2,385 research outputs found

    The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z ~ 1

    Get PDF
    Aims. With the first ~10 000 spectra of the flux limited zCOSMOS sample (I_(AB) ≤ 22.5) we want to study the evolution of environmental effects on galaxy properties since z ~ 1.0, and to disentangle the dependence among galaxy colour, stellar mass and local density. Methods. We use our previously derived 3D local density contrast δ, computed with the 5th nearest neighbour approach, to study the evolution with z of the environmental effects on galaxy U-B colour, D4000 Å break and [OII]λ3727 equivalent width (EW[OII]). We also analyze the implications due to the use of different galaxy selections, using luminosity or stellar mass, and we disentangle the relations among colour, stellar mass and δ studying the colour-density relation in narrow mass bins. Results. We confirm that within a luminosity-limited sample (M_B ≤ −20.5 − z) the fraction of red (U − B ≥ 1) galaxies depends on δ at least up to z ~ 1, with red galaxies residing mainly in high densities. This trend becomes weaker for increasing redshifts, and it is mirrored by the behaviour of the fraction of galaxies with D4000 Å break ≥1.4. We also find that up to z ~ 1 the fraction of galaxies with log(EW[OII]) ≥ 1.15 is higher for lower δ, and also this dependence weakens for increasing z. Given the triple dependence among galaxy colours, stellar mass and δ, the colour-δ relation that we find in the luminosity-selected sample can be due to the broad range of stellar masses embedded in the sample. Thus, we study the colour-δ relation in narrow mass bins within mass complete subsamples, defining red galaxies with a colour threshold roughly parallel to the red sequence in the colour-mass plane. We find that once mass is fixed the colour-δ relation is globally flat up to z ~ 1 for galaxies with log(M/M_⊙) ≳ 10.7. This means that for these masses any colour-δ relation found within a luminosity-selected sample is the result of the combined colour-mass and mass-δ relations. On the contrary, even at fixed mass we observe that within 0.1 ≤ z ≤ 0.5 the fraction of red galaxies with log(M/M_⊙) ≲ 10.7 depends on δ. For these mass and redshift ranges, environment affects directly also galaxy colours. Conclusions. We suggest a scenario in which the colour depends primarily on stellar mass, but for an intermediate mass regime (10.2 ≲ log(M/M_⊙) ≲ 10.7) the local density modulates this dependence. These relatively low mass galaxies formed more recently, in an epoch when more evolved structures were already in place, and their longer SFH allowed environment-driven physical processes to operate during longer periods of time

    Isolated galaxies in hierarchical galaxy formation models - present-day properties and environmental histories

    Full text link
    In this study, we have carried out a detailed, statistical analysis of isolated model galaxies, taking advantage of publicly available hierarchical galaxy formation models. To select isolated galaxies, we employ 2D methods widely used in the observational literature, as well as a more stringent 3D isolation criterion that uses the full 3D-real space information. In qualitative agreement with observational results, isolated model galaxies have larger fractions of late-type, star forming galaxies with respect to randomly selected samples of galaxies with the same mass distribution. We also find that the samples of isolated model galaxies typically contain a fraction of less than 15 per cent of satellite galaxies, that reside at the outskirts of their parent haloes where the galaxy number density is low. Projection effects cause a contamination of 2D samples of about 18 per cent, while we estimate a typical completeness of 65 per cent. Our model isolated samples also include a very small (few per cent) fraction of bulge dominated galaxies (B/T > 0.8) whose bulges have been built mainly by minor mergers. Our study demonstrates that about 65-70 per cent of 2D isolated galaxies that are classified as isolated at z = 0 have indeed been completely isolated since z = 1 and only 7 per cent have had more than 3 neighbours within a comoving radius of 1 Mpc. Irrespectively of the isolation criteria, roughly 45 per cent of isolated galaxies have experienced at least one merger event in the past (most of the mergers are minor, with mass ratios between 1:4 and 1:10). The latter point validates the approximation that isolated galaxies have been mainly influenced by internal processes.Comment: 15 pages, 13 figures, minor changes in the text, accepted for publication by MNRA

    Reconstructing the galaxy density field with photometric redshifts: II. Environment-dependent galaxy evolution since z3z \simeq 3

    Get PDF
    Although extensively investigated, the role of the environment in galaxy formation is still not well understood. In this context, the Galaxy Stellar Mass Function (GSMF) is a powerful tool to understand how environment relates to galaxy mass assembly and the quenching of star-formation. In this work, we make use of the high-precision photometric redshifts of the UltraVISTA Survey to study the GSMF in different environments up to z3z \sim 3, on physical scales from 0.3 to 2 Mpc, down to masses of M1010MM \sim 10^{10} M_{\odot}. We witness the appearance of environmental signatures for both quiescent and star-forming galaxies. We find that the shape of the GSMF of quiescent galaxies is different in high- and low-density environments up to z2z \sim 2 with the high-mass end (M1011MM \gtrsim 10^{11} M_{\odot}) being enhanced in high-density environments. On the contrary, for star-forming galaxies a difference between the GSMF in high- and low density environments is present for masses M1011MM \lesssim 10^{11} M_{\odot}. Star-forming galaxies in this mass range appear to be more frequent in low-density environments up to z<1.5z < 1.5. Differences in the shape of the GSMF are not visible anymore at z>2z > 2. Our results, in terms of general trends in the shape of the GSMF, are in agreement with a scenario in which galaxies are quenched when they enter hot gas-dominated massive haloes which are preferentially in high-density environments.Comment: 18 pages, 10 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    A flexible scintillation light apparatus for rare event searches

    Get PDF
    Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for neutrinoless double beta decay are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO4 scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the neutrinoless double beta decay of 100Mo as high as ~10E24 years in only one year of data taking. The same array made of 40CaMoO4 scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of 48Ca) will instead be capable of achieving the remarkable sensitivity of ~10E25 years on the half-life of 100Mo neutrinoless double beta decay in only one year of measurement.Comment: 12 pages, 4 figures. Prepared for submission to EPJ

    The VIMOS VLT Deep Survey. The different assembly history of passive and star-forming L_B >= L*_B galaxies in the group environment at z < 1

    Full text link
    We use the VIMOS VLT Deep Survey to study the close environment of galaxies in groups at 0.2 = L*_B galaxies (Me_B = M_B + 1.1z <= -20) are identified with Me_B <= -18.25 and within a relative distance 5h^-1 kpc <= rp <= 100h^-1 kpc and relative velocity Delta v <= 500 km/s . The richness N of a group is defined as the number of Me_B <= -18.25 galaxies belonging to that group. We split our principal sample into red, passive galaxies with NUV - r >= 4.25 and blue, star-forming galaxies with NUV - r < 4.25. We find that blue galaxies with a close companion are primarily located in poor groups, while the red ones are in rich groups. The number of close neighbours per red galaxy increases with N, with n_red being proportional to 0.11N, while that of blue galaxies does not depend on N and is roughly constant. In addition, these trends are found to be independent of redshift, and only the average n_blue evolves, decreasing with cosmic time. Our results support the following assembly history of L_B >= L*_B galaxies in the group environment: red, massive galaxies were formed in or accreted by the dark matter halo of the group at early times (z >= 1), therefore their number of neighbours provides a fossil record of the stellar mass assembly of groups, traced by their richness N. On the other hand, blue, less massive galaxies have recently been accreted by the group potential and are still in their parent dark matter halo, having the same number of neighbours irrespective of N. As time goes by, these blue galaxies settle in the group potential and turn red and/or fainter, thus becoming satellite galaxies in the group. With a toy quenching model, we estimate an infall rate of field galaxies into the group environment of R_infall = 0.9 - 1.5 x 10^-4 Mpc^-3 Gyr^-1 at z ~ 0.7.Comment: Astronomy and Astrophysics, in press. 11 pages, 11 figures, 4 tables. Minor changes with respect to the first versio

    Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey

    Full text link
    The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of depth, angular size and number of measured galaxies among surveys of the distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep), 35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5, in addition to measuring accurately evolution in the properties of galaxies up to z~4. This paper concentrates on the main results obtained so far on galaxy clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm 0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The interplay of galaxy and structure evolution in producing this observation is discussed in some detail. Galaxy clustering is found to depend on galaxy luminosity also at z~ 1, but luminous galaxies at this redshift show a significantly steeper small-scale correlation function than their z=0 counterparts. Finally, red galaxies remain more clustered than blue galaxies out to similar redshifts, with a nearly constant relative bias among the two classes, b_{rel}~1.4, despite the rather dramatic evolution of the color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects in Astrophysics and Particle Physics", May 2006, proc. edited by F. Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori, Bologna

    The 10k zCOSMOS: morphological transformation of galaxies in the group environment since z~1

    Full text link
    We study the evolution of galaxies inside and outside of the group environment since z=1 using a large well defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morphologies increases monotonically with M_B luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z~0.5 and log(M*/Msol)~10.2, the "effect" of group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving colour and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to 3-4 times higher correcting for infall and the appearance of new groups. The rates reach values, for masses around the crossing mass 10^10.5 Msol, as high as (0.3-0.7)/Gyr in the groups, implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2/Gyr, i.e. timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must decrease also at the lower masses below 10^10 Msol which we cannot well probe. The rates involving colour and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations which drive the evolution of the overall galaxy population since z~1 must occur at a rate 2-4 times higher in groups than outside of them.Comment: 21 pages, 13 figures, submitted to Ap

    The Evolution of Cluster Early-Type Galaxies over the Past 8 Gyr

    Full text link
    We present the Fundamental Plane (FP) of early-type galaxies in the clusters of galaxies RXJ1415.1+3612 at z=1.013. This is the first detailed FP investigation of cluster early-type galaxies at redshift z=1. The distant cluster galaxies follow a steeper FP relation compared to the local FP. The change in the slope of the FP can be interpreted as a mass-dependent evolution. To analyse in more detail the galaxy population in high redshift galaxy clusters at 0.8<z<1, we combine our sample with a previous detailed spectroscopic study of 38 early-type galaxies in two distant galaxy clusters, RXJ0152.7-1357 at z=0.83 and RXJ1226.9+3332 at z=0.89. For all clusters Gemini/GMOS spectroscopy with high signal-to-noise and intermediate-resolution has been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS imaging, surface brightness profiles, morphologies and structural parameters were derived for the galaxy sample. The least massive galaxies (M=2x10^{10}M_{\sun}) in our sample have experienced their most recent major star formation burst at z_{form}~1.1. For massive galaxies (M>2x10^{11}M_{\sun}) the bulk of their stellar populations have been formed earlier z_{form}>~1.6. Our results confirm previous findings by Jorgensen et al. This suggests that the less massive galaxies in the distant clusters have much younger stellar populations than their more massive counterparts. One explanation is that low-mass cluster galaxies have experienced more extended star formation histories with more frequent bursts of star formation with shorter duration compared to the formation history of high-mass cluster galaxies.Comment: 6 pages, 2 figures, Talk for "Matter Cycles of Galaxies in Clusters", presented at JENAM 2008, Vienna, to be published in Astronomische Nachrichten in Nov 2009 (proceedings of Symposium 6 of the JENAM 2008, Vienna

    A Halo Model with Environment Dependence: Theoretical Considerations

    Get PDF
    We present a modification of the standard halo model with the goal of providing an improved description of galaxy clustering. Recent surveys, like the Sloan Digital Sky Survey (SDSS) and the Anglo-Australian Two-degree survey (2dF), have shown that there seems to be a correlation between the clustering of galaxies and their properties such as metallicity and star formation rate, which are believed to be environment-dependent. This environmental dependence is not included in the standard halo model where the host halo mass is the only variable specifying galaxy properties. In our approach, the halo properties i.e., the concentration, and the Halo Occupation Distribution --HOD-- prescription, will not only depend on the halo mass (like in the standard halo model) but also on the halo environment. We examine how different environmental dependence of halo concentration and HOD prescription affect the correlation function. We see that at the level of dark matter, the concentration of haloes affects moderately the dark matter correlation function only at small scales. However the galaxy correlation function is extremely sensitive to the HOD details, even when only the HOD of a small fraction of haloes is modified.Comment: 23 pages, 17 figures. Accepted for publication in MNRA
    corecore