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Abstract. Given an arbitrary convex cone of Rn, we find a geometric class of homogeneous
weights for which balls centered at the origin and intersected with the cone are minimizers of the
weighted isoperimetric problem in the convex cone. This leads to isoperimetric inequalities with
the optimal constant that were unknown even for a sector of the plane. Our result applies to all non-
negative homogeneous weights in Rn satisfying a concavity condition in the cone. The condition is
equivalent to a natural curvature-dimension bound and also to the nonnegativity of a Bakry–Émery
Ricci tensor. Even though our weights are nonradial, balls are still minimizers of the weighted
isoperimetric problem. A particular important case is that of monomial weights. Our proof uses the
ABP method applied to an appropriate linear Neumann problem.

We also study the anisotropic isoperimetric problem in convex cones for the same class of
weights. We prove that the Wulff shape (intersected with the cone) minimizes the anisotropic
weighted perimeter under the weighted volume constraint.

As a particular case of our results, we give new proofs of two classical results: the Wulff in-
equality and the isoperimetric inequality in convex cones of Lions and Pacella.

Keywords. Isoperimetric inequalities, densities, convex cones, homogeneous weights, Wulff
shapes, ABP method

1. Introduction and results

In this paper we study isoperimetric problems with weights, also called densities. Given
a weight w (that is, a positive function w), one wants to characterize minimizers of the
weighted perimeter

∫
∂E
w among those sets E having weighted volume

∫
E
w equal to

a given constant. A set solving the problem, if it exists, is called an isoperimetric set
or simply a minimizer. This question, and the associated isoperimetric inequalities with
weights, have attracted much attention recently: see for example [43], [36], [17], [23],
and [41].
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e-mail: joaquim.serra@math.ethz.ch

Mathematics Subject Classification (2010): Primary 28A75; Secondary 35A23, 49Q20



2 Xavier Cabré et al.

The solution to the isoperimetric problem in Rn with a weight w is known only for
very few weights, even in the case n = 2. For example, in Rn with the Gaussian weight
w(x) = e−|x|

2
all the minimizers are half-spaces [3, 16], and with w(x) = e|x|

2
all the

minimizers are balls centered at the origin [46]. Instead, mixed Euclidean-Gaussian den-
sities lead to minimizers that have a more intricate structure of revolution [26]. The radial
homogeneous weight |x|α has been considered very recently. In the plane (n = 2), mini-
mizers for this homogeneous weight depend on the values of α. On the one hand, Carroll–
Jacob–Quinn–Walters [13] showed that when α < −2 all minimizers are R2

\ Br(0),
r > 0, and that when −2 ≤ α < 0 minimizers do not exist. On the other hand, when
α > 0 Dahlberg–Dubbs–Newkirk–Tran [19] proved that all minimizers are circles pass-
ing through the origin (in particular, not centered at the origin). Note that this result shows
that even radial homogeneous weights may lead to nonradial minimizers. However, if the
weight is radial and log-convex, G. Chambers [14] has established that balls in Rn cen-
tered at the origin are isoperimetric regions for any given volume. This was known as the
Log-Convex Density Conjecture; see the blog of Frank Morgan [42].

Weighted isoperimetric inequalities in cones have also been considered. In these re-
sults, the perimeter of E is taken relative to the cone, that is, not counting the part of ∂E
that lies on the boundary of the cone. In [20] Dı́az–Harman–Howe–Thompson consider
again the radial homogeneous weight w(x) = |x|α , with α > 0, but now in an open con-
vex cone 6 of angle β in the plane R2. Among other things, they prove that there exists
β0 ∈ (0, π) such that for β < β0 all minimizers are Br(0)∩6, r > 0, while these circular
sets about the origin are not minimizers for β > β0.

Also related to the weighted isoperimetric problem in cones is a recent result by
Brock–Chiaccio–Mercaldo [4]. Assume that6 is any cone in Rn with vertex at the origin,
and consider the isoperimetric problem in 6 with any weight w. Then, for BR(0) ∩6 to
be an isoperimetric set for every R > 0, a necessary condition is that w admits the factor-
ization

w(x) = A(r)B(2), (1.1)

where r = |x| and 2 = x/r . Our main result—Theorem 1.3 below—gives a sufficient
condition on B(2) whenever 6 is convex and A(r) = rα , α ≥ 0, to guarantee that
BR(0) ∩6 are isoperimetric sets.

Our result states that Euclidean balls centered at the origin solve the isoperimetric
problem in any open convex cone 6 of Rn (with vertex at the origin) for a certain class
of nonradial weights. More precisely, our result applies to all nonnegative continuous
weights w which are positively homogeneous of degree α ≥ 0 and such that w1/α is
concave in the cone 6 in case α > 0. That is, using the previous notation, w = rαB(2)
must be continuous in6 and rB1/α(2)must be concave in6. This condition is equivalent
to a natural curvature-dimension bound and also to the nonnegativity of a Bakry–Émery
Ricci tensor (see Remark 1.4). Our result establishes weighted isoperimetric inequalities
with an optimal constant that were unknown even for a sector of the plane. Note that even
though our weights are nonradial, still balls are minimizers of the weighted isoperimetric
problem. As we will see, a particular important case is that of monomial weights. Our
results were announced in the note [10].
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We also solve weighted anisotropic isoperimetric problems in cones for the same class
of weights. In these problems, the perimeter of a domain � is given by∫

∂�∩6

H(ν(x))w(x) dS,

where ν(x) is the unit outward normal to ∂� at x, and H is a positive convex function,
positively homogeneous of degree one.

In the isotropic case, taking the first variation of weighted perimeter (see [46]), one
sees that the (generalized) mean curvature of ∂� with the density w is

Hw = Heucl +
1
n

∂νw

w
, (1.2)

where ν is is the unit outward normal to ∂� and Heucl is the Euclidean mean curvature
of ∂�. It follows that balls centered at the origin intersected with the cone have constant
mean curvature whenever the weight is of the form (1.1). However, as we have seen
in several examples presented above, it is far from being true that the solution of the
isoperimetric problem for all the weights satisfying (1.1) are balls centered at the origin
intersected with the cone. Our result provides a large class of nonradial weights for which,
remarkably, Euclidean balls centered at the origin (intersected with the cone) solve the
isoperimetric problem.

In our isoperimetric inequality with a homogeneous weight w of degree α in a convex
cone 6 ⊂ Rn, balls intersected with the cone are minimizers. As a consequence, this
yields the following Sobolev inequality in which we can compute its optimal constant (as
well as the shape of the extremizers). IfD = n+α, 1 ≤ p < D, and p∗ = pD/(D − p),
then (∫

6

|u|p∗w(x) dx

)1/p∗
≤ Cw,p,n

(∫
6

|∇u|pw(x) dx

)1/p

(1.3)

for all smooth functions u with compact support in Rn—in particular, not necessarily
vanishing on ∂6. This is a consequence of our isoperimetric inequality (Theorem 1.3)
and a weighted radial rearrangement of Talenti [47], since these two results yield the
radial symmetry of extremizers.

When the homogeneous weight is a monomial

w(x) = x
A1
1 · · · x

An
n in 6 = {x ∈ Rn : xi > 0 whenever Ai > 0} (1.4)

(here Ai ≥ 0), this type of Sobolev inequalities appeared naturally in our recent papers
[8, 9] on reaction-diffusion problems in domains with symmetry of double revolution.
These weighted Sobolev inequalities have interesting applications to the regularity of
local minimizers in such domains.

In Section 2 we give a list of weights w to which our result applies. Some concrete
examples are (1.4),

w(x) = dist(x, ∂6)α in 6 ⊂ Rn

where 6 is any open convex cone and α ≥ 0 (see example (ii) in Section 2), and

xaybzc, (axr + byr + czr)α/r , or
xyz

xy + yz+ zx
in 6 = (0,∞)3,
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where a, b, c are nonnegative numbers, r ∈ (0, 1] or r < 0, and α > 0 (see examples
(iv), (v), and (vii), respectively).

The proof of our main result follows the ideas introduced by the first author [6, 7] in a
new proof of the classical isoperimetric inequality (the classical inequality corresponds to
the weight w ≡ 1 and the cone6 = Rn). Our proof consists in applying the ABP method
to an appropriate linear Neumann problem involving the operator

w−1div(w∇u) = 1u+
∇w

w
· ∇u,

where w is the weight.
The Alexandroff–Bakelman–Pucci (ABP) method is a classical tool in the theory of

second order elliptic equations of nondivergence form. This method was used by those
authors in the sixties to establish an L∞ bound for solutions to equations with bounded
measurable coefficients. In Section 3 we explain in more detail the method and its relation
to the proof of our main result.

1.1. The setting

The classical isoperimetric problem in convex cones was solved by P.-L. Lions and
F. Pacella [33] in 1990. Their result states that among all sets E with fixed volume in-
side an open convex cone 6, the balls centered at the vertex of the cone minimize the
perimeter relative to the cone (recall that the part of the boundary of E that lies on the
boundary of the cone is not counted).

Throughout the paper,6 is an open convex cone in Rn. Recall that given a measurable
set E ⊂ Rn, the relative perimeter of E in 6 is defined by

P(E;6) := sup
{∫

E

div σ dx : σ ∈ C1
c (6,R

n), |σ | ≤ 1
}
.

When E is smooth enough,

P(E;6) =

∫
∂E∩6

dS.

The isoperimetric inequality in cones of Lions and Pacella reads as follows.

Theorem 1.1 ([33]). Let 6 be an open convex cone in Rn with vertex at 0, and B1 :=

B1(0). Then
P(E;6)

|E ∩6|(n−1)/n ≥
P(B1;6)

|B1 ∩6|(n−1)/n (1.5)

for every measurable set E ⊂ Rn with |E ∩6| <∞.

The assumption of convexity of the cone cannot be removed. In the same paper [33] the
authors give simple examples of nonconvex cones for which inequality (1.5) does not
hold. The idea is that for cones having two disconnected components, (1.5) is false since
it requires less perimeter to concentrate all the volume in one of the two subcones. A con-
nected (but nonconvex) counterexample is then obtained by joining the two components
by a conic open thin set.
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The proof of Theorem 1.1 given in [33] is based on the Brunn–Minkowski inequality

|A+ B|1/n ≥ |A|1/n + |B|1/n,

valid for all nonempty measurable setsA and B of Rn for whichA+B is also measurable;
see [29] for more information on this inequality. As a particular case of our main result,
in this paper we provide a totally different proof of Theorem 1.1. This new proof is based
on the ABP method.

Theorem 1.1 can be deduced from a degenerate case of the classical Wulff inequality
stated in Theorem 1.2 below. This is because the convex setB1∩6 is the Wulff shape (1.8)
associated to some appropriate anisotropic perimeter. As explained below in Section 3,
this idea is crucial in the proof of our main result. This fact has also been used recently by
Figalli and Indrei [22] to prove a quantitative isoperimetric inequality in convex cones.
From it, one deduces that balls centered at the origin are the unique minimizers in (1.5)
up to translations that leave invariant the cone (if they exist). This had been established
in [33] in the particular case when ∂6 \ {0} is smooth (and later in [45], which also
classified stable hypersurfaces in smooth cones).

The following is the notion of anisotropic perimeter. We say that a functionH defined
in Rn is a gauge when

H is nonnegative, positively homogeneous of degree one, and convex. (1.6)

Somewhere in the paper we may require a function to be homogeneous; by this we always
mean positively homogeneous.

Any norm is a gauge, but a gauge may vanish on some unit vectors. We need to allow
this case since it will occur in our new proof of Theorem 1.1 —which builds from the
cone 6 a gauge that is not a norm.

For a smooth set E ⊂ Rn, the anisotropic perimeter associated to the gauge H is
given by

PH (E) =

∫
∂E

H(ν(x)) dS, (1.7)

where ν(x) is the unit outward normal at x ∈ ∂E.
The Wulff shape associated to H is defined as

W = {x ∈ Rn : x · ν < H(ν) for all ν ∈ Sn−1
}. (1.8)

We will always assume that W 6= ∅. Note that W is an open set with 0 ∈ W . To visual-
ize W , it is useful to note that it is the intersection of the half-spaces {x · ν < H(ν)} over
all ν ∈ Sn−1. In particular, W is a convex set.

For general measurable sets E ⊂ Rn, the anisotropic perimeter is defined as

PH (E) := sup
{∫

E

div σ dx : σ ∈ C1
c (R

n,Rn), σ (x) ∈ W for x ∈ Rn
}
.

When E is smooth enough, this definition coincides with (1.7).
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From the definition (1.8) of the Wulff shape it follows that, given an open convex set
W ⊂ Rn with 0 ∈ W , there is a unique gaugeH such thatW is the Wulff shape associated
to H . Indeed, H is uniquely defined by

H(x) = inf
{
t ∈ R : W ⊂ {z ∈ Rn : z · x < t}

}
. (1.9)

Note that, for each direction ν ∈ Sn−1, {x · ν = H(ν)} is a supporting hyperplane
of W . Thus, for almost every point x on ∂W—those for which the outer normal ν(x)
exists—we have

x · ν(x) = H(ν(x)) a.e. on ∂W. (1.10)

Note also that since W is convex, it is a Lipschitz domain. Hence, we can use the diver-
gence theorem to obtain the formula

PH (W) =

∫
∂W

H(ν(x)) dS =

∫
∂W

x · ν(x) dS =

∫
W

div(x) dx = n|W |, (1.11)

relating the volume and the anisotropic perimeter of W .
When H is positive on Sn−1, it is natural to introduce its dual gauge H ◦, defined by

H ◦(z) = sup
H(y)≤1

z · y.

Then the last condition on σ in the definition of PH (·) is equivalent to H ◦(σ ) ≤ 1 in Rn,
and the Wulff shape can be written as W = {H ◦ < 1}.

Some typical examples of gauges are

H(x) = ‖x‖p =
(
|x1|

p
+ · · · + |xn|

p
)1/p

, 1 ≤ p ≤ ∞.

Then W = {x ∈ Rn : ‖x‖p′ < 1}, where p′ is such that 1/p + 1/p′ = 1.
The following is the celebrated Wulff inequality.

Theorem 1.2 ([53, 48, 49]). Let H be a gauge in Rn which is positive on Sn−1, and let
W be its associated Wulff shape. Then, for every measurable set E ⊂ Rn with |E| <∞,

PH (E)

|E|(n−1)/n ≥
PH (W)

|W |(n−1)/n . (1.12)

Moreover, equality holds if and only if E = aW + b for some a > 0 and b ∈ Rn, up to a
set of measure zero.

This result was first stated without proof by Wulff [53] in 1901. His work was followed by
Dinghas [21], who studied the problem within the class of convex polyhedra. He used the
Brunn–Minkowski inequality. Some years later, Taylor [48, 49] finally proved Theorem
1.2 for sets of finite perimeter; see [50, 25, 38] for more information on this topic. As a
particular case of our technique, in this paper we provide a new proof of Theorem 1.2. It
is based on the ABP method applied to a linear Neumann problem. It was Robert McCann
(in a personal communication around 2000) who pointed out that the first author’s proof
of the classical isoperimetric inequality also worked in the anisotropic case.
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1.2. Results

The main result of the present paper, Theorem 1.3 below, is a weighted isoperimetric
inequality which extends the two previous classical inequalities (Theorems 1.1 and 1.2).
In particular, in Section 4 we will give a new proof of the classical Wulff theorem (for
smooth domains) using the ABP method.

Before stating our main result, let us define the weighted anisotropic perimeter relative
to an open cone 6. The weights w that we consider will always be continuous functions
in 6, positive and locally Lipschitz in 6, and homogeneous of degree α ≥ 0. Given
a gauge H in Rn and a weight w, we define (following [2]) the weighted anisotropic
perimeter relative to the cone 6 by

Pw,H (E;6) := sup
{∫

E∩6

div(σw) dx : σ ∈ Xw,6, σ (x) ∈ W for x ∈ 6
}
,

where E ⊂ Rn is any measurable set with finite Lebesgue measure and

Xw,6 := {σ ∈ (L
∞(6))n : div(σw) ∈ L∞(6) and σw = 0 on ∂6}.

It is not difficult to see that

Pw,H (E;6) =

∫
∂E∩6

H(ν(x))w(x) dS (1.13)

whenever E is smooth enough.
The definition of Pw,H is the same as the one given in [2]. In their notation, we are

taking dµ = wχ6 dx and Xw,6 = Xµ.
Moreover, when H is the Euclidean norm we denote

Pw(E;6) := Pw,‖·‖2(E;6).

When w ≡ 1 in 6 and H is the Euclidean norm we recover the definition of P(E;6)
(see [2]).

Given a measurable set F ⊂ 6, we denote by w(F) the weighted volume of F ,

w(F) :=

∫
F

w dx.

We also denote
D = n+ α.

Note that the Wulff shape W is independent of the weight w. Next we use the fact that
if ν is the unit outward normal to W ∩ 6, then x · ν(x) = H(ν(x)) a.e. on ∂W ∩ 6,
x · ν(x) = 0 a.e. on W ∩ ∂6, and x · ∇w(x) = αw(x) in 6. This last equality follows
from the degree α homogeneity of w. Then, with a similar argument to (1.11), we find

Pw,H (W ;6) =

∫
∂W∩6

H(ν(x))w(x) dS =

∫
∂W∩6

x · ν(x)w(x) dS

=

∫
∂(W∩6)

x · ν(x)w(x) dS =

∫
W∩6

div(xw(x)) dx

=

∫
W∩6

{nw(x)+ x · ∇w(x)} dx = Dw(W ∩6). (1.14)
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Here—and in our main result that follows—for all quantities to make sense we need to
assume thatW ∩6 6= ∅. Recall that bothW and 6 are open convex sets, butW ∩6 = ∅
may happen. This occurs for instance if H |Sn−1∩6 ≡ 0. On the other hand, if H > 0 on
all Sn−1 then W ∩6 6= ∅.

The following is our main result.

Theorem 1.3. Let H be a gauge in Rn, i.e., a function satisfying (1.6), andW its associ-
ated Wulff shape defined by (1.8). Let 6 be an open convex cone in Rn with vertex at the
origin and such thatW ∩6 6= ∅. Let w be a continuous function in 6, positive in 6, and
positively homogeneous of degree α ≥ 0. Assume in addition that w1/α is concave in 6
in case α > 0. Then, for each measurable set E ⊂ Rn with w(E ∩6) <∞,

Pw,H (E;6)

w(E ∩6)(D−1)/D ≥
Pw,H (W ;6)

w(W ∩6)(D−1)/D , (1.15)

where D = n+ α.

Remark 1.4. Our key hypothesis thatw1/α is a concave function is equivalent to a natural
curvature-dimension bound (in fact, to the nonnegativity of the Bakry–Émery Ricci tensor
in dimension D = n+ α). This was suggested to us by Cédric Villani, and has also been
noticed by Cañete and Rosales [12, Lemma 3.9]. More precisely, we see the cone6 ⊂ Rn
as a Riemannian manifold of dimension n equipped with a reference measure w(x) dx.
We are also given a “dimension” D = n + α. Consider the Bakry–Émery Ricci tensor,
defined by

RicD,w = Ric−∇2 logw −
1

D − n
∇ logw ⊗∇ logw.

Now, our assumption of w1/α being concave is equivalent to

RicD,w ≥ 0. (1.16)

Indeed, since Ric ≡ 0 and D − n = α, (1.16) reads

−∇
2 logw1/α

−∇ logw1/α
⊗∇ logw1/α

≥ 0,

which is the same condition asw1/α being concave. Condition (1.16) is called a curvature-
dimension bound; in the terminology of [52] we say that CD(0,D) is satisfied by6 ⊂ Rn
with the reference measure w(x) dx.

Note that the shape of the minimizer is W ∩ 6, and that W depends only on H and not
on the weight w or the cone 6. In particular, in the isotropic case H = ‖ · ‖2 we find
the following noteworthy fact. Even though the weights we consider are not radial (unless
w ≡ 1), Euclidean balls centered at the origin (intersected with the cone) still minimize
this isoperimetric quotient. Recall that Euclidean balls centered at 0 have constant gener-
alized mean curvature when the weight is homogeneous, as pointed out in (1.2), and thus
they are candidates to minimize perimeter for a given volume. Our proof establishes that
this is indeed true if in addition w1/α is concave.

Note also that we allow w to vanish somewhere (or everywhere) on ∂6.
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Equality in (1.15) holds whenever E ∩6 = rW ∩6, where r is any positive number.
However, in this paper we do not prove that W ∩ 6 is the unique minimizer of (1.15).
The reason is that our proof involves the solution of an elliptic equation and, due to an
important regularity issue, we need to approximate the given set E by smooth sets. In a
future work with E. Cinti and A. Pratelli we will refine the analysis in the proof of the
present article and obtain a quantitative version of our isoperimetric inequality in cones.
In particular, we will deduce uniqueness of minimizers (up to sets of measure zero). The
quantitative version will be proved by using the techniques of the present paper (the ABP
method applied to a linear Neumann problem) together with the ideas of Figalli–Maggi–
Pratelli [24].

In the isotropic case, a recent result of Cañete and Rosales [12] deals with the same
class of weights as ours. They allow not only positive homogeneities α > 0, but also
negative ones α ≤ −(n − 1). They prove that if a smooth, compact, and orientable hy-
persurface in a smooth convex cone is stable for weighted perimeter (under variations
preserving weighted volume), then it must be a sphere centered at the vertex of the cone.
In [12] the stability of such spheres is proved for α ≤ −(n − 1), but not for α > 0.
However, as pointed out in [12], when α > 0 their result combined with ours shows that
spheres centered at the vertex are the unique minimizers among smooth hypersurfaces.

Theorem 1.3 contains the classical isoperimetric inequality, its version for convex
cones, and the classical Wulff inequality. Indeed, taking w ≡ 1, 6 = Rn, and H =
‖ · ‖2, we recover the classical isoperimetric inequality with optimal constant. Still taking
w ≡ 1 and H = ‖ · ‖2, but now letting 6 be any open convex cone of Rn, we have the
isoperimetric inequality in convex cones of Lions and Pacella (Theorem 1.1). Moreover,
if we take w ≡ 1 and 6 = Rn but let H be some other gauge, we obtain the Wulff
inequality (Theorem 1.2).

Remark 1.5. Let w be a homogeneous weight of degree α, and consider the isotropic
isoperimetric problem in a cone 6 ⊂ Rn. Then, by the proofs of [46, Proposition 3.6 and
Lemma 3.8] the set B1(0) ∩6 is stable if and only if∫

Sn−1∩6
|∇Sn−1u|

2w dS ≥ (n− 1+ α)
∫
Sn−1∩6

|u|2w dS (1.17)

for all functions u ∈ C∞c (Sn−1
∩6) satisfying∫

Sn−1∩6
uw dS = 0. (1.18)

Stability being a necessary condition for minimality, from Theorem 1.3 we deduce that if
α > 0 and 6 is convex, and w1/α is concave in 6, then (1.17) holds.

In Theorem 1.3 we assume thatw is homogeneous of degree α. In our proof, this assump-
tion is essential in order that the paraboloid in (3.4) solves the PDE in (3.2), as explained
in Section 3. Due to the homogeneity of w, the exponentD = n+ α can be found just by
a scaling argument in our inequality (1.15). Note that this exponent D has a dimension
flavor if one compares (1.15) with (1.5) or (1.12). Also, it is the volume growth expo-
nent in the sense that w(Br(0) ∩ 6) = CrD for all r > 0. The interpretation of D as
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a dimension is more clear in the case w(x) = x
A1
1 · · · x

An
n , Ai > 0, and 6 = (0,∞)n.

The Sobolev and isoperimetric inequalities with such monomial weights were studied by
the first two authors [8, 9]. When all the exponents Ai are positive integers, the weighted
isoperimetric inequality in Rn is equivalent to the (unweighted) isoperimetric inequality
in RD with D = n+ A1 + · · · + An (see [9] for more details).

An immediate consequence of Theorem 1.3 is the following weighted isoperimetric
inequality in Rn for symmetric sets and even weights. It follows from our main result by
taking 6 = (0,∞)n.

Corollary 1.6. Let w be a nonnegative continuous function in Rn, even with respect to
each variable, homogeneous of degree α > 0, and such that w1/α is concave in (0,∞)n.
LetE ⊂ Rn be any measurable set, symmetric with respect to each coordinate hyperplane
{xi = 0}, and with |E| <∞. Then

Pw(E;Rn)
|E|(D−1)/D ≥

Pw(B1;Rn)
|B1|(D−1)/D , (1.19)

where D = n+ α and B1 is the unit ball in Rn.

The symmetry assumption in Corollary 1.6 is satisfied in some applications arising in
nonlinear problems, such as the one in [8]. Without this assumption, isoperimetric sets in
(1.19) may not be balls. For example, for the monomial weight w(x) = |x1|

A1 · · · |xn|
An

in Rn with all Ai positive, B1 ∩ (0,∞)n is an isoperimetric set, while the whole ball Br
having the same weighted volume as B1∩ (0,∞)n is not an isoperimetric set (since it has
larger perimeter).

We know only of few results where nonradial weights lead to radial minimizers. The
first one is the isoperimetric inequality by Maderna–Salsa [34] in the upper half-plane R2

+

with the weight xα2 , α > 0. To establish their isoperimetric inequality, they first proved
the existence of a minimizer for the perimeter functional under constraint of fixed area,
then computed the first variation of this functional, and finally solved the resulting ODE
to find all minimizers. The second result is due to Brock–Chiacchio–Mercaldo [4] and
extends the one in [34] by including the weights xαn exp(c|x|2) in Rn+, with α ≥ 0 and
c ≥ 0. In both papers it is proved that half-balls centered at the origin are minimizers of
the isoperimetric quotient with these weights. Another one, of course, is our isoperimetric
inequality with monomial weights [9] explained above. At the same time as ourselves, but
using totally different methods, Brock, Chiacchio, and Mercaldo [5] proved an isoperi-
metric inequality in 6 = {x1 > 0, . . . , xn > 0} with the weight xA1

1 · · · x
An
n exp(c|x|2)

with Ai ≥ 0 and c ≥ 0.
In all these results, although the weight xA1

1 · · · x
An
n is not radial, it has a very spe-

cial structure. Indeed, when all A1, . . . , An are nonnegative integers, the isoperimet-
ric problem with the weight xA1

1 · · · x
An
n is equivalent to the isoperimetric problem in

Rn+A1+···+An for sets that have symmetry of revolution with respect to the first A1 + 1
variables, the next A2 + 1 variables, . . . , and so on until the last An + 1 variables. By
this observation, the fact that half-balls centered at the origin are minimizers in Rn+ with
the weight xA1

1 · · · x
An
n or xA1

1 · · · x
An
n exp(c|x|2), for c ≥ 0 and Ai nonnegative integers,
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follows from the isoperimetric inequality in Rn+A1+···+An with the weight exp(c|x|2),
c ≥ 0 (which is a radial weight). Thus, it was reasonable to expect that the same result
for noninteger exponents A1, . . . , An would also hold—as it does.

After announcing our result and proof in [10], Emanuel Milman showed us a nice
geometric construction that yields the particular case when α is a nonnegative integer in
our weighted inequality of Theorem 1.3. Using this construction, the weighted inequality
in a convex cone is obtained as a limit case of the unweighted Lions-Pacella inequality
in a narrow cone of Rn+α . We reproduce it in Remark 5.3—see also the blog of Frank
Morgan [42].

More recently, after posting the preprint version of the present paper, Milman and
Rotem [39] have found an alternative proof of our isoperimetric inequalitiy, Theorem 1.3
above ([39] mentions that the same has been found independenly by Nguyen). Their proof
uses the Borell–Brascamp–Lieb extension of the the Brunn–Minkowski inequality.

1.3. Sobolev inequalities with best constant

Our result leads to new weighted Sobolev inequalities in convex cones of Rn. In addi-
tion, we can compute their optimal constants, as well as the shape of the extremizers.
Indeed, given any smooth function u with compact support in Rn (we do not assume that
u vanishes on ∂6), one uses the coarea formula and Theorem 1.3 applied to each level
set of u. This establishes the Sobolev inequality (1.3) for p = 1. The constant Cw,1,n
obtained in this way is optimal, and coincides with the best constant in our isoperimetric
inequality (1.19).

When 1 < p < D, Theorem 1.3 also leads to the Sobolev inequality (1.3) with
best constant. This is a consequence of our isoperimetric inequality and a weighted ra-
dial rearrangement of Talenti [47], since these two results yield the radial symmetry of
minimizers. See [9] for details in the case of monomial weights w(x) = |x1|

A1 · · · |xn|
An .

If we use Corollary 1.6 instead of Theorem 1.3, with the same argument we find the
Sobolev inequality(∫

Rn
|u|p∗w(x) dx

)1/p∗
≤ Cw,p,n

(∫
Rn
|∇u|pw(x) dx

)1/p

, (1.20)

where p∗ = pD/(D − p),D = n+α, and 1 ≤ p < D. Here, w is any weight satisfying
the hypotheses of Corollary 1.6, and u is any smooth function with compact support in
Rn which is symmetric with respect to each variable xi , i = 1, . . . , n.

1.4. The proof. Related works

The proof of Theorem 1.3 consists in applying the ABP method to a linear Neumann
problem involving the operator w−1div(w∇u), where w is the weight. When w ≡ 1,
the idea goes back to 2000 in the works [6, 7] of the first author, where the classical
isoperimetric inequality in all of Rn (here w ≡ 1) was proved with a new method. It
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consisted in solving the problem 
1u = b� in �,
∂u

∂ν
= 1 on ∂�,

for a certain constant b�, to produce a bijective map with the gradient of u, ∇u :
0u,1 → B1, which leads to the isoperimetric inequality. Here 0u,1 ⊂ 0u ⊂ � and
0u,1 is a certain subset of the lower contact set 0u of u (see Section 3 for details). The
use of the ABP method is crucial in the proof.

Previously, Trudinger [51] had given a proof of the classical isoperimetric inequality
in 1994, using the theory of Monge–Ampère equations and the ABP estimate. His proof
consists in applying the ABP estimate to the Monge–Ampère problem{

detD2u = χ� in BR,
u = 0 on ∂BR,

where χ� is the characteristic function of � and BR = BR(0), and then letting R→∞.
Before these two works ([51] and [6]), there was already a proof of the isoperimetric

inequality using a certain map (or coupling). This is Gromov’s proof, which used the
Knothe map (see [52]).

After these three proofs, in 2004 Cordero-Erausquin, Nazaret, and Villani [18] used
the Brenier map from optimal transportation to give a beautiful proof of the anisotropic
isoperimetric inequality (see also [52]). More recently, Figalli–Maggi–Pratelli [24] estab-
lished a sharp quantitative version of the anisotropic isoperimetric inequality, also using
the Brenier map. In the case of the Lions-Pacella isoperimetric inequality, this has been
done by Figalli–Indrei [22] very recently. As mentioned before, the proof in the present
article is also suited for a quantitative version, as we will show in a future work with Cinti
and Pratelli.

After finding the proof of our result given in this paper (which uses the ABP tech-
nique), we realized that optimal transportation techniques could also be used to prove the
result. In the case of the half-space {xn > 0} equipped with the weight xαn , the same was
realized by A. Figalli.

Regarding isoperimetric inequalities on manifolds, in the Bibliographical Notes to
Chapter 21 of C. Villani’s book [52], he points out that optimal transport techniques might
be used to prove isoperimetric inequalities on cones with nonnegative Ricci curvature.

1.5. Plan of the paper

The rest of the article is organized as follows. In Section 2 we give examples of weights
to which our result applies. In Section 3 we introduce the elements appearing in the proof
of Theorem 1.3. To illustrate these ideas, in Section 4 we give the proof of the classical
Wulff theorem via the ABP method. Finally, in Section 5 we prove Theorem 1.3.
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2. Examples of weights

When w ≡ 1, our main result yields the classical isoperimetric inequality, its version
for convex cones, and also the Wulff theorem. On the other hand, given an open convex
cone 6 ⊂ Rn (different than the whole space and a half-space), there is a large family
of functions that are homogeneous of degree one and concave in 6. Any positive power
of one of these functions is an admissible weight for Theorem 1.3. Next we give some
concrete examples of weights w to which our result applies.

(i) Assume that w1 and w2 are concave homogeneous functions of degree one in an
open convex cone 6. Then wa1w

b
2 with a ≥ 0 and b ≥ 0, and (wr1 + w

r
2)
α/r with

r ∈ (0, 1] or r < 0, satisfy the hypotheses of Theorem 1.3.
(ii) For any open convex cone 6 and any α ≥ 0,

w(x) = dist(x, ∂6)α

is an admissible weight. When the cone is6 = {xi > 0, i = 1, . . . , n}, this weight
is exactly min{x1, . . . , xn}

α .
(iii) If the concavity condition is satisfied by a weight w in a convex cone 6′ then it

is also satisfied in any convex subcone 6 ⊂ 6′. Note that this gives examples of
weights w and cones 6 in which w is positive on ∂6 \ {0}.

(iv) Let 61, . . . , 6k be convex cones and 6 = 61 ∩ · · · ∩6k . Let

δi(x) = dist(x, ∂6i).

Then the weight
w(x) = δ

A1
1 · · · δ

Ak
k , x ∈ 6,

with A1 ≥ 0, . . . , Ak ≥ 0 satisfies the hypotheses of Theorem 1.3. This follows
from (i)–(iii). When k = n and 6i = {xi > 0}, i = 1, . . . , n, then 6 = {x1 > 0,
. . . , xn > 0} and we obtain the monomial weight w(x) = xA1

1 · · · x
An
n .

(v) In the cone 6 = (0,∞)n, the weights

w(x) = (A1x
1/p
1 + · · · + Anx

1/p
n )αp

for p ≥ 1, Ai ≥ 0, and α > 0 satisfy the hypotheses of Theorem 1.3. Similarly,
one may take the same weight but with p < 0. This can be shown by using the
Minkowski inequality.

(vi) Powers of hyperbolic polynomials also provide examples of weights (see for ex-
ample [28] or [11, Section 1]). For any hyperbolic polynomial P , the weight

w(x) = P(x)α/k

satisfies the hypotheses of Theorem 1.3. Typical examples of hyperbolic polyno-
mials are

P(x) = x2
1 − λ2x

2
2 − · · · − λnx

2
n in 6 =

{
x1 >

√
λ2x

2
2 + · · · + λnx

2
n

}
,

with λ2 > 0, . . . , λn > 0, or the elementary symmetric functions

σk(x) =
∑

1≤i1<···<ik≤n

xi1 · · · xik in 6 = {σ1 > 0, . . . , σk > 0}.
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(vii) If σk and σl are the elementary symmetric functions of degree k and l with 1 ≤
k < l ≤ n, then (σl/σk)1/(l−k) is concave in the cone 6 = {σ1 > 0, . . . , σk > 0}
(see [35]). In particular, setting k = n and l = 1 we find that we can take

w(x) =

(
x1 · · · xn

x1 + · · · + xn

)α/(n−1)

in Theorem 1.3 or in Corollary 1.6.
(viii) If f : R→ R+ is any continuous function which is concave in (a, b), then w(x) =

x1f (x2/x1) is an admissible weight in 6 = {x = (r, θ) : arctan a < θ < arctan b}.
In particular, in the cone 6 = (0,∞)2 ⊂ R2 one may take

w(x) =

(
x1 − x2

log x1 − log x2

)α
or w(x) =

xa+1yb+1

(xp + yp)1/p

with α > 0, a, b ≥ 0, and p > −1.

3. Description of the proof

The proof of Theorem 1.3 follows the ideas introduced by the first author in a new proof
of the classical isoperimetric inequality; see [6, 7] or the last edition of Chavel’s book
[15]. This proof uses the ABP method, as explained next.

The Alexandroff–Bakelman–Pucci (or ABP) estimate is an L∞ bound for solutions of
the Dirichlet problem associated to second order uniformly elliptic operators written in
nondivergence form,

Lu = aij (x)∂iju+ bi(x)∂iu+ c(x)u,

with bounded measurable coefficients in a domain� of Rn. It asserts that if� is bounded
and c ≤ 0 in � then, for every u ∈ C2(�) ∩ C(�),

sup
�

u ≤ sup
∂�

u+ C diam(�)‖Lu‖Ln(�),

where C is a constant depending only on the ellipticity constants of L and on the Ln-
norm of the coefficients bi . The estimate was proven by the above mentioned authors
in the sixties using a technique that is nowadays called “the ABP method”. See [7] and
references therein for more information on this estimate.

The proof of the classical isoperimetric inequality in [6, 7] consists in applying the
ABP method to an appropriate Neumann problem for the Laplacian—instead of applying
it to a Dirichlet problem as is customary. Namely, to estimate P(�)/|�|(n−1)/n from
below for a smooth domain � (where P(�) is the perimeter of �), one considers the
problem 

1u = b� in �,
∂u

∂ν
= 1 on ∂�.

(3.1)

The constant b� = P(�)/|�| is chosen so that the problem has a solution. Next, one
proves that B1 ⊂ ∇u(0u) with a contact argument (for a certain “contact” set 0u ⊂ �),
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and then one estimates the measure of ∇u(0u) by using the area formula and the inequal-
ity between the geometric and arithmetic means. Note that the solution of (3.1) is

u(x) = |x|2/2 when � = B1,

and in this case one verifies that all the inequalities appearing in this ABP argument
are equalities. After having proved the isoperimetric inequality for smooth domains, a
standard approximation argument extends it to all sets of finite perimeter.

As pointed out by R. McCann, the same method also yields the Wulff theorem. For
this, one replaces the Neumann data in (3.1) by ∂u/∂ν = H(ν) and uses the same argu-
ment explained above. This proof of the Wulff theorem is given in Section 4.

We now sketch the proof of Theorem 1.3 in the isotropic case, that is, whenH = ‖·‖2.
In this case, optimizers are Euclidean balls centered at the origin intersected with the
cone 6. First, we assume that E = � is a bounded smooth domain inside the convex
cone 6. The key idea is to consider a similar problem to (3.1) but where the Laplacian is
replaced by the operator

w−1div(w∇u) = 1u+
∇w

w
· ∇u.

Essentially (but, as we will see, this is not exactly as we proceed—because of a regularity
issue), we solve the following Neumann problem in � ⊂ 6:

w−1div (w∇u) = b� in �,
∂u

∂ν
= 1 on ∂� ∩6,

∂u

∂ν
= 0 on ∂� ∩ ∂6,

(3.2)

where the constant b� is again chosen depending on weighted perimeter and volume so
that the problem admits a solution. Whenever u belongs to C1(�)—which is not always
the case, as discussed below in this section—by touching the graph of u from below with
planes (as in the proof of the classical isoperimetric inequality explained above) we find
that

B1 ∩6 ⊂ ∇u
(
�
)
. (3.3)

Then, using the area formula, an appropriate weighted geometric-arithmetic means in-
equality, and the concavity condition on the weight w, we obtain our weighted isoperi-
metric inequality. Note that the solution of (3.2) is

u(x) = |x|2/2 when � = B1 ∩6. (3.4)

In this case, all the chain of inequalities in our proof become equalities, and this yields
the sharpness of the result.

In the previous argument there is an important technical difficulty that comes from the
possible lack of regularity up to the boundary of the solution to the weighted Neumann
problem (3.2). For instance, if�∩6 is a smooth domain that has some part of its boundary
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lying on ∂6—and hence ∂� meets ∂6 tangentially—then u cannot be C1 up to the
boundary. This is because the Neumann condition itself is not continuous and hence ∂νu
would jump from 1 to one 0 where ∂� meets ∂6.

The fact that u could not be C1 up to the boundary prevents us from using our con-
tact argument to prove (3.3). Nevertheless, the argument sketched above does work for
smooth domains� well contained in 6, that is, satisfying� ⊂ 6. If w ≡ 0 on ∂6 this is
enough to deduce the inequality for all measurable sets E by an approximation argument.
However, if w > 0 at some part of (or everywhere on) ∂6, it is not always possible to
find sequences of smooth sets with closure contained in the open cone and approximating
a given measurable set E ⊂ 6 in relative perimeter. This is because the relative perimeter
does not count the part of the boundary of E which lies on ∂6. To get around this diffi-
culty (recall that we are describing the proof in the isotropic case, H ≡ 1) we consider
an anisotropic problem in Rn for which approximation is possible. Namely, we choose
a gauge H0 defined as the gauge associated to the convex set B1 ∩ 6 (see (1.9)). Then
we prove that Pw,H0( · ;6) is a calibration of the functional Pw( · ;6), in the following
sense. For all E ⊂ 6 we will have

Pw,H0(E;6) ≤ Pw(E;6),

while for E = B1 ∩6,

Pw,H0(B1;6) = Pw(B1 ∩6;6).

As a consequence, the isoperimetric inequality with perimeter Pw,H0(·;6) implies the
one with Pw(·;6). For Pw,H0(·;6) approximation results are available and, as in the
case of w ≡ 0 on ∂6, it is enough to consider smooth sets satisfying � ⊂ 6—for which
there are no regularity problems with the solution of the elliptic problem.

To prove Theorem 1.3 for a general anisotropic perimeter Pw,H (·;6)we also consider
a “calibrated” perimeter Pw,H0(·;6), whereH0 is now the gauge associated to the convex
set W ∩6.

4. Proof of the classical Wulff inequality

In this section we prove the classical Wulff theorem for smooth domains by using the
ideas introduced by the first author in [6, 7]. When H is smooth on Sn−1, we also show
that the Wulff shapes are the only smooth sets for which equality is attained.

Proof of Theorem 1.2. We prove the Wulff inequality only for smooth domains, which
we denote by � instead of E. By approximation, if (1.12) holds for all smooth domains
then it holds for all sets of finite perimeter.

By regularizing H on Sn−1 and then extending it homogeneously, we can assume
that H is smooth in Rn \ {0}. For nonsmooth H this approximation argument will yield
inequality (1.12), but not the equality cases.
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Let u be a solution of the Neumann problem
1u =

PH (�)

|�|
in �,

∂u

∂ν
= H(ν) on ∂�,

(4.1)

where 1 denotes the Laplace operator and ∂u/∂ν the exterior normal derivative of u on
∂�. Recall that PH (�) =

∫
∂�
H(ν(x)) dS. The constant PH (�)/|�| has been chosen

so that the problem has a unique solution up to an additive constant. Since H |Sn−1 and �
are smooth, we deduce that u is smooth in �. See [44] for a recent exposition of these
classical facts and for a new Schauder estimate for (4.1).

Consider the lower contact set of u, defined by

0u = {x ∈ � : u(y) ≥ u(x)+∇u(x) · (y − x) for all y ∈ �}. (4.2)

It is the set of points where the tangent hyperplane to the graph of u lies below u in all �.
We claim that

W ⊂ ∇u(0u), (4.3)

where W denotes the Wulff shape associated to H , given by (1.8).
To show (4.3), take any p ∈ W , i.e., any p ∈ Rn satisfying

p · ν < H(ν) for all ν ∈ Sn−1.

Let x ∈ � be a point such that

min
y∈�

{u(y)− p · y} = u(x)− p · x

(this is, up to a sign, the Legendre transform of u). If x ∈ ∂� then the exterior normal
derivative of u(y)−p·y at x would be nonpositive, and hence (∂u/∂ν)(x) ≤ p·ν < H(ν),
contrary to the boundary condition of (4.1). It follows that x ∈ �, and therefore x is
an interior minimum point of the function u(y) − p · y. In particular, p = ∇u(x) and
x ∈ 0u. Claim (4.3) is now proved. It is interesting to visualize geometrically the proof
of the claim, by considering the graphs of the functions p · y + c for c ∈ R. These are
parallel hyperplanes which lie, for c close to−∞, below the graph of u. We let c increase
and consider the first c for which there is contact or “touching” at a point x. It is clear
geometrically that x 6∈ ∂�, since p · ν < H(ν) for all ν ∈ Sn−1 and ∂u/∂ν = H(ν)

on ∂�.
Now, from (4.3) we deduce

|W | ≤ |∇u(0u)| =

∫
∇u(0u)

dp ≤

∫
0u

detD2u(x) dx. (4.4)

We have applied the area formula to the smooth map ∇u : 0u → Rn, and we have used
the fact that its Jacobian, detD2u, is nonnegative in 0u by definition of this set.
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Next, we use the classical inequality between the geometric and the arithmetic means
applied to the eigenvalues of D2u(x) (which are nonnegative numbers for x ∈ 0u). We
obtain

detD2u ≤

(
1u

n

)n
in 0u. (4.5)

This, combined with (4.4) and 1u ≡ PH (�)/|�|, gives

|W | ≤

(
PH (�)

n|�|

)n
|0u| ≤

(
PH (�)

n|�|

)n
|�|. (4.6)

Finally, using PH (W) = n|W |—see (1.11)—we conclude that

PH (W)

|W |(n−1)/n = n|W |
1/n
≤

PH (�)

|�|(n−1)/n . (4.7)

Note that when � = W , the solution of (4.1) is u(x) = |x|2/2 since 1u = n and
uν(x) = x · ν(x) = H

(
ν(x)

)
a.e. on ∂W—recall (1.10). In particular, ∇u = Id and

all the eigenvalues of D2u(x) are equal. Therefore, it is clear that all inequalities (and
inclusions) in (4.3)–(4.7) are equalities when � = W . This explains why the proof gives
the best constant in the inequality.

Let us see next that when H |Sn−1 is smooth, the Wulff shaped domains � = aW + b
are the only smooth domains for which equality occurs in (1.12). Indeed, if (4.7) is an
equality then all the inequalities in (4.4)–(4.6) are also equalities. In particular, |0u|=|�|.
Since 0u ⊂ �, � is an open set, and 0u is closed relative to �, we deduce that 0u = �.

Recall that the geometric and arithmetic means of n nonnegative numbers are equal if
and only if these n numbers are all equal. Hence, the equality in (4.5) and the fact that1u
is constant in � imply that D2u = aId in all 0u = �, where Id is the identity matrix and
a = PH (∂�)/(n|�|) is a positive constant. Let x0 ∈ � be any given point. Integrating
D2u = aId on segments from x0, we deduce that

u(x) = u(x0)+∇u(x0) · (x − x0)+
a

2
|x − x0|

2

for x in a neighborhood of x0. In particular, ∇u(x) = ∇u(x0) + a(x − x0) in such a
neighborhood, and hence the map ∇u− aI is locally constant. Since � is connected, we
deduce that the map ∇u− aI is indeed a constant, say ∇u− aI ≡ y0.

It follows that ∇u(0u) = ∇u(�) = y0+ a�. By (4.3) we know thatW ⊂ ∇u(0u) =
y0+a�. In addition, these two sets have the same measure since equalities occur in (4.4).
Thus, y0 + a� is equal to W up to a set of measure zero. In fact, in the present situation,
since W is convex and y0 + a� is open, one easily proves that W = y0 + a�. Hence, �
is of the form ãW + b̃ for some ã > 0 and b̃ ∈ Rn. ut
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5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. At the end of the section, we include the geometric
argument of E. Milman that provides an alternative proof of Theorem 1.3 in the case
where the exponent α is an integer.

In the proof we will use the following lemma.

Lemma 5.1. Let w be a positive homogeneous function of degree α > 0 in an open cone
6 ⊂ Rn. Then the following conditions are equivalent:

• For each x, z ∈ 6,

α

(
w(z)

w(x)

)1/α

≤
∇w(x) · z

w(x)
.

• The function w1/α is concave in 6.

Proof. Assume first α = 1. A function w is concave in 6 if and only if, for all x, z ∈ 6,

w(x)+∇w(x) · (z− x) ≥ w(z). (5.1)

Now, since w is homogeneous of degree 1, we have

∇w(x) · x = w(x). (5.2)

This can be seen by differentiating the equality w(tx) = tw(x) and evaluating at t = 1.
Hence, from (5.1) and (5.2) we deduce that a homogeneous function w of degree 1 is
concave if and only if

w(z) ≤ ∇w(x) · z.

This proves the lemma for α = 1.
Assume now α 6= 1. Define v = w1/α , and apply the result proved above to the

function v, which is homogeneous of degree 1. We find that v is concave if and only if

v(z) ≤ ∇v(x) · z.

Therefore, since ∇v(x) = α−1w(x)1/α−1
∇w(x), we deduce that w1/α is concave if and

only if

w(z)1/α ≤
∇w(x) · z

αw(x)1−1/α ,

and the lemma follows. ut

We can now establish Theorem 1.3. As explained in Remark 5.2 below, the proof is sub-
stantially shorter when w vanishes on ∂6. This fact will be pointed out along the proof,
where we will refer to Remark 5.2.

Proof of Theorem 1.3. Let
W0 := W ∩6,

an open convex set, and nonempty by assumption. Since λW0 ⊂ W0 for all λ ∈ (0, 1),
we deduce that 0 ∈ W 0. Therefore, as discussed in Subsection 1.1, there is a unique
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gauge H0 whose Wulff shape is W0. In fact, H0 is defined by expression (1.9) (with W
and H replaced by W0 and H0).

Since H0 ≤ H we have

Pw,H0(E;6) ≤ Pw,H (E;6) for each measurable set E,

while, in view of (1.13),

Pw,H0(W0;6) = Pw,H (W ;6) and w(W0) = w(W ∩6).

Thus, it suffices to prove that

Pw,H0(E;6)

w(E)(D−1)/D ≥
Pw,H0(W0;6)

w(W0)(D−1)/D (5.3)

for all measurable sets E ⊂ 6 with w(E) <∞.
The definition of H0 is motivated as follows. Note that H0 vanishes on the directions

normal to the cone 6. Thus, by considering H0 instead of H , we will be able (by an
approximation argument) to assume thatE is a smooth domain whose closure is contained
in 6. This approximation cannot be done when H does not vanish on the directions
normal to the cone—since the relative perimeter does not count the part of the boundary
lying on ∂6, while whenE ⊂ 6, the whole perimeter is counted. WhenH = ‖·‖2 andw
vanishes on ∂6 the weighted perimeter of a piece of surface that approaches ∂6 from the
inside converges to zero (since w(x)→ 0 as x → ∂6). This makes the proof simpler in
this particular case, and there is no need to consider anisotropic gauges (see Remark 5.2).

We split the proof of (5.3) into three cases.

Case 1: E = �, where � is a smooth domain satisfying � ⊂ 6. At this stage, it is clear
that by regularizing w|� and H0|Sn−1 we can assume w ∈ C∞(�) and H0 ∈ C

∞(Sn−1).
Let u be a solution to the Neumann problemw

−1 div(w∇u) = b� in �,
∂u

∂ν
= H0(ν) on ∂�,

(5.4)

where b� ∈ R is chosen so that the problem has a unique solution up to an additive
constant, that is,

b� = Pw,H0(�;6)/w(�). (5.5)

Since w is positive and smooth in �, and H0, ν, and � are smooth, we deduce that
u ∈ C∞(�). For these classical facts (including the existence part given by the Fredholm
alternative), see [32, Example 2 in Section 10.5] or [30, end of Section 6.7].

Consider the lower contact set of u, defined by

0u = {x ∈ � : u(y) ≥ u(x)+∇u(x) · (y − x) for all y ∈ �}.

We claim that
W0 ⊂ ∇u(0u) ∩6. (5.6)
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To prove (5.6), we proceed as in the proof of Theorem 1.2 in Section 4. Take p ∈ W0,
that is, p ∈ Rn satisfying p · ν < H0(ν) for each ν ∈ Sn−1. Let x ∈ � be such that

min
y∈�

{u(y)− p · y} = u(x)− p · x.

If x ∈ ∂� then the exterior normal derivative of u(y)− p · y at x would be nonpositive,
and hence (∂u/∂ν)(x) ≤ p · ν < H0(p), contradicting (5.4). Thus, x ∈ �, p = ∇u(x),
and x ∈ 0u—see Section 4 for more details. Hence, W0 ⊂ ∇u(0u), and since W0 ⊂ 6,
claim (5.6) follows.

Therefore,

w(W0) ≤

∫
∇u(0u)∩6

w(p)dp ≤

∫
0u∩(∇u)−1(6)

w(∇u) detD2u dx. (5.7)

We have applied the area formula to the smooth map ∇u : 0u → Rn, and we have used
the fact that its Jacobian, detD2u, is nonnegative in 0u by definition of this set.

Using the arithmetic-geometric mean inequality as in Section 4, we find that

detD2u ≤

(
1u

n

)n
.

Furthermore, when α > 0, we have the inequality

sαtn ≤

(
αs + nt

α + n

)α+n
for all s > 0 and t > 0,

which follows from the concavity of the logarithm function. Using also Lemma 5.1, we
find

w(∇u)

w(x)

(
1u

n

)n
≤

(
α
(
w(∇u)
w(x)

)1/α
+1u

α + n

)α+n
≤

( ∇w(x)·∇u
w(x)

+1u

D

)D
.

Recall that D = n+ α. Thus, combining the previous inequalities we get

w(∇u)

w(x)
detD2u ≤

( ∇w(x)·∇u
w(x)

+1u

α + n

)α+n
. (5.8)

If α = 0 then w ≡ 1, and (5.8) also holds.
Now, the equation in (5.4) gives

∇w(x) · ∇u

w(x)
+1u =

div(w(x)∇u)
w(x)

≡ b�,

and thus using (5.5) we find∫
0u∩(∇u)−1(6)

w(∇u) detD2u dx ≤

∫
0u∩(∇u)−1(6)

w(x)

(
b�

D

)D
dx

≤

∫
0u

w(x)

(
b�

D

)D
dx =

(
Pw,H0(�;6)

Dw(�)

)D
w(0u). (5.9)
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Therefore, from (5.7) and (5.9) we deduce

w(W0) ≤

(
Pw,H0(�;6)

Dw(�)

)D
w(0u) ≤

(
Pw,H0(�;6)

Dw(�)

)D
w(�). (5.10)

Finally, since by (1.14), we have Pw,H0(W ;6) = Dw(W0), we deduce (5.3).
An alternative way to see that (5.10) is equivalent to (5.3) (we find this way instructive

in order to understand why our proof works) is to analyze the previous argument when
� = W0 = W ∩6. In this case� * 6, and therefore, as explained in Section 3, we must
solve the problem 

w−1 div(w∇u) = b� in �,
∂u/∂ν = H0(ν) on ∂� ∩6,
∂u/∂ν = 0 on ∂� ∩ ∂6,

(5.11)

instead of problem (5.4). When � = W0, the solution to problem (5.11) is

u(x) = |x|2/2.

For this function u we have 0u = W0 and bW0 = Pw,H0(W0;6)/w(W0)—as in (5.5).
Hence, for these concrete � and u one verifies that all inclusions and inequalities in
(5.6)–(5.10) are equalities, and thus (5.3) follows.

Case 2: E = U ∩ 6, where U is a bounded smooth open set in Rn. Even though both
U and 6 are Lipschitz sets, their intersection might not be Lipschitz (for instance if ∂U
and ∂6 meet tangentially at a point). As a consequence, approximating U ∩6 by smooth
sets converging in perimeter is a more subtle issue. However, we claim that there exists a
sequence {�k}k≥1 of smooth bounded domains satisfying

�k ⊂ 6 and lim
k→∞

Pw,H0(�k;6)

w(�k)(D−1)/D ≤
Pw,H0(E;6)

w(E)(D−1)/D . (5.12)

Case 2 follows immediately using this claim and what we have proved in Case 1. We now
proceed to prove the claim.

It is no restriction to assume that en, the nth vector of the standard basis, belongs to
the cone 6. Then, ∂6 is a convex graph (and therefore Lipschitz in every compact set)
over the variables x1, . . . , xn−1. That is,

6 = {xn > g(x1, . . . , xn−1)} (5.13)

for some convex function g : Rn−1
→ R.

First we construct a sequence

Fk = {xn > gk(x1, . . . , xn−1)}, k ≥ 1, (5.14)

of convex smooth sets whose boundary is a graph gk : Rn−1
→ R over the first n − 1

variables and satisfying:

(i) g1 > g2 > · · · in B, where B is a large ball B ⊂ Rn−1 containing the projection
of U .

(ii) gk → g uniformly in B.
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(iii) ∇gk → ∇g almost everywhere in B and |∇gk| is bounded independently of k.
(iv) The smooth manifolds ∂Fk = {xn = gk(x1, . . . , xn−1)} and ∂U intersect transver-

sally.

To construct the sequence gk , we consider the convolution of g with a standard mollifier
η ∈ C∞c (B1),

g̃k = g ∗ k
n−1η(kx)+ C/k,

where C is a large constant (depending on ‖∇g‖L∞(Rn−1)) to guarantee g̃k > g in B. Note
that the existence of C follows from the inequality

g ∗ kn−1η(kx) ≥ inf
B1/k(x)

g ≥ g(x)−
1
k
‖∇g‖L∞ .

It follows that a subsequence of g̃k will satisfy (i)–(iii). Next, by a version of Sard’s
Theorem [31, Section 2.3] almost every small translation of the smooth manifold {xn =
g̃k(x1, . . . , xn−1)} will intersect ∂U transversally. Thus, the sequence

gk(x1, . . . , xn−1) = g̃k(x1 − y
k
1 , . . . , xn−1 − y

k
n−1)+ y

k
n

will satisfy (i)–(iv) if yk ∈ Rn are chosen with |yk| sufficiently small depending on k—in
particular to preserve (i).

Let us show now that Pw,H0(U ∩ Fk;6) converges to Pw,H0(E;6) as k ↑ ∞. Note
that (i) yields Fk ⊂ Fk+1 for all k ≥ 1. This monotonicity will be useful to prove the
convergence of perimeters, which we do next.

Indeed, since we have considered the gauge H0 instead of H , we have

Pw,H0(E;6) =

∫
∂U∩6

H0(ν(x))w(x) dx =

∫
∂E

H0(ν(x))w(x) dx. (5.15)

This is because ∂E = ∂(U ∩ E) ⊂ (∂U ∩6) ∪ (U ∩ ∂6) and

H0(ν(x)) = 0 for almost all x ∈ ∂6. (5.16)

Now, since ∂(U ∩ Fk) ⊂ (∂U ∩ Fk) ∪ (U ∩ ∂Fk), we have

0 ≤ Pw,H0(U ∩ Fk;6)−

∫
∂U∩Fk

H0(ν(x))w(x) dx ≤

∫
U∩∂Fk

H0(νFk (x))w(x) dx.

On the one hand, using dominated convergence, (5.13), (5.14), (ii)–(iii), and (5.16), we
readily prove that ∫

U∩∂Fk

H0(νFk (x))w(x) dx → 0.

On the other hand, by (i) and (ii), Fk ∩ (B × R) is an increasing sequence exhausting
6 ∩ (B × R). Hence, by monotone convergence,∫

∂U∩Fk

H0(ν(x))w(x) dx →

∫
∂U∩6

H0(ν(x))w(x) dx = Pw,H0(E;6).
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Therefore, the sets U ∩Fk approximate U ∩6 in L1 and in (w,H0)-perimeter. Moreover,
by (iv), U ∩ Fk are Lipschitz open sets.

Finally, to obtain the sequence of smooth domains �k in (5.12), we use a partition of
unity and local regularization of the Lipschitz sets U ∩ Fk to guarantee the convergence
of the (w,H0)-perimeters. In case the regularized sets had more than one connected com-
ponent, we may always choose the one having the best isoperimetric quotient.

Case 3:E is any measurable set withw(E) <∞ and Pw,H0(E;6) ≤ Pw,H (E;6) <∞.
As a consequence of [2, Theorem 5.1], C∞c (Rn) is dense in the space BVµ,H0 of func-
tions of bounded variation with respect to the measure µ = wχ6 and the gauge H0.
Note that our definition of Pw,H0(E;6) coincides with the (µ,H0)-total variation of the
characteristic function χE , that is, |DµχE |H0 in the notation of [2]. Hence, by the coarea
formula in [2, Theorem 4.1] and the argument in [37, Section 6.1.3], we find that for each
measurable set E ⊂ 6 with finite measure there exists a sequence of bounded smooth
sets {Uk} satisfying

lim
k→∞

w(Uk ∩6) = w(E) and lim
k→∞

Pw,H0(Uk;6) = Pw,H0(E;6).

Then we are back to Case 2 above, and hence the proof is finished. ut

The previous proof is simpler when w vanishes on ∂6, as explained in the following
remark.

Remark 5.2. In the proof of Theorem 1.3, Cases 2 and 3 are deduced from Case 1 (the
inequality for smooth domains at positive distance from ∂6) by approximation argu-
ments. To correctly approximate the relative perimeter we need to know that, for any
given sequence of pieces of surface converging (in C1 norm, say) to ∂6, their weighted
anisotropic perimeter necessarily converges to zero. This is why we define the auxiliary
gauge H0, which vanishes on directions normal to ∂6.

In the case w = 0 on ∂6 there is no need to consider this auxiliary gauge. Indeed,
since w(x) → 0 as x → ∂6, the weighted perimeters of pieces of surfaces approx-
imating ∂6 (even only in C0 norm) will converge to zero. This makes the proof and
the approximation arguments simpler in this case. In particular, when H = ‖ · ‖2 and
w = 0 on ∂6, the proof of the weighted isoperimetric inequality does not involve auxil-
iary anisotropic perimeters. Indeed, in this case we can prove the weighted isoperimetric
inequality by solving the simpler Neumann problem{

w−1 div(w∇u) = b� in �,
∂u/∂ν = 1 on ∂�.

After the announcement of our result and proof in [10], Emanuel Milman showed us a
nice geometric construction that yields the weighted inequality in Theorem 1.3 when α is
a nonnegative integer. We next sketch his construction.

Remark 5.3 (Emanuel Milman’s construction). When α is a nonnegative integer, the
weighted isoperimetric inequality of Theorem 1.3 (with H = ‖ · ‖2) can be proved as a
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limit case of the Lions–Pacella inequality in convex cones of Rn+α . Indeed, let w1/α > 0
be a concave function, homogeneous of degree 1, in an open convex cone 6 ⊂ Rn. For
each ε > 0, consider the cone

Cε = {(x, y) ∈ Rn × Rα : x ∈ 6, |y| < εw(x)1/α}.

From the convexity of 6 and the concavity of w1/α we find that Cε is a convex cone.
Hence, by Theorem 1.1,

P(Ẽ; Cε)

|Ẽ ∩ Cε|
n+α−1
n+α

≥
P(B1; Cε)

|B1 ∩ Cε|
n+α−1
n+α

for all Ẽ with |Ẽ ∩ Cε| <∞, (5.17)

where B1 is the unit ball of Rn+α . Now, given a Lipschitz set E ⊂ Rn, by considering the
cylinder Ẽ = E × Rα one finds

|Ẽ ∩ Cε| =
∫
E∩6

dx

∫
{|y|<εw(x)1/α}

dy = ωαε
α

∫
E∩6

w(x) dx = ωαε
αw(E ∩6)

and

P(Ẽ; Cε) =
∫
∂E∩6

dS(x)

∫
{|y|<εw(x)1/α}

dy = ωαε
α

∫
∂E∩6

w(x) dS = ωαε
αPw(E;6).

On the other hand, one easily sees that, as ε ↓ 0,

P(B1; Cε)

|B1 ∩ Cε|
n+α−1
n+α

= (ωαε
α)

1
n+α

(
Pw(B1;6)

w(B1 ∩6)
n+α−1
n+α

+ o(1)
)
,

where B1 is the unit ball of Rn. Hence, letting ε ↓ 0 in (5.17) one obtains

Pw(E;6)

w(E ∩6)
n+α−1
n+α

≥
Pw(B1;6)

w(B1 ∩6)
n+α−1
n+α

,

which is the inequality of Theorem 1.3 in the case H = ‖ · ‖2 and α is an integer.
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[2] Bellettini, G., Bouchitté, G., Fragalà, I.: BV functions with respect to a measure and relax-
ation of metric integral functionals. J. Convex Anal. 6, 349–366 (1999) Zbl 0959.49015
MR 1736243

[3] Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30, 207–216
(1975) Zbl 0292.60004 MR 0399402

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0974.90015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1827817
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0959.49015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1736243
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0292.60004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0399402


26 Xavier Cabré et al.
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[32] Hörmander, L.: Linear Partial Differential Operators. Springer (1969) Zbl 0175.39201
MR 0248435

[33] Lions, P.-L., Pacella, F.: Isoperimetric inequality for convex cones. Proc. Amer. Math. Soc.
109, 477–485 (1990) Zbl 0717.52008 MR 1000160

[34] Maderna, C., Salsa, S.: Sharp estimates for solutions to a certain type of singular ellip-
tic boundary value problems in two dimensions. Applicable Anal. 12, 307–321 (1981)
Zbl 0445.35016 MR 0653203

[35] Marcus, M., Lopes, L.: Inequalities for symmetric functions and hermitian matrices. Canad.
J. Math. 9, 305–312 (1957) Zbl 0079.02103 MR 0084541

[36] Maurmann, Q., Morgan, F.: Isoperimetric comparison theorems for manifolds with density.
Calc. Var. Partial Differential Equations 36, 1–5 (2009) Zbl 1175.49042 MR 2507612

[37] Maz’ja, V. G.: Sobolev Spaces. Springer, Berlin (1985) Zbl 0692.46023 MR 0817985
[38] McCann, R. J.: Equilibrium shapes for planar crystals in an external field. Comm. Math. Phys.

195, 699–723 (1998) Zbl 0936.74029 MR 1641031
[39] Milman, E., Rotem, L.: Complemented Brunn–Minkowski inequalities and isoperime-

try for homogeneous and non-homogeneous measures. Adv. Math. 262, 867–908 (2014)
Zbl 1311.52008 MR 3228444

[40] Morgan, F.: Riemannian Geometry: A Beginner’s Guide. Jones and Bartlett (1993)
Zbl 0794.53001 MR 1174293

[41] Morgan, F.: Manifolds with density. Notices Amer. Math. Soc. 52, 853–858 (2005)
Zbl 1118.53022

[42] Morgan, F.: The log-convex density conjecture. Frank Morgan’s blog (April 2010),
http://sites.williams.edu/Morgan/2010/04/03/the-log-convex-density-conjecture/

[43] Morgan, F., Pratelli, A.: Existence of isoperimetric regions in Rn with a density. Ann. Global
Anal. Geom. 43, 331–365 (2013) Zbl 1263.49049 MR 3038539

[44] Nardi, G.: Schauder estimation for solutions of Poisson’s equation with Neumann boundary
condition. Enseign. Math. 60, 421–437 (2014) Zbl 1317.35047 MR 3342652
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