35 research outputs found
Phase transitions and critical behavior of black branes in canonical ensemble
We study the thermodynamics and phase structure of asymptotically flat
non-dilatonic as well as dilatonic black branes in a cavity in arbitrary
dimensions (). We consider the canonical ensemble and so the charge inside
the cavity and the temperature at the wall are fixed. We analyze the stability
of the black brane equilibrium states and derive the phase structures. For the
zero charge case we find an analog of Hawking-Page phase transition for these
black branes in arbitrary dimensions. When the charge is non-zero, we find that
below a critical value of the charge, the phase diagram has a line of
first-order phase transition in a certain range of temperatures which ends up
at a second order phase transition point (critical point) as the charge attains
the critical value. We calculate the critical exponents at that critical point.
Although our discussion is mainly concerned with the non-dilatonic branes, we
show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action
discussed, references adde
Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization
We investigate the critical behaviour of charged and rotating AdS black holes
in d spacetime dimensions, including effects from non-linear electrodynamics
via the Born-Infeld action, in an extended phase space in which the
cosmological constant is interpreted as thermodynamic pressure. For
Reissner-Nordstrom black holes we find that the analogy with the Van der Walls
liquid-gas system holds in any dimension greater than three, and that the
critical exponents coincide with those of the Van der Waals system. We find
that neutral slowly rotating black holes in four space-time dimensions also
have the same qualitative behaviour. However charged and rotating black holes
in three spacetime dimensions do not exhibit critical phenomena. For
Born-Infeld black holes we define a new thermodynamic quantity B conjugate to
the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We
demonstrate that this quantity is required for consistency of both the first
law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions
The phase diagram of quark gluon plasma (QGP) formed at a very early stage
just after the heavy ion collision is obtained by using a holographic dual
model for the heavy ion collision. In this dual model colliding ions are
described by the charged shock gravitational waves. Points on the phase diagram
correspond to the QGP or hadronic matter with given temperatures and chemical
potentials. The phase of QGP in dual terms is related to the case when the
collision of shock waves leads to formation of trapped surface. Hadronic matter
and other confined states correspond to the absence of trapped surface after
collision.
Multiplicity of the ion collision process is estimated in the dual language
as area of the trapped surface. We show that a non-zero chemical potential
reduces the multiplicity. To plot the phase diagram we use two different dual
models of colliding ions, the point and the wall shock waves, and find
qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
We perform a general study of the thermodynamic properties of static
electrically charged black hole solutions of nonlinear electrodynamics
minimally coupled to gravitation in three space dimensions. The Lagrangian
densities governing the dynamics of these models in flat space are defined as
arbitrary functions of the gauge field invariants, constrained by some
requirements for physical admissibility. The exhaustive classification of these
theories in flat space, in terms of the behaviour of the Lagrangian densities
in vacuum and on the boundary of their domain of definition, defines twelve
families of admissible models. When these models are coupled to gravity, the
flat space classification leads to a complete characterization of the
associated sets of gravitating electrostatic spherically symmetric solutions by
their central and asymptotic behaviours. We focus on nine of these families,
which support asymptotically Schwarzschild-like black hole configurations, for
which the thermodynamic analysis is possible and pertinent. In this way, the
thermodynamic laws are extended to the sets of black hole solutions of these
families, for which the generic behaviours of the relevant state variables are
classified and thoroughly analyzed in terms of the aforementioned boundary
properties of the Lagrangians. Moreover, we find universal scaling laws (which
hold and are the same for all the black hole solutions of models belonging to
any of the nine families) running the thermodynamic variables with the electric
charge and the horizon radius. These scale transformations form a one-parameter
multiplicative group, leading to universal "renormalization group"-like
first-order differential equations. The beams of characteristics of these
equations generate the full set of black hole states associated to any of these
gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex
style; minor corrections added; final version appearing in General Relativity
and Gravitatio
Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice
P-V criticality of charged AdS black holes
Treating the cosmological constant as a thermodynamic pressure and its
conjugate quantity as a thermodynamic volume, we reconsider the critical
behaviour of charged AdS black holes. We complete the analogy of this system
with the liquid-gas system and study its critical point, which occurs at the
point of divergence of specific heat at constant pressure. We calculate the
critical exponents and show that they coincide with those of the Van der Waals
system.Comment: 13 pages, 15 figures, v2:added reference
Genome-Wide Analyses of Nkx2-1 Binding to Transcriptional Target Genes Uncover Novel Regulatory Patterns Conserved in Lung Development and Tumors
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors
Following the genes: a framework for animal modeling of psychiatric disorders
The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans
