286 research outputs found

    Energy recovery from waste in India:an evidence-based analysis

    Get PDF
    The uptake of Waste-to-Energy (WtE) in India has not been successful and the majority of plants have failed to sustain operations. There is a lack of detailed on-the-ground research examining the causes of plant failures and the issues regarding the WtE supply chain. Thus, this study set out to identify how WtE practices in India can be improved by gathering and evaluating empirical evidence. Local government officers, industry practitioners and academics involved in waste management in India were consulted. Quantitative data were collected on three case study plants: an incinerator, a gasification plant and a plant co-firing waste with coal. The gathered information was evaluated by making a comparison with two European waste incinerators. The major problem with WtE in India has typically been perceived to be poor source segregation; however, the case study plants highlight that severe contamination has been occurring during transport and storage. In comparison to the European incinerators, the WtE plants in India had a low capital cost (around 1–2 million €/MW), but total particulate matter emissions were a hundred times higher, ranging from 65 to 75 mg/Nm3. We conclude with recommendations for delivery contracts, financial incentives and regulations on dumpsites, ash disposal and stack emission measurements

    Closing the Gap between ‘Expert’ and ‘Lay’ Knowledge in the Governance of Wastewater: Lessons and Reflections from New Delhi

    Get PDF
    The wastewater crisis in megacities of the Global South is increasingly recognised. However, sector?driven approaches (of river pollution, sewerage, or city?wide drainage) have had limited success in tackling this multifaceted problem. This article seeks to dynamise debates by positioning the current crisis in relation to contests of knowledge. Focusing on wastewater governance in Delhi, the article explores the question which different knowledges about wastewater exist in scientific communities, governments, and amongst citizens. What is frequently understood as ‘expert’ knowledge of the Central Pollution Control Board, is juxtaposed with the ‘lay’ experiences of citizens residing in one unauthorised colony in East Delhi. Exploring both, the article provides insights on the mechanisms through which community experiences are excluded from policy deliberations, leading to major wastewater?related problems being overlooked. The article then calls for enhanced attention to knowledge integration, thus strengthening the participation of citizens in formulation and implementation of wastewater programmes

    Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Get PDF
    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth (Eichhornia crassipes) and two algae (Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3–8.4, whereas COD reduced by 50–65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40−50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation

    Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa

    Get PDF
    The leather industry is a major source of environmental pollution in India. The wastewater generated by leather industries contains very high pollution parameters due to the presence of a complex mixture of organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP) and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using Vigna radiata L. and Allium cepa L. Results showed that the treated wastewater contained very high pollution parameters (TDS 3850mg/L, BOD 680mg/L, COD-1300mg/L). GC-MS analysis revealed the presence of various types of residual organic pollutants including benzoic acid, 3-[4,-(T-butyl) Phenyl] furan-2-5-dione, benzeneacetamide, resorcinol, dibutyl phthalate, and benzene-1,2,4-triol. Further, toxicological studies showed the phytotoxic nature of the wastewater as it inhibited seed germination in V. radiata L. and root growth of A. cepa. Genotoxicity was evidenced in the root tip cell of A. cepa where chromosomal aberrations (stickiness, chromosome loss, C-mitosis, and vagrant chromosome) and nuclear abnormalities like micronucleated and binucleated cells were observed. Thus, results suggested that it is not safe to discharge these wastewater into the environment

    Reactive Nitrogen in Coastal and Marine Waters of India and Its Relationship With Marine Aquaculture

    Get PDF
    India is bordered in the soutii, south-west, and south-east with Indian Ocean, Arabian Sea (AS), and the Bay of Bengal (BOB), respectively. Indian coast is 7517 km long comprising 5423 km in the peninsular India and 2094 km in Andaman and Nicobar, and Lakshadweep Islands. The Indian exclusive economic zone (EEZ) is spread in 2.02 million sq km (0.86 million sq km in west coast, 0.56 m illion sq km in east coast and 0.6 million sq km in Andaman and Nicobar Islands). The Indian marine environmentconsisting of adjoining coastal areas and EEZ directly sustains useful habitats and suppons the livelihood of 3.9 million fishers. Nearly 25% of the country’s population resides in these areas and about 340 communities are primarily occupied in marine and coastal fisheries (MoEF, 2009; SACEP, 2014). Nitrogen (N) exists in various chemical forms, produced by marine biota through several chemical transformations during their growth and metabolism in the marine environment. Nitrogen as N2 is generally unavailable in marine conditions and thereby, the equilibrium of the processes of N2 fixation (conversion of atmospheric N2 to organic nitrogen) and denitrification (conversion of nitrate to N2) decides the bioavailable nitrogen supply and productivity (Gruber, 2008)
    corecore