50 research outputs found
Non-pharmacological interventions for vascular health and the role of the endothelium
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions
Distinct Effects of Blood Flow and Temperature on Cutaneous Microvascular Adaptation
Aims: We performed two experiments to determine whether cutaneous microvascular adaptations in response to repeated core temperature elevation are mediated by increases in skin temperature, and/or, skin blood flow. Methods: Healthy subjects participated for 8-weeks in thrice-weekly bouts of 30mins lower limb heating (40°C). In Study 1, both forearms were “clamped” at basal skin temperature throughout each heating bout (n=9). Study 2 involved identical lower limb heating, with the forearms under ambient conditions (unclamped, n=10). In both studies, a cuff was inflated around one forearm during the heating bouts to assess the contribution of skin blood flow and temperature responses. We assessed forearm skin blood flow responses to both lower limb (systemic reflex) heating, and to local heating of the forearm skin, pre and post intervention. Results: Acutely, lower limb heating increased core temperature (Study 1: +0.63±0.15°C, Study 2: +0.69±0.19°C, P<0.001) and forearm skin blood flow (Study 1: 10±3 vs 125±44, Study 2: 16±9 vs 136±41 PU, P<0.001), with skin responses significantly attenuated in the cuffed forearm (P<0.01). Skin blood flow responses to local heating decreased in Study 1 (clamped forearms, week 0vs8: 1.46±0.52 vs 0.99±0.44 CVC, P<0.05), whereas increases occurred in Study 2 (unclamped; week 0vs8: 1.89±0.57 vs 2.27±0.52 CVC, P<0.05). Cuff placement abolished local adaptations in both studies. Conclusion: Our results indicate that repeated increases in skin blood flow and skin temperature result in increased skin flux responses to local heating, whereas repeated increases in skin blood flow in the absence of change in skin temperature induced the opposite response. Repeated increases in core temperature induce intrinsic microvascular changes, the nature of which are dependent upon both skin blood flow and skin temperature
Slowing and cooling molecules and neutral atoms by time-varying electric field gradients
A method of slowing, accelerating, cooling, and bunching molecules and
neutral atoms using time-varying electric field gradients is demonstrated with
cesium atoms in a fountain. The effects are measured and found to be in
agreement with calculation. Time-varying electric field gradient slowing and
cooling is applicable to atoms that have large dipole polarizabilities,
including atoms that are not amenable to laser slowing and cooling, to Rydberg
atoms, and to molecules, especially polar molecules with large electric dipole
moments. The possible applications of this method include slowing and cooling
thermal beams of atoms and molecules, launching cold atoms from a trap into a
fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.
Exercise training reduces the acute physiological severity of post-menopausal hot flushes.
A hot-flush is characterised by feelings of intense heat, profuse elevations in cutaneous vasodilation and sweating, and reduced brain blood flow. Exercise training reduces self-reported hot-flush severity, but underpinning physiological data are lacking. We hypothesised that exercise training attenuates the changes in cutaneous vasodilation, sweat rate and cerebral blood flow during a hot flush. In a preference trial, 18 symptomatic post-menopausal women underwent a passive heat stress to induce hot-flushes at baseline and follow-up. Fourteen participants opted for a 16-week moderate intensity supervised exercise intervention, while 7 participants opted for control. Sweat rate, cutaneous vasodilation, blood pressure, heart rate and middle cerebral artery velocity (MCAv) were measured during the hot-flushes. Data were binned into eight equal segments, each representing 12.5% of hot flush duration. Weekly self-reported frequency and severity of hot flushes were also recorded at baseline and follow-up. Following training, mean hot-flush sweat rate decreased by 0.04 mg·cm2 ·min-1 at the chest (95% CI: 0.02-0.06, P = 0.01) and by 0.03 mg·cm2 ·min-1 (0.02-0.05, P = 0.03) at the forearm, compared with negligible changes in control. Training also mediated reductions in cutaneous vasodilation by 9% (6-12) at the chest and by 7% (4-9) at forearm (P≤0.05). Training attenuated hot flush MCAv by 3.4 cm/s (0.7-5.1, P = 0.04) compared with negligible changes in control. Exercise training reduced the self-reported severity of hot-flush by 109 arbitrary units (80-121, P<0.001). These data indicate that exercise training leads to parallel reductions in hot-flush severity and within-flush changes in cutaneous vasodilation, sweating and cerebral blood flo
Impact of exercise training on arterial wall thickness in humans
Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been consistently reported in asymptomatic subjects and those with cardiovascular risk factors and diseases. In the present review, we summarize evidence pertaining to the impact of exercise and physical activity on arterial wall remodelling of the carotid artery and peripheral arteries in the upper and lower limbs. We consider the potential role of exercise intensity, duration and modality in the context of putative mechanisms involved in wall remodelling, including haemodynamic forces. Finally, we discuss the impact of exercise training in terms of primary prevention of wall thickening in healthy subjects and remodelling of arteries in subjects with existing cardiovascular disease and risk factors
Science overview of the Europa Clipper mission
The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean), composition, and geology; the mission will also search for and characterize any current activity including possible plumes. The science objectives will be accomplished with a payload consisting of remote sensing and in-situ instruments. Remote sensing investigations cover the ultraviolet, visible, near infrared, and thermal infrared wavelength ranges of the electromagnetic spectrum, as well as an ice-penetrating radar. In-situ investigations measure the magnetic field, dust grains, neutral gas, and plasma surrounding Europa. Gravity science will be achieved using the telecommunication system, and a radiation monitoring engineering subsystem will provide complementary science data. The flight system is designed to enable all science instruments to operate and gather data simultaneously. Mission planning and operations are guided by scientific requirements and observation strategies, while appropriate updates to the plan will be made tactically as the instruments and Europa are characterized and discoveries emerge. Following collection and validation, all science data will be archived in NASA’s Planetary Data System. Communication, data sharing, and publication policies promote visibility, collaboration, and mutual interdependence across the full Europa Clipper science team, to best achieve the interdisciplinary science necessary to understand Europa
A SIMPLIFIED PAIRED NECK CHAMBER FOR THE DEMONSTRATION OF BAROREFLEX BLOOD PRESSURE REGULATION
I n this investigation a simplified variable-pressure paired neck chamber was developed as a practical alternative to traditional neck collar designs used to study the arterial baroreceptor reflex in humans. The purpose of this new design was to extend the use of the noninvasive neck chamber method of baroreceptor investigation to teachers of physiology. Performance tests indicate that these new chambers are capable of delineating the stimulus-response relationship for both the blood pressure baroreflex [sensitivity ϭ 0.425 Ϯ 0.13 mmHg mean arterial pressure (MAP)/mmHg neck chamber pressure (NCP); range ϭ 24.9 Ϯ 4.6 mmHg MAP] and the heart rate baroreflex (sensitivity ϭ 0.273 Ϯ 0.12 beats . min Ϫ1. mmHg NCP Ϫ1 ; range ϭ 16.7 Ϯ 6.8 beats/min). This was achieved by applying localized positive and negative air pressures to the carotid sinuses throughout the range from ϩ60 to Ϫ60 mmHg in steps of 20 mmHg. This simplified neck chamber method offers distinct methodological advantages over traditional neck collars, making it a valuable tool for demonstrating baroreflex regulation of the circulation. S60-S66, 1999. Key words: carotid baroreceptors; cardiovascular; neck suction Experimental techniques in physiology often are not accessible for the purpose of teaching unless the institution conducts specialized research in a given field. This problem can be further complicated by the lack of availability of noninvasive methods that are preferable for the demonstration of key physiological mechanisms in a learning environment. The study of baroreflex blood pressure control is one such mechanism that provides students with a valuable insight into regulation of the circulation. This is also an example, however, of a case in which practiced research methods have not made the transition into the teaching laboratory, and that is the problem addressed here. AM. J. PHYSIOL. 277 (ADV. PHYSIOL. EDUC. 22): Study of the carotid baroreflex was greatly expanded after the original development of the noninvasive variable-pressure neck chamber method (9). Because of the accessibility of the carotid sinus, with the use of this approach the carotid baroreceptor afferent nerve activity may be manipulated directly, which was not previously possible in human volunteers. The blood pressure, heart rate, and vascular responses to altered baroreceptor input can then be studied to gain important information concerning autonomic regulation of the circulation. Since its inception over 40 years ago, however, during which time there have been several advances to the original neck chamber I N N O V A T I O N S A N D I D E A