138 research outputs found

    Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?

    Get PDF
    Background: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce selfing; however, this has not been accurately assessed. Methodology/Principal Findings: This expectation was tested over two years in two natural populations of the closely related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the cyathia level. Both spurges showed a high population synchrony (Z,79), and their inflorescences flower synchronously. In E. nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was partially self-incompatible. Conclusions/Significance: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each process is sufficiently effective in avoiding self-fertilization.España Ministerio de Ciencia y Tecnología PLO CGL2005-03731; CGL2008-02533-EEspaña Ministerio de Ciencia y Tecnología MA CGL2009-0825

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    Nectar palatability can selectively filter bird and insect visitors to coral tree flowers

    Get PDF
    Secondary compounds in nectar may play a decisive role in determining the spectrum of floral visitors on plants. Flowers of the African coral tree Erythrina caffra are visited mainly by generalist passerine nectarivores, such as weavers and bulbuls. As the nectar of this species tastes very bitter to humans, it was hypothesized that secondary compounds may repel sunbirds and honeybees which are common in the same habitats yet seldom consume the nectar. We conducted choice tests using fresh nectar and both sucrose and hexose (glucose/fructose) solutions of the same concentration as the nectar. Whitebellied Sunbirds (Cinnyris talatala) were repelled by nectar of both E. caffra and a related species Erythrina lysistemon, but Dark-capped Bulbuls (Pycnonotus tricolor) did not discriminate between the Erythrina nectar and control sugar solution in terms of amounts consumed. Honeybees (Apis mellifera scutellata) probed exposed droplets of E. caffra nectar and a control sugar solution at the same rate, suggesting that there is no volatile deterrent, but they immediately withdrew their proboscis far more often from the droplets of Erythrina nectar than they did from the sugar solution, suggesting that they find Erythrina nectar distasteful. These results contribute to a growing awareness that non-sugar components of nectar can play important functional roles in plant pollination systems.South African National Research Foundation (NRF)http://link.springer.com/journal/106822016-03-31hb201

    Kinin-B2 Receptor Mediated Neuroprotection after NMDA Excitotoxicity Is Reversed in the Presence of Kinin-B1 Receptor Agonists

    Get PDF
    Background: Kinins, with bradykinin and des-Arg 9-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg 9-bradykinin as well as Lys-des-Arg 9-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-Daspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings: Bradykinin at 10 nM and 1 mM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg 9-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spik

    Pollen-ovule relation in Adesmia tristis and reflections on the seed–ovule ratio by interaction with pollinators in two vertical strata

    Get PDF
    The vertical distribution of pollinators is an important component in the foraging pattern of plants strata, and it influences the reproductive system (pollen/ovule ratio) and seed/ovule ratio. Niches in two different strata from Adesmia tristis Vogel were evaluated in these aspects. This plant is an endemic shrub from the Campos de Cima da Serra in Southern Brazil. The studies were carried out from January 2010, to January 2011, at Pró-Mata/PUCRS (Catholic University of Rio Grande do Sul) (29°27'-29°35'S and 50°08'-50°15'W), São Francisco de Paula, sate of Rio Grande do Sul, Brazil. Breeding system of A. tristis is mandatory allogamy. The vertical profile in A. tristis has differentiated foraging niches among the most common pollinators. Bees of Megachile genus forage in the upper stratum, and representative bees of the Andrenidae family explore the lower stratum. The upper stratum of the vertical profile had more contribution to seed production. Adesmia tristis showed evidence of pollination deficitA distribuição vertical dos polinizadores é um importante componente no padrão de forrageamento nos estratos das plantas e influencia o sistema reprodutivo (relação pólen/ óvulo) e a razão semente/óvulo. Nichos em dois estratos diferentes de Adesmia tristis Vogel foram avaliados quanto a esses aspectos. Essa planta é um arbusto endêmico dos campos de Cima da Serra no Sul do Brasil. Os estudos ocorreram de janeiro de 2010 a janeiro de 2011, no Pró- Mata/PUCRS (Pontifícia Universidade Católica do Rio Grande do Sul) (29°27'-29°35'S e 50°08'-50°15'W), São Francisco de Paula, estado do Rio Grande do Sul, Brasil. O sistema reprodutivo de A. tristis é alogamia obrigatória. O perfil vertical em A. tristis possui diferentes nichos de forrageamento entre os polinizadores mais comuns. Abelhas do gênero Megachile forrageiam no estrato superior e as abelhas representantes da família Andrenidae exploram o estrato inferior. O estrato superior do perfil vertical contribui mais na produção de sementes. Adesmia tristis apresentou evidências de déficit de polinizaçã

    Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries

    Get PDF
    Plants on oceanic islands often originate from self-compatible (SC) colonizers capable of seed set by self fertilization. This fact is supported by empirical studies, and is rooted in the hypothesis that one (or few) individuals could find a sexual population, whereas two or more would be required if the colonizers were self-incompatible (SI). However, a SC colonizer would have lower heterozygosity than SI colonizers, which could limit radiation and diver sification of lineages following establishment. Limited evidence suggests that several species-rich island lineages in the family Asteraceae originated from SI colonizers with some ‘‘leakiness’’ (pseudo-self-compatibility, PSC) such that some self-seed could be produced. This study of Tolpis (Asteraceae) in Macaronesia provides first reports of the breeding system in species from the Azores and Madeira, and additional insights into variation in Canary Islands. Tolpis from the Azores and Madeira are predominately SI but with PSC. This study suggests that the breeding sys tems of the ancestors were either PSC, possibly from a single colonizer, or from SI colonizers by multiple dis seminules either from a single or multiple dispersals. Long distance colonists capable of PSC combine the advantages of reproductive assurance (via selfing) in the establishment of sexual populations from even a single colonizer with the higher heterozygosity resulting from its origin from an outcrossed source population. Evolution of Tolpis on the Canaries and Madeira has generated diversity in breeding systems, including the origin of SC. Macaronesian Tolpis is an excellent system for studying breeding system evolution in a small, diverse lineage.info:eu-repo/semantics/publishedVersio

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt

    How and why do nectar-foraging bumblebees initiate movements between inflorescences of wild bergamot Monarda fistulosa (Lamiaceae)?

    Full text link
    By experimental manipulation of the nectar in flowers, I characterized the decision-making process used by nectar-gathering bumblebees for initiating movements between inflorescences of wild bergamot. The decision-making process has these characteristics: departure from an inflorescence is less likely as nectar rewards increase; departure decisions are based on the amount of nectar in the last flower probed and are not influenced by the nectar rewards in either the previously probed flower or the previously visited inflorescence; the number of flowers already probed at an inflorescence influences departure decisions weakly; a bees' response (to stay or to depart) to a given size of nectar reward is variable. Since previously proposed foraging rules do not accord with this description, I propose a new rule. I show by experiment that the movements made by bumblebees enhance foraging success.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47784/1/442_2004_Article_BF00319785.pd
    corecore