518 research outputs found

    Chiral drag force

    Get PDF
    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks and in that they are proportional to the coefficient of the axial anomaly. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.Comment: 28 pages, small improvement to the discussion of gravitational anomaly, references adde

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Effect of microneedles on transdermal permeation enhancement of amlodipine

    Get PDF
    The present study aimed to investigate the effect of microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of amlodipine (AMLO). Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77-cm2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses were done using dimensionless parameters like concentration of AMLO (Ct/Cs), thickness (h/L) and surface area of the skin (Sa/L2). Microinjection moulding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 6.84- and 6.11-fold increase in the cumulative amount (48 h) of AMLO permeated was observed with 1.5 mm ADM and PM-3 treatments respectively, when compared to passive permeation amounts. Good correlations (R2 > 0.89) were observed between different dimensionless parameters with scaling analyses. The enhancement in AMLO permeation was found to be in the order of 1.5 mm ADM ≥ PM-3 > 1.2 mm ADM > 0.6 mm ADM ≥PM-1 > passive. The study suggests that MN application enhances the AMLO transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement

    Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of <it>Tinospora cordifolia </it>extract that are exerted on circulating macrophages isolated from CCl<sub>4 </sub>(0.5 ml/kg body weight) intoxicated male albino mice.</p> <p>Methods</p> <p>Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. <it>T. cordifolia </it>extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay.</p> <p>Results</p> <p>The number of morphologically altered macrophages was increased in mice exposed to CCl<sub>4</sub>. Administration of CCl<sub>4 </sub>(i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl<sub>4 </sub>intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl<sub>4. </sub>However oral administration of aqueous fraction of <it>Tinospora cordifolia </it>stem parts at a dose of 40 mg/kg body weight (<it>in vivo</it>) in CCl<sub>4 </sub>exposed mice ameliorated the effect of CCl<sub>4</sub>, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl<sub>4 </sub>intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of <it>Tinospora cordifolia </it>at a dose of 150 mg/kg body weight.</p> <p>Conclusion</p> <p>From our findings it can be suggested that, polar fractions of <it>Tinospora cordifolia </it>stem parts contain major bioactive compounds, which directly act on peritoneal macrophages and have been found to boost the non-specific host defenses of the immune system. However, the molecular mechanism of this activity of <it>Tinospora cordifolia </it>on immune functions needs to be elucidated.</p

    Long term survival after coronary endarterectomy in patients undergoing combined coronary and valvular surgery – a fifteen year experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary Endarterectomy (CE) in patients undergoing coronary artery bypass graft (CABG) surgery has been shown to be beneficial in those with diffuse coronary artery disease. There are no published data on its role and benefit in patients undergoing more complex operations. We present our experience with CE in patients undergoing valve surgery with concomitant CABG.</p> <p>Materials and methods</p> <p>Between 1989 and 2003, 237 patients underwent CABG with valve surgery under a single surgeon at our institution. Of these, 41 patients needed CE. Data was retrospectively obtained from hospital records and database. Further follow-up was obtained by telephone interview. All variables were analyzed by univariate analysis for significant factors relating to hospital mortality. Morbidity and long term survival was also studied. There were 29 males and 12 females with a mean age of 67.4 ± 8.1 and body mass index of 26.3 ± 3.3. Their mean euroscore was 7.6 ± 3.2 and the log euro score was 12.2 ± 16.1.</p> <p>Results</p> <p>Thirty-two patients were discharged from the intensive therapy unit within 48 hours after surgery. Average hospital stay was 12.7 ± 10.43 days. Thirty day mortality was 9.8%. Six late deaths occurred during the 14 year follow up. Ten year survival was 57.2% (95% CL 37.8%–86.6%). Three of the survivors had Class II symptoms, with one requiring nitrates. None required further percutaneous or surgical intervention. We compared the result with the available mortality figure from the SCTS database.</p> <p>Conclusion</p> <p>Compared to the SCTS database for these patients, we have observed that CE does not increase the mortality in combined procedures. By accomplishing revascularization in areas deemed ungraftable, we have shown an added survival benefit in this group of patients.</p

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Functional Connectivity fMRI of the Rodent Brain: Comparison of Functional Connectivity Networks in Rat and Mouse

    Get PDF
    At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore