � j�j 
 �jBR�x�j� This proves the claim�

Obviously� j�j��n � C�n� diam���� The quantity R��� is therefore a more precise

geometric constant of � than the measure or the diameter of �� There exist domains

with in�nite measure for which the quantity R��� is �nite �or even small�� This is the

case� for example� when � is contained between two parallel hyperplanes� or when �

is contained in� say�

R
n n

�
p�Zn

B�����p�

where Z denotes the integer numbers� See ��� for some other examples� and ��� �� for

a more re�ned version of the quantity R����

The following is a maximum principle in domains �not necessarily bounded� for

which R��� is su�ciently small� Here� no assumption on the sign of c�x� is made� It

is essentially Theorem 	�� of ����

Theorem ���� �Berestycki�Nirenberg�Varadhan� Let � � � � � be a constant� Then�

�i� There exists a constant R�� depending only on n� c�� C�� b� !b and �� such that the

maximum principle holds for L in � if R��� � R��

�ii� Assume that � is a smooth bounded domain and that aij � C���� Consider the

operator L� 
 L� c�x�� Then

���L�� �� �
�

R����

�and in particular ���L�� �� � !� j�j���n�� where � is a positive constant depending

only on n� c�� C�� bR��� and ��

This result is proved in ��� using a variant of the Krylov�Safonov Harnack inequality�

Below we present a short proof of Theorem ��	 following an idea from ��� that uses a

boundary version of the Krylov�Safonov weak Harnack inequality �Theorem "�"��

We will easily deduce Theorem ��	 from the following improved ABP estimate� It

applies in any domain �not necessarily bounded� satisfying R��� ���

��



Theorem ���� ����� Let � � � � � be a constant and let � be a domain such that

R��� � �� We assume that c � � in �� Let u � W ��n
loc ��� and f � Ln��� satisfy

sup� u ��� Lu � f in � and lim supx��� u�x� � �� Then

sup
�

u � C R��� kfkLn���

and

sup
�

u � C R���� kfkL����� ��	�

where C is a constant depending only on n� c�� C�� bR��� and ��

Proof� Considering any connected component �� of the set fx � � � u�x� � �g

and the operator L� 
 L � c�x� �as in Step � of the proof of the ABP estimate�

Theorem ����� it is easy to reduce the problem to the case c � �� u � � in � and�
Lu � f in �

u 
 � on ���

Here it is important to note that R���� � R����

Suppose �rst that � is bounded� Then the supremum of u is achieved� so that

M �
 sup
�

u 
 u�x�� � �

for some x� � �� To simplify notation� we write R �
 R��� and BR �
 BR�x��� We

know �see De�nition ���� that

jBR n �j

jBRj
� �� ��"�

We consider the function

v 
 M � u�

which satis�es � � v � M in �� v�x�� 
 �� v 
 M on �� and Lv 
 �Lu � �f

in �� We extend the function v to be identically M in Rn n�� obtaining in this way a

continuous function� still denoted by v� in all Rn � We also extend f by zero outside ��

Note that the graph of the extended function v may have �corners� on ��� and

hence v may not belong to W ��n�B�R�� since B�R n � 

 	 by ��"�� However� since

� � v � M in � and v 
 M on ��� the extended function v is still a �generalized�

nonnegative supersolution of Lv � �f in Rn � in the sense that it satis�es the weak

Harnack inequality �Theorem "�"�� See Theorem ��	� of ���� for this boundary version

of the weak Harnack inequality� Alternatively� the extended function v satis�es Lv �

�f in Rn in the viscosity sense �see Section �� Proposition �����

��



Now� we conclude easily� Using ��"�� v�x�� 
 � and Theorem "�" applied to v in

B�R� we have

����M �

�
jBR n �j

jBRj

	���

M �

�
�

jBRj

Z
BRn�

v�
	���

�

�
�

jBRj

Z
BR

v�
	���

� C

�
inf
BR

v �R kfkLn�B�R�

�

 CR kfk�B�R	���

where 
 � � and C depend only on n� c�� C� and bR� This proves the desired inequal�

ities�

In case that � is unbounded� the proof is the same with minor changes� We de�ne

M �
 sup� u �recall that M �� by assumption� and we take� for any 
 � �� a point

x� � � such that M � 
 � u�x��� We now have that v�x�� � 
� We proceed as before

and we get the desired estimate by letting 
 � � at the end of the proof�

Finally� we easily deduce the maximum principle of Theorem ��	 from estimate ��	��

Proof of Theorem ��	� To show �i�� we use the same idea as in the proof of the

maximum principle for domains of small measure � Theorem ���� If Lu � � in ��

lim supx��� u�x� � � and sup� u ��� we have

�L� � c��u � �c�u � �c�u��

By estimate ��	� applied to the operator L� � c�� we have

sup
�

u � C R���� kc�u�kL����

� C !bR���� sup
�

u�

where C 
 C�n� c�� C�� bR���� ��� If C!bR���� � C!b�R��� � ��	 we conclude that

u � � in �� Here the dependence of C on bR��� may be replaced by dependence only

on b� since R��� � R� and we can take R� � ��

To prove �ii�� we know �see the beginning of this section� that �� 
 ���L�� �� � �

and that there exists 	� � � in � such that�
L�	� 
 ���	� in �

	� 
 � on ���

Applying estimate ��	� to this problem� we obtain

sup
�

	� � C R���� �� sup
�

	�

with C 
 C�n� c�� C�� bR���� ��� We conclude �� � �R������

��




 Positive solutions in some unbounded domains

In this section we discuss some questions concerning a symmetry result in unbounded

domains of cylindrical type� recently proved in ���� We consider domains of the form

� 
 R
n�j � ��

where � � R
j is a smooth bounded domain� We denote the points in � by �x� y� 


�x�� � � � � xn�j� y�� � � � � yj� � �� We consider the semilinear problem�
�

�

�u� f�u� 
 � in �

u 
 � on ��

u � � in ��

����

and we assume that u � C���
loc ��� for some � � � � �� and that f is globally Lipschitz�

No assumption is made on the behavior of the solution u near in�nity�

Note that� when j 
 n� �� � is a cylinder whose �n� ��'dimensional cross section

is bounded� If j 
 � then � is the domain contained between two parallel hyperplanes�

The symmetry result in ��� is the following�

Theorem ���� �Berestycki�Ca�arelli�Nirenberg� Assume that � is convex in the y�
direction and that it is symmetric with respect to the hyperplane fy� 
 �g� Suppose

that j � 	� or that j 
 � and f��� � �� Then� any solution u of ���� is symmetric in

y�� and uy� � � for y� � ��

Therefore� the solution u satis�es u�x� y�� y�� � � � � yj� 
 u�x��y�� y�� � � � � yj�� As in

Section 	� this yields the radial symmetry of u when � is a ball� That is� we have�

Corollary ���� Suppose that � 
 fjyj � Rg � R
j is a ball� Assume also that j � 	�

or that j 
 � and f��� � �� Then u is radially symmetric in y �i�e�� u�x� y� 
 u�x� jyj���

and u	 � � for � � � 
 jyj � R�

Theorem ��� is proved using the moving planes method �see Section 	�� We do not

present its entire proof but� following ���� we show in detail the preliminary results on

the behavior of u near in�nity �and on the maximum principle� needed to start the

moving planes method� By �starting the moving planes method� we mean �using the

notation of the proof of Theorem 	�� with x� replaced by y�� to verify ��� for a � �

small enough�

The �rst result concerns the growth of u at in�nity� Note that ���� may have

solutions that grow exponentially at in�nity� For example� the function u�x�� y�� 


ex� cos y� is positive and harmonic in � 
 R � ����	� ��	� and vanishes on ��� The

�rst result of ��� states that� in fact� any solution of ���� grows at most at an exponential

��



rate� Here� the condition u � � in � is important �see ��� for a changing sign solution

that grows faster than any exponential��

Proposition ���� If u is a solution of ���� then there exist positive constants � and

C such that

u�x� y� � Ce�jxj in ��

The main tool in the proof of this result is a new and useful boundary Harnack

inequality found in ���� It is an extension up to the boundary of the Krylov�Safonov

Harnack inequality� Recall that another boundary version of the Harnack inequality

was also very useful in Section �� Also� we point out that very similar �in their

statement but not in their proof(� interior and boundary Harnack inequalities hold

for operators in divergence form� !Mu 
 �xi�aij�x��xju�� with bounded measurable

coe�cients� this is the DeGiorgi�Nash�Moser theory �see Chapter � of ������

Here we consider an elliptic operator Mu 
 aij�x��iju with bounded coe�cients�

satisfying the uniform ellipticity condition of Section � with constants c� and C�� We

assume that aij are continuous in � �this will merely be a qualitative assumption since

the estimates will not depend on the modulus of continuity of the aij��

Theorem ���� �Berestycki�Ca�arelli�Nirenberg� Let � be any domain of Rn and let

$ � �� be a smooth open subset of ��� Suppose that u � W ��p
loc �� � $�� p � n� u � �

in �� u 
 � on $� and

jMuj � A�jruj� u� �� in �� ����

for some constants A and � � �� Let K � � be a compact subset of �� and let

G � � � $ be a compact subset of � � $� Then

sup
G

u � Cfinf
K
u� �g�

where C is a constant depending only on �� $� K� G� c�� C� and A�

For the proof of Theorem ���� see ���� Using it� we easily deduce Proposition ��"�

Proof of Proposition ��"� We have that

j�uj 
 jf�u�j � jf�u�� f���j� jf���j

� Au� jf���j 
 A�u� ��

for � �
 jf���j�A� where A is the Lipschitz constant of f � Hence ���� is satis�ed with

M 
 �� We �x a point y� � �� Applying Theorem ��� with $ 
 fjxj � 	g � ���

G 
 fjxj � �g � � and K 
 f��� y��g� we obtain

u�x� y� � � � Cfu��� y�� � �g for �x� y� � fjxj � �g � ��

�	



for some constant C� We �x any direction e� in R
n�j � je�j 
 �� Applying the pre�

vious inequality with u replaced by u�x � e�� y� �note that � is invariant by such a

translation�� we have

u�x� y� � � � Cfu�e�� y�� � �g for �x� y� � fjx� e�j � �g � ��

for the same constant C�

Putting both inequalities together� we obtain

u�x� y� � � � C�fu��� y�� � �g for �x� y� � fjx� e�j � �g � ��

It is now easy to deduce� by induction� that

u�x� y� � � � Cm��fu��� y�� � �g for �x� y� � fjx�me�j � �g � ��

This inequality yields at most exponential growth in the direction e�� Since e� is

arbitrary� we obtain the conclusion�

To start the moving planes method for problem ����� we consider a 
 sup
 y��

�� 
 fy � � � y� � �g� $� 
 R
n�j � �� � �� and w��x� y� 
 u�x� y� � u�x� y��

where y� is the re%ection of y in the plane fy� 
 �g� The function w� satis�es

�w� � c��x� y�w� 
 � in $� and w� � � on �$�� To start the method we need a

maximum principle in cylinders $� with section �� of small measure� Such a maximum

principle has been proved in the previous section for bounded functions w� since� using

the notation of that section� R�$�� is small if j��j is small� However� we cannot apply

here such maximum principle since the function w� may be unbounded� in fact� we

know that it may grow exponentially�

The starting point for the moving planes method is accomplished with the following

maximum principle for subsolutions with at most exponential growth in �cylinders�

with cross section of small measure� it is Theorem ��� of ����

Theorem ���� Let � 
 R
n�j � �� where � � R

j is a smooth bounded domain� Let

w � W ��n
loc ��� � C��� �here w is not necessarily bounded� satisfy�

�w � c�x� y�w � � in �

w � � on ���

with c � !b� and

w � Ce�jxj in �

for some positive constants !b� � and C� Then there exists a constant � � �� depending

only on n� j� !b and �� such that

j�j � �

�




implies w � � in ��

Proof� The function w satis�es

w � Ce�
��jx�j�


�jxn�j j�

for some �� � �� Since � is smooth� we can take a domain !�� such that � � !��

with measure arbitrarily close to j�j� Since j!�j � j�j � � is small� we know that the

principal eigenvalue of �y in !� is large� Indeed� by Theorem ��	 �ii�� we have

�� �
 ����y� !�� �
!� �j�

j!�j��j
�

!� �j�

	j�j��j
�

!� �j�

	���j
�

Hence� we can choose � 
 ��n� j�!b� �� � � su�ciently small such that �� � ������n �

j� � !b�

Let � be a constant such that

� � �� and ���n� j� � !b� �� � ��

Let 	� be the principal eigenfunction of �y in !� �see Section ����
�

�

�y	��y� 
 ���	� in !�

	� 
 � on �!�

	� � � in !��

We consider the function

g�x� y� 
 	��y� cosh��x�� � � � cosh��xn�j��

It satis�es g � � in � �since � � !�� and

�� � c�x� y��g 
 f���n� j� � c� ��gg

� f���n� j� � !b� ��gg � � in �

�compare this with condition �a� mentioned in the beginning of Section ��� To prove

w � �� we consider the function

z �

w

g
�

Using the classical maximum principle for z� we show that z � � and hence w � ��

Indeed� we have g�rz 
 grw � wrg� and hence g��z � 	grg 	 rz 
 div�g�rz� 


g�w � w�g � �cgw � w�g 
 �g��� � c�g�z� Therefore� z satis�es�
�

�

�z � 	g��rg 	 rz � g����� � c�g�z � � in �

z � � on ��

lim supjxj�� z�x� y� � ��

��



where we have used that � � �� to deduce the last inequality�

Note that the zero order coe�cient� g�����c�g� is negative in �� We then conclude�

by the classical maximum principle� that z � � in � �and hence w � � in ��� Indeed�

if z was positive somewhere� it would achieve its supremum at an interior point � a

contradiction with the elliptic inequality satis�ed by z�

To start the moving planes method� we apply Theorem ��� to $� 
 R
n�j ��� when

a � � is small enough� Note that �� has corners� however� the proof of Theorem ���

still applies to $� since �� has an 
�neighborhood with small measure�

To continue moving the plane until � reaches �� a delicate analysis is needed since

$� is not compact �see ����� It is here where the condition f��� � �� if j 
 �� enters�

� Fully nonlinear equations� de�nitions and examples

We consider equations of the form

F �D�u� x� 
 f�x��

where x belongs to a bounded domain � of Rn � D�u denotes the Hessian of the function

u � � �� R� and F �M�x� is a real valued function de�ned on Sn��� Here Sn denotes

the space of real n� n symmetric matrices�

We assume that F and f are continuous in x� and that F is a uniformly elliptic

operator� that is�

De
nition ���� We say that F is uniformly elliptic if there exist two constants �called

the ellipticity constants� � � c� � C� such that

c�kNk � F �M �N� x�� F �M�x� � C�kNk

for any x � � and any pair M � N of symmetric matrices with N � �� Here� N � �

means that N is nonnegative de�nite� and kNk denotes the largest eigenvalue of N

�i�e�� the spectral radius or �L�� L��'norm of N��

We recall that any M � Sn can be uniquely decomposed as M 
 M��M�� where

M� � �� M� � � and M�M� 
 �� Using this� it is easy to check that F is uniformly

elliptic if and only if

F �M� �M�x� � F �M�� x� � C�kM
�k � c�kM

�k

for any x � �� M� � Sn and M � Sn�

In particular� any uniformly elliptic operator F is a monotone increasing and Lip�

schitz continuous function of M � Sn� Here we consider the usual order in Sn� i�e��

M� �M� if M� �M� � ��

��



Suppose now that F is of class C�� We extend F to the space of all real n � n

matrices� for instance by F �A� x� 
 F ��A � At��	� x�� Then F is a function of n� n

real variables aij� and of x � �� We consider the �rst derivative of F with respect to

aij and we denote it by Fij� i�e��

Fij�A� x� 

�F

�aij
�A� x��

It is clear that if M and N are symmetric then DF �M�x� 	N 
 Fij�M�x�Nij does not

depend on the previous extension of F �since this is a directional derivative of F in a

direction given by a symmetric matrix��

It is easy to verify that if F is uniformly elliptic� with ellipticity constants c� and

C�� then

c�j�j
� � Fij�M�x��i�j � C�j�j

� 
�M�x� �� � Sn � �� R
n � ����

On the other hand� if ���� is satis�ed then F is uniformly elliptic �as in De�nition ����

with ellipticity constants c� and nC��

For a uniformly elliptic functional F �not necessarily of class C��� we say that F is

concave �respectively� convex� if F is a concave �resp�� convex� function of M � Sn�

i�e�� F ��M� �M���	� x� � fF �M�� x� � F �M�� x�g�	 �resp�� �� for any M�� M� � Sn
and any x � ��

The following are important examples of fully nonlinear elliptic equations�

�� Pucci�s equations� For any �xed constants � � c� � C� and for M � Sn� we de�ne

M��M� 
M��M � c�� C�� 
 c�
X
ei��

ei � C�

X
ei��

ei

and

M��M� 
M��M � c�� C�� 
 C�

X
ei��

ei � c�
X
ei��

ei�

where ei 
 ei�M� are the eigenvalues of M � Now let A 
 �aij� be a symmetric matrix

with all its eigenvalues in �c�� C��� i�e�� such that c�j�j
� � aij�i�j � C�j�j

� for any

� � Rn � We say in this case that A � Ac��C�
� Consider the linear functional LA on Sn

de�ned by

LAM 
 aijMij 
 tr�AM� for M � Sn�

where tr denotes the trace� Alternatively� we may consider LA acting on functions�

LAu 
 LA�D
�u� 
 aij�iju�

��



Using that M 
 ODOt� where O is an orthogonal matrix and D is diagonal with

diagonal elements equal to the eigenvalues ei of M � it is easy to verify that

M��M� 
 inf
A�Ac��C�

LAM

and

M��M� 
 sup
A�Ac��C�

LAM�

Using these expressions� we easily deduce that M� and M� are uniformly elliptic

operators with ellipticity constants c� and nC�� Moreover� M� is concave �since it

is the in�mum of linear functionals� and M� is convex� see Lemma 	��� of ��	��

These expressions also show that M� and M� are extremal with respect to all linear

operators with �xed ellipticity constants c� and C�� They are called Pucci�s extremal

operators�

The corresponding fully nonlinear equations are

M��D�u� 
 f�x� and M��D�u� 
 f�x��

	� Bellman equations� These are the equations for the optimal cost in a stochastic

control problem� They are of the form

F �D�u� x� �
 inf
��A

fL�u�x�� f��x�g 
 ��

where A is any set� f� is a real function in �� and L�u 
 a�ij�x��iju is� for each

� � A� a uniformly elliptic operator with bounded measurable coe�cients and with

given ellipticity constants c� and C�� It is easy to check that the Bellman operator is

uniformly elliptic and concave�

Note that if all a�ij and f� are constant functions then the corresponding Bellman

equation is of the form F �D�u� 
 ��

"� Isaacs equations� These equations arise in the theory of di�erential games� They

are of the form

F �D�u� x� �
 sup

�B

inf
��A

fL�
u�x�� f�
�x�g 
 ��

where L�
 is an arbitrary family of elliptic operators �with �xed ellipticity constants�

as in the previous example� Isaacs equations are still uniformly elliptic� but no longer

concave nor convex�

�� The Monge�Amp�ere equation� This equation is

detD�u 
 f�x�� ����

��



The functional in consideration is F �M� 
 detM � Hence Fij�M� is the cofactor of the

i� j'entry Mij of M � Thus Fij 
 �detM�M ij �by Cramer�s rule� where M ij are the

entries of the inverse of M �in case it exists�� It follows that ���� is elliptic only for

positive de�nite matrices M � equivalently� ���� is elliptic on the set of strictly convex

functions u� Note that� for a strictly convex solution u of ���� to exist� we must have

f positive�

In this case� we write ���� in the form

G�D�u� �
 log detD�u 
 log f�x��

We have that Gij�M� 
 M ij� HenceX
r

GirMrs 
 �is

and X
r

Gir�klMrs �Gik �sl 
 ��

where Gir�kl denote the second partial derivatives of G� We deduce that

Gij�kl �M ikM jl 

X
r�s

Gir�klMrsM
sj �

X
s

Gik �slM
sj 
 ��

and thus Gij�kl 
 �M ikM jl� We obtain

Gij�kl�M�NijNkl � � 
M�N � Sn�

and hence that G�M� 
 log detM is a concave operator in the cone of positive de�nite

matrices�

Even that the Monge�Amp�ere equation is not uniformly elliptic in all Sn� many of

the methods for concave uniformly elliptic operators may be adapted to equation ����

when f � ��

�� The equation of prescribed Gauss curvature� Given a function K�x� � � in �� we

look for a function u � C���� such that K�x� is the Gauss curvature of the graph of

u at the point �x� u�x��� We recall that the Gauss curvature is the product of all the

principal curvatures� It follows that u satis�es

F �D�u�Du� x� �
 detD�u�K�x��� � jDuj���n����� 
 ��

This is an elliptic operator on the set of strictly convex functions u� Here� F depends

also on Du�

To simplify our exposition we limit ourselves to the case F 
 F �D�u� x�� but the

results presented below can be easily generalized to the case F �D�u�Du� x� �see ������

For more details and references on these equations� see ���� �	��

��




 C��� estimate for classical solutions of F �D�u� � �

For a solution of a second order elliptic equation one expects� in general� to control

the second derivatives of the solution by the oscillation of the solution itself� More

precisely� the following C��� and W ��p interior �a priori� estimates hold� Let u be a

solution of a linear uniformly elliptic equation of the form

aij�x��iju 
 f�x� in B� � R
n �

Then we have�

�a� Schauder�s estimates� if aij and f belong to C��B��� for some � � � � �� then

u � C����B���� and kukC����B����
� C�kukL��B�� � kfkC��B��

�� where C depends

on the ellipticity constants and the C��B���norm of aij� see Chapter � of �����

�b� Calder�on�Zygmund estimates� if aij � C�B�� and f � Lp�B��� for some � �

p � �� then u � W ��p�B���� and kukW ��p�B���� � C�kukL��B�� � kfkLp�B����

where C depends on the ellipticity constants and the modulus of continuity of

the coe�cients aij� see Chapter � of �����

These statements should be understood as regularity results for appropriate linear

small perturbations of the Laplacian� Indeed� these estimates are proven by regarding

the equation aij�x��iju 
 f�x� as

aij�x���iju 
 �aij�x��� aij�x�� �iju� f�x��

One then applies to this equation the corresponding estimates for the constant coe��

cients operator aij�x���ij �that one can think of as the Laplacian�� observing that the

factor aij�x�� � aij�x� is small �locally around x�� in some appropriate norm� due to

the regularity assumptions made on aij� Thus� the key point is to prove C��� and W ��p

estimates for Poisson�s equation �u 
 f�x��

The goal is to extend these regularity theories to fully nonlinear elliptic equations

F �D�u� x� 
 f�x�� As we will explain in more detail below� this can be accomplished

for any uniformly elliptic operator F �M�x� which is concave �or convex� in M �

The previous discussion shows that one should start considering the case of equa�

tions with constant �coe�cients� F �D�u� 
 f�x� �here� we think of F �D�u� as being

equal to F �D�u�x�� x�� for a �xed x��� In fact� the key ideas already appear by con�

sidering the simpler equation

F �D�u� 
 ��

In this section we prove C��� estimates �for some � � � � �� for any uniformly

elliptic equation of the form F �D�u� 
 �� here no concavity or convexity assumption

��



on F is needed� The tool that we use is the Krylov�Safonov Harnack inequality and

its corollary on H&older continuity of solutions of elliptic equations in nondivergence

form with measurable coe�cients �see Section "��

Indeed� suppose that u � C��B�� satis�es F �D�u� 
 �� with F � C�� Di�erentiate

this equation with respect to a direction xk� Writing uk 
 �ku� we have

Fij�D
�u�x�� �ijuk 
 � in B��

This can be regarded as a linear equation Luk 
 � for the function uk� where L 


aij�x��ij and aij�x� 
 Fij�D
�u�x��� By ����� we know that L is uniformly elliptic�

Note that a regularity hypothesis on the coe�cients aij�x� would mean to make a

regularity assumption on the second derivatives of u � that we need to avoid� The

key point is that the Krylov�Safonov theory makes no assumption on the regularity

of aij� Hence� from Corollary "�	 �ii� applied to the equation Luk 
 �� we obtain

kukkC��B����
� CkukkL��B��� where � � � � � and C depend only on n� c� and C��

Thus� we have the C��� estimate for u

kukC����B����
� CkukC��B��

� ����

This �a priori� estimate may be improved in the following way�

Theorem ���� Let F be uniformly elliptic �see De�nition ���� and assume that F �

C�� Let u � C��B�� be a solution of F �D�u� 
 � in B�� Then there exist constants

� � � � � and C� depending only on n� c� and C�� such that

kukC����B����
� CfkukL��B�� � jF ���jg�

This result may be obtained from a version of ���� involving more re�ned �in fact�

weighted� H&older norms and from an interpolation inequality �see ������

Here we present a simple proof of Theorem ��� found in ����� It uses the technique of

increments and� of course� the Krylov�Safonov theory� It may be adapted to viscosity

solutions and also to the case when F is not C� �see ���� �	��� Note that it is interesting

to cover nondi�erentiable functionals F � in order to include Pucci�s� Bellman�s and

Isaacs� equations �note that these operators� presented in the previous section� are not

di�erentiable in general��

Proof of Theorem ���� Clearly we have

�F ��� 
 F �D�u�x��� F ���


 �F �tD�u�x����t
� 


�Z �

�

Fij�tD
�u�x�� dt

�
�iju�x�


� aij�x� �iju�x��

��



Note that aij are uniformly elliptic� The Krylov�Safonov theory� Corollary "�	 �ii��

yields

kukC��B����
� CfkukL��B�� � jF ���jg 
� CK� ����

where � � � � � and C �as well as all other constants C in the proof� depend only on

n� c� and C�� The constant � will be the same throughout all the proof� To simplify

notation� we have denoted kukL��B�� � jF ���j by K�

We �x a direction e � Rn � jej 
 �� and consider the function uh�x� 
 u�x� he� for

h � � small enough� We have that both u and uh satisfy the same nonlinear equation

F �D�u� 
 � 
 F �D�uh�� and hence the di�erence uh � u satis�es a linear equation�

Indeed�

� 
 �F ���� t�D�u�x� � tD�uh�x���
�
t
�




�Z �

�

Fij���� t�D�u�x� � tD�uh�x�� dt

�
�ij�uh � u��x�


� !aij�x��ij�uh � u��x��

Hence� !aij�x��ij ��uh�u��h�� 
 �� Using Corollary "�	 �ii� again �now rescaled� and

after a covering argument to apply it in B��� � B���� we deduce

kh���uh � u�kC��B����
� Ckh���uh � u�kL��B����

� CkukC��B����

� CK

for h small enough� by ����� This C��B���� estimate for h���uh � u� �uniform in h�

implies

kukC���B����
� CK

with the aid of an easy lemma of real analysis � Lemma "�� of ���� or Lemma ��� of

��	��

The same argument applied now to h����uh� u� �which also solves !aij�x��ij��uh�

u��h��� 
 �� gives

kh����uh � u�kC��B����
� Ckh����uh � u�kL��B����

� CkukC���B����
� CK

uniformly in h� We deduce a C�� estimate for u�

Iterating this procedure a �nite number of times �which depends only on n� c� and

C��� we arrive at kukC��B��
� CK for some � 
 ��n� c�� C�� � �� Applying the same

��



argument to h���uh � u�� we obtain a C����B���� estimate for u in terms of K� This

inequality� applied in a family of balls �of su�ciently small radius� that cover B����

leads to the desired C����B���� estimate�

Remark ���� A perturbation method due to Ca�arelli ���� �see also Chapter � of

��	�� extends the C��� estimate of Theorem ��� to equations F �D�u� x� 
 f�x� under

appropriate dependence of F and f in x �and without any concavity hypothesis on

F �	� x���

Remark ���� When the operator F is concave or convex� Evans ���� and Krylov

�	�� 	�� 		� have shown in ���	 that classical solutions of F �D�u� 
 � satisfy the C���

estimate

kukC����B����
� C fkukL��B�� � jF ���jg�

where � � � � � and C depend only on n� c� and C� �see ��	��� Recall that Pucci�s

equations are concave �or convex�� Bellman�s equations are concave� and the Monge�

Amp�ere operator is log�concave�

The proof of this C��� estimate is based on a delicate application of the Krylov�

Safonov weak Harnack inequality to C�ukk� where ukk denote the pure second deriva�

tives of u� Note that� di�erentiating F �D�u� 
 � twice with respect to xk� we have

� 
 Fij�D
�u�x���ijukk � Fij�rs�D

�u�x����ijuk���rsuk�

� Fij�D
�u�x���ijukk

�by the concavity of F � and hence ukk are subsolutions of a linear equation�

In ����� Ca�arelli ���� generalized the Calder on�Zygmund and Schauder theories to

the context of fully nonlinear equations F �D�u� x� 
 f�x�� Under the assumption of

concavity of F and appropriate hypothesis on the dependence of F in x �see Chapters �

and � of ��	��� he proved the following� If f � Lp with n � p � �� then u � W ��p in

the interior and there is a W ��p estimate� If f � C�� with � � � � � small enough

depending on the ellipticity constants� then u � C��� in the interior� The proofs also

apply to viscosity solutions and to nondi�erentiable functionals�

� Viscosity solutions and Jensen�s approximate solutions

In ���" Crandall and Lions ��"� developed a theory of weak solutions �so called viscos�

ity solutions� for nonlinear partial di�erential equations� They are very useful when

proving existence of solutions� For fully nonlinear equations� these weak solutions take

the place that energy �or H�� solutions have in the divergence form theory�

�	



De
nition ���� Let u be a continuous function in �� We say that u is a viscosity

subsolution of F �D�u� x� 
 f�x� in � �or that u satis�es F �D�u� x� � f�x� in the

viscosity sense in �� if the following condition holds� whenever x� � �� 	 � C����

and u� 	 has a local maximum at x�� then

F �D�	�x��� x�� � f�x���

The de�nition of viscosity supersolution is analogous� replacing �local maximum� by

�local minimum� and the inequality � by �� We say that u is a viscosity solution

when it is both a viscosity subsolution and supersolution�

It is useful to think of this de�nition in the following way�

Proposition ���� The following are equivalent�

�a� u is a viscosity subsolution of F �D�u� x� 
 f�x� in ��

�b� Whenever x� � �� A is an open neighborhood of x�� 	 � C��A� and�
u � 	 in A

u�x�� 
 	�x���
�	��

then F �D�	�x��� x�� � f�x���

�c� Same property as �b�� with 		 � C��A�
 replaced by 		 is a paraboloid
 �i�e�� a

polynomial of at most degree 	��

Proof� The proofs �a� 
� �b� and �b� 
� �c� are trivial� To prove �c� 
� �a��

let 	 � C���� be such that u� 	 has a local maximum at x� � �� For any 
 � �� we

consider the paraboloid

P��x� 
 u�x�� �D	�x�� 	 �x� x�� �
�

	
�x� x��

tD�	�x���x� x�� �



	
jx� x�j

��

Then u�x�� 
 P��x�� and u � P� in an open neighborhood of x�� Since we assume �c��

we have F �D�	�x�� � 
I� x�� � f�x��� where I denotes the identity matrix� Letting


 � �� we conclude F �D�	�x��� x�� � f�x�� since F �M�x� is a Lipschitz function of

M �see the remarks after De�nition �����

We say that 	 touches u from above at x� whenever there exists an open neighbor�

hood A of x� such that �	�� holds�

The idea in the de�nition of viscosity solution is to take the maximum principle

itself as de�nition of solution� That is� the de�nition of viscosity solution requires the

maximum principle to hold whenever u � C��� is �tested� against C���� subsolutions

and supersolutions�

�




Recall that a classical solution u of F �D�u� x� 
 f�x� in � is a C���� function

u that satis�es this equation pointwise� The following result states that for C����

functions the classical and the viscosity notions of solution coincide� Its simple proof

is similar to the previous one�

Proposition ���� Assume that u � C����� Then u is a viscosity subsolution �resp��

solution� of F �D�u� x� 
 f�x� in � if and only if F �D�u�x�� x� � f�x� �resp��

F �D�u�x�� x� 
 f�x�� for any x � ��

The next two results are very useful when trying to prove existence or estimates for

viscosity solutions� They show the �%exibility� of this weak notion of solution� Their

proofs are simple �see ��	���

Proposition ���� If u and v are viscosity subsolutions of F �D�u� x� 
 f�x� in � then

sup�u� v� is also a viscosity subsolution of this equation in �� The same statement holds

for supersolutions� now with respect to inf�u� v��

Proposition ���� Let fFkgk�� be a sequence of uniformly elliptic operators with el�

lipticity constants c� and C�� Let fukgk�� � C��� satisfy Fk�D
�uk� x� � fk�x� in the

viscosity sense in �� Assume that Fk converges uniformly in compact sets of Sn � �

to F � and that uk and fk converge uniformly to u and f � respectively� in compact sets

of �� Then F �D�u� x� � f�x� in the viscosity sense in ��

Next� we present a very important tool in the theory of viscosity solutions� Jensen�s

approximate solutions� They constitute an essential technique to prove existence and

uniqueness results for the Dirichlet problem�
F �D�u� 
 � in �

u 
 � on ���

and also to extend the estimates of the previous section to viscosity solutions�

Let u be a continuous function in � and let H be an open set such that H � ��

For 
 � �� we de�ne the upper 
�envelope of u �with respect to H� by

u��x�� 
 sup
x�H

fu�x� � 
�
�



jx� x�j

�g for x� � H�

Explained in a geometric way� the graph of u� is the envelope of the graphs of the

family fP �
xgx�H of concave paraboloids with vertex �x� u�x� � 
� and Hessian equal to

��	�
�I�

It turns out that u� is a good regularization of u when dealing with fully nonlinear

equations� In fact� we have�

��



Theorem ���� �Jensen�

�a� u� � C�H� and u� � u uniformly in H as 
� ��

�b� Let 
 � � be �xed� Then� for almost every x� � H there exists a paraboloid P

�i�e�� a polynomial of at most degree 	� such that u��x� 
 P �x� � o�jx� x�j
�� as

x � x� �i�e�� jx � x�j
��ju��x� � P �x�j � � as x � x��� In this case� we de�ne

D�u��x�� 
 D�P �

�c� Suppose that u is a viscosity subsolution of F �D�u� 
 � in � and that H� is an

open set such that H� � H� Then� for 
 su�ciently small� u� is also a viscosity

subsolution of F �D�v� 
 � in H�� In particular� F �D�u��x�� � � for a�e� x � H��

Using convex paraboloids� we can de�ne in a similar way the lower 
�envelope u�
of u� We have that u� � u uniformly in H� and that F �D�u��x�� � � a�e� in H� if

F �D�u� � � in the viscosity sense in ��

To prove Theorem ���� we will use the following properties of u��

Lemma ���� Let x�� x� � H� Then

�i� �x�� � H such that u��x�� 
 u�x��� � 
� jx�� � x�j
��
�

�ii� u��x�� � u�x�� � 
�

�iii� ju��x��� u��x��j � �"�
� diam�H� jx� � x�j�

�iv� � � 
 � 
� 
� u��x�� � u�
�

�x���

�v� jx�� � x�j
� � 
 oscHu�

�vi� � � u��x��� u�x�� � u�x���� u�x�� � 
�

Proof� �i�� �ii�� �iv� and �vi� are clear� To show �iii�� let x � H and note that

u��x�� � u�x� � 
�
�



jx� x�j

�

� u�x� � 
�
�



jx� x�j

� �
�



jx� � x�j

� �
	



jx� x�jjx� � x�j

� u�x� � 
�
�



jx� x�j

� �
"



diam�H� jx� � x�j�

Taking the supremum over x � H� we conclude �iii��

To prove �v�� note that we have

�



jx�� � x�j

� 
 u�x��� � 
� u��x�� � u�x���� u�x���

by �i� and �ii��

��



To prove Theorem ��� we will also need the following result about convex functions�

Roughly speaking� it states that any convex function has second derivatives at almost

every point� Recall that� by de�nition� a continuous function v is convex in a ball B

whenever v��x� y��	� � �v�x� � v�y���	 for any x� y � B�

Theorem ���� �Alexandro�� Buselman� Feller� Let v be a convex function in a ball B�

Then� for almost every x� � B there exists a paraboloid P such that

v�x� 
 P �x� � o�jx� x�j
�� as x� x�� �	��

i�e�� jx� x�j
��jv�x�� P �x�j � � as x� x��

For the proof of this result� see Theorem � in Section ��� of ����� Now we use it to

give the�

Proof of Theorem ���� The assertions in �a� follow easily from Lemma ���� To show

�b�� for any �xed x� � H we have

P��x� �
 u�x��� � 
�
�



jx� x��j

� � u��x� 
x � H

�by the de�nition of u�� and P��x�� 
 u��x�� �by �i� in Lemma ����� That is� the

paraboloid P� touches u� from below at x� in all H� In particular

��
hu

��x�� � ��
hP��x�� 
 �

	



�

for any x� � H� h � � and e � Rn �jej 
 �� such that x� � he � H and x� � he � H�

Here ��
hu

��x�� 
 h��fu��x��he��u��x��he��	u��x��g denotes a second incremental

quotient of u� at x��

Thus� the function v��x� 
 u��x� � jxj��
 satis�es ��
hv

��x�� � � for any such x�

h and e� This implies that v� is a convex function in any ball contained in H� By

Theorem ���� we deduce that v� has second order derivatives a�e� in H �in the sense

of Theorem ����� In particular� the same is true for u�� since u��x� 
 v��x�� jxj��
�

Finally� note that at a point x� where �	�� holds� the paraboloid P is uniquely

determined by �	��� Hence D�u��x�� 
 D�P is a consistent de�nition�

To prove �c�� let x� � H� and let P be a paraboloid that touches u� from above

at x� �we are using criterion �c� of Proposition ��	 to check that F �D�u�� � � in the

viscosity sense�� By property �v� of Lemma ��� and since x� � H�� we have that

x�� � H for 
 su�ciently small�

Take any x � H su�ciently close to x��� so that x�x��x
�
� � H� Then� by de�nition

of u�� we have

u�x� � u��x � x� � x��� �
�



jx� � x��j

� � 
�

��



Therefore� again for x close enough to x���

u�x� � P �x� x� � x��� �
�



jx� � x��j

� � 
 
� Q�x�

and u�x��� 
 Q�x��� �since P �x�� 
 u��x���� Hence� the paraboloid Q touches u from

above at x��� Since F �D�u� � � in the viscosity sense in �� we get

� � F �D�Q� 
 F �D�P ��

We have proved that u� is a viscosity subsolution of F �D�v� 
 � in H�� Finally� by

�b� we know that for a�e� x� � H there exists a paraboloid P such that

u��x� 
 P �x� � o�jx� x�j
�� as x� x��

Moreover� we have de�nedD�u��x�� 
 D�P � Fix such a point x� and some � � �� Then

P �x� � �jx� x�j
��	 touches u� from above at x�� Hence F �D�P � �I� � �� since u� is

a viscosity subsolution� Letting � � �� we conclude F �D�u��x��� 
 F �D�P � � ��

The proof of the C��� estimate �Theorem ���� relied on the fact that both u and

uh 
 u�	�he� were classical solutions of F �D�w� 
 � and� hence� the di�erence u�uh
solved a linear uniformly elliptic equation�

To extend this estimate to viscosity solutions �and thus to prove the C��� regularity

of viscosity solutions of F �D�u� 
 ��� note that we have F �D�uh� 
 � in the viscosity

sense� The key point is to prove that the di�erence u� uh solves �in a generalized or

viscosity sense� a linear equation� More precisely� one can prove �see Theorem ��" of

��	�� the following�

Theorem ���� Let u be a viscosity subsolution of F �D�w� 
 � in � and v be a viscos�

ity supersolution of F �D�w� 
 � in �� Then u�v satis�esM��D��u�v�� c��n� C�� �

� in the viscosity sense in �� where M� denotes the extremal Pucci operator �see Sec�

tion ���

To prove this theorem� one uses the Alexandro��Bakelman�Pucci method �see The�

orem ���� applied to u��v�� where u
� and v� denote� respectively� the upper and lower


�envelopes of u and v� By property �c� in Theorem ���� F �D�u�� � � and F �D�v�� � �

pointwise almost everywhere� This is the key point to obtain thatM��D��u��v��� � �

in the viscosity sense� Then� letting 
� � and using the stability of viscosity subsolu�

tions �Proposition ����� we obtain M��D��u� v�� � � in the viscosity sense �see the

proof of Theorem ��" in ��	���

Note also that Theorem ��� is trivial when at least one of the functions u and v is

C�� in this case the theorem follows from the de�nition of viscosity solutions�

��



The conclusion of Theorem ��� states that M��D��u � v�� � � in the viscosity

sense� In this case we say that u � v � S and we call S the class of viscosity sub�

solutions �see Chapter 	 of ��	��� The idea is that we have replaced any particular

linear equation with given ellipticity constants by certain extremal inequalities given

by Pucci�s operators corresponding to these ellipticity constants�

Our previous proof of Theorem ���� together with Theorem ���� shows the following�

To conclude C��� estimates for viscosity solutions it remains to extend the Krylov�

Safonov theory to functions in the class S� This is explained in Chapters " and � of

��	�� In this way one �nally proves that any viscosity solution of F �D�u� 
 � is C���

in the interior� where � � � � � depends only on n� c� and C� �see Corollary ��� of

��	���

Moreover� if F is concave �or convex�� then any viscosity solution u is C��� �see

Theorem ��� of ��	���

Theorem ��� has another important consequence� �rst proven by Jensen ����� It

gives the uniqueness of viscosity solution in C��� for the Dirichlet problem�
F �D�u� 
 � in �

u 
 � on ���
�		�

for any uniformly elliptic operator F �not necessarily concave nor convex�� Existence

of a viscosity solution for �		� was proved by Ishii ���� using Perron�s method and

Jensen�s uniqueness result� Therefore� using the notion of viscosity solution we have

an existence and uniqueness theory for problem �		�� even for nonconcave functionals

F for which C��� estimates are not available�
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