Compelling experimental evidences of neutrino oscillations and their
implication that neutrinos are massive particles have given neutrinoless double
beta decay a central role in astroparticle physics. In fact, the discovery of
this elusive decay would be a major breakthrough, unveiling that neutrino and
antineutrino are the same particle and that the lepton number is not conserved.
It would also impact our efforts to establish the absolute neutrino mass scale
and, ultimately, understand elementary particle interaction unification. All
current experimental programs to search for neutrinoless double beta decay are
facing with the technical and financial challenge of increasing the
experimental mass while maintaining incredibly low levels of spurious
background. The new concept described in this paper could be the answer which
combines all the features of an ideal experiment: energy resolution, low cost
mass scalability, isotope choice flexibility and many powerful handles to make
the background negligible. The proposed technology is based on the use of
arrays of silicon detectors cooled to 120 K to optimize the collection of the
scintillation light emitted by ultra-pure crystals. It is shown that with a 54
kg array of natural CaMoO4 scintillation detectors of this type it is possible
to yield a competitive sensitivity on the half-life of the neutrinoless double
beta decay of 100Mo as high as ~10E24 years in only one year of data taking.
The same array made of 40CaMoO4 scintillation detectors (to get rid of the
continuous background coming from the two neutrino double beta decay of 48Ca)
will instead be capable of achieving the remarkable sensitivity of ~10E25 years
on the half-life of 100Mo neutrinoless double beta decay in only one year of
measurement.Comment: 12 pages, 4 figures. Prepared for submission to EPJ