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ABSTRACT 

The present study was aimed to investigate the effect of microneedle (MN) geometry 

parameters like length, density, shape and type on transdermal permeation enhancement of 

Amlodipine (AMLO). Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 1.2 

and 1.5 mm lengths) and laboratory fabricated polymeric MNs (PM) of 0.6 mm length were 

employed.  In the case of PMs, arrays were applied thrice at different places within a 1.77cm2 

skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses was 

done using dimensionless parameters like concentration of AMLO (Ct/Cs), thickness (h/L) 

and surface area of the skin (Sa/L2). Micro-injection moulding technique was employed to 

fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, 

formed wider and deeper microconduits when compared to ADM of similar length. 

Approximately 6.84 and 6.11 fold increase in the cumulative amount (48 h) of AMLO 

permeated was observed with 1.5 mm ADM and PM-3 treatments respectively, when 

compared to passive permeation amounts. Good correlations (R2 > 0.89) were observed 

between different dimensionless parameters with scaling analyses. The enhancement in 

AMLO permeation was found to be in the order of 1.5mm ADM ≥ PM-3 > 1.2mm ADM > 

0.6mm ADM ≥PM-1 > Passive. The study suggests that MN application enhances the AMLO 

transdermal permeation and the geometrical parameters of MNs play an important role in the 

degree of such enhancement. 

 

Keywords: Amlodipine, Histological examination, Microneedle geometry, Scaling analyses, 
Transdermal permeation. 
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INTRODUCTION 

Delivering medicines to the systemic circulation through the skin is considered as a good 

alternative to conventional oral or parenteral routes of administration owing to the advantages 

like lack of pain, ease of administration, etc., thus improving patient compliance; while 

improving the overall therapeutic gain of the drug by bypassing the gastrointestinal tract, 

avoiding hepatic first pass metabolism, maintaining a constant and prolonged drug level in 

plasma, etc [1, 2]. These advantages make transdermal drug delivery particularly interesting 

and beneficial in the management of conditions like hypertension that impose the burden of 

repeat dosage and chronic administration of medicines via conventional routes. 

Hypertension, reputed as ‘the silent killer’, is affecting about 70 million people and accounts 

for 9.4 million deaths worldwide every year. It is arguably the most important risk factor for 

coronary heart disease and stroke [3, 4]. Amlodipine besylate (AMLO) is a calcium channel 

blocker used to treat hypertension and associated cardiovascular diseases. On oral 

administration, it undergoes extensive first pass metabolism and has an oral bioavailability 

(BA) of only 60-65% and is also associated with several side effects such as nausea, stomach 

pain, flushing, etc., [5, 6]. Hence, transdermal delivery of AMLO may alleviate the side 

effects, improve the BA and overall patient compliance towards medication. However, 

AMLO, with an n-octanol/water log P values of 0.65,1.33 and was reported to be too 

hydrophilic to permeate through skin at significant rates without the application of any 

transdermal permeation enhancement technique [7]. 

Several attempts have been made to overcome the excellent barrier properties of the stratum 

corneum, the outer most layer of skin, to enhance transdermal delivery of AMLO. Use of 

different chemical permeation enhancers like sodium lauryl sulphate, Alcohol, propylene 
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glycol, etc. was reported to increase the transdermal permeation of AMLO to certain extent, 

however, not clinically significant [7-10].  

Microneedles (MN), a novel transdermal permeation enhancement technique, are minimally 

invasive and potentially painless method of overcoming the barrier properties of skin for 

enhanced delivery of drugs [11].  This technique has many advantages when compared to 

hypodermic injection, is believed to make conduits of micrometer dimensions in skin layers 

in the epidermal layers (especially, SC) and thus believed to enhance the transdermal 

permeation of drugs [12]. MNs are known to improve the permeation of drug molecules, 

including macromolecules like insulin, growth hormone, etc [13-15].  

Monika et al., (2013), studied the effect of stainless steel solid microneedles and microneedle 

rollers on percutaneous penetration of verapamil hydrochloride and amlodipine besylate [16]. 

The study inferred a statistically significant enhancement in transdermal permeation of both 

molecules following MN application. Even though two types of MN devices viz. array and 

rollers were employed in the study, no further evaluation was carried out to determine their 

relative efficiency on permeation enhancement of AMLO. Transdermal permeation 

enhancement of drugs using microneedle technology is a complex phenomenon and it has 

been reported in the literature that several geometric parameters of MNs like shape, 

dimensions, density of MN on the device and type etc. play important roles in enhancing the 

transdermal permeation of drugs [17]. There is also interplay of the effect of these variables 

and, as such, their effects on the permeation of a drug molecule are generally non-intuitive. 

As a result, their effects are best studied for specific case [17, 18].  

Motivated by this idea, the present study was designed as a systematic approach to explore 

the effect of MN geometry on the extent of AMLO transdermal permeation enhancement. 

Two types of MN devices viz. commercially available AdminPatch® arrays (ADM) (0.6, 1.2 

and 1.5 mm length) and laboratory fabricated polymeric MN arrays (PM) (0.6 mm length) of 
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different MN densities were employed in this investigation (Fig. 1).  A number of different 

techniques like etching, lithography and moulding were discussed widely in the literature for 

the manufacture of MNs of different dimensions (100-1800 μm in length), shapes with 

different materials (plastics, silicon, ceramics, metals, etc.). Injection moulding offers several 

advantages in terms of ease of scalability for bulk manufacture, range of materials and good 

reproducibility [19].  In this study, micro-injection moulding was employed for fabrication of 

the polymeric MN arrays (PM) using PEEK LT-3 (polyether ether ketone) as reported in 

previous paper [20]. 

Surface visualization and histological evaluation of skin samples were carried out to confirm 

and to study formation miroconduits by application of either types of MN devices.  

Moreover, the obtained AMLO permeation data was subjected to mathematical treatment 

using scaling analyses to obtain correlations between dimensionless parameters like amount 

of AMLO permeated (Ct/Cs) and various variables of the study like surface area (Sa/L2) and 

thickness (h/L) of skin based on the principles of Buckingham π theorem as described in a 

previous papers in order to gain insights into the phenomenon of AMLO transport behaviour 

and distribution in the skin layers [21, 22]. 

 

MATERIALS AND METHODS 

Materials  

AdminPatch® MN arrays were purchased from AdminMed, Sunnyvale, U.S.A. Amlodipine 

besylate (AMLO) was obtained from Arene Life Sciences, Hyderabad, India; Sodium 

chloride, isopropyl alcohol, propylene glycol and 1%w/v Safranin solution from Loba 

Chemie, Mumbai, India; Formic acid, acetonitrile, methanol and HPLC water from Merck 

Specialities Pvt. Ltd, Mumbai, India; Haematoxylin and Eosin stain from Sigma-Aldrich, 
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Bengaluru, India. All the reagents and chemicals used in the study were of HPLC grade.  Pig 

ear skin was obtained from local abattoirs. 

Fabrication of Polymeric MN (PM) 

MN array components consisted of 25 conical needles, each 0.6 mm in length with a base 

diameter of 0.3 mm, in a 5 x 5 array over a 0.5 x 0.5 cm2 area, supported by a circular 

substrate of diameter 17.5 mm and thickness 0.5 mm. Moulding of these components was 

performed using a Wittmann-Battenfeld Micro-Power 15 micro-injection moulding machine 

as shown in Fig. 2A. This machine offers a high repeatability, accurate dosing, clean room 

facility, and robotic component handling which is ideal for the bulk manufacture of MNs.  

The MN mould insert (Fig. 2B) was made out of Stavax ESR (Bohler-Uddeholm Corp, Elgin, 

USA). Sink electrical discharge machining (EDM) was used to create negative MN features 

into the insert and was outsourced to Isometric tool and design Inc. (New Richmond, USA).  

The polymer used for this study is PEEK (Polyetheretherketone) LT-3 grade material, which 

is an FDA-approved semi-crystalline biomaterial manufactured by Invibio Inc, Lancashire, 

UK and is widely employed for medical use. The attractive characteristics of PEEK LT-3 for 

this application include its excellent processability, dimensional stability, mechanical 

strength, chemical resistance and resistance to gamma and ethylene oxide sterilisation 

methods. To ensure the moisture content of the material was suitable for processing, the 

material was dried at a temperature of 150 ºC for 4 hours prior to moulding. 

Moulding trials were performed to optimise the process parameters based on measurement of 

the needle dimensions and substrate flatness.  The optimised parameters for the moulding of 

PM are shown Table 1.  Once the process was stabilised, samples were collected for the 

subsequent experimental work. 
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MN dimensional evaluation 

Scanning electron microscope: 

A Hitachi TM-3000 table-top Scanning Electron Microscope was used for analysis of the MN 

insert and needle geometry. The Hitachi TM-3000 has a magnification from 15X to 30000X, 

sample chamber of 700 mm diameter and 50 mm thickness. It features 5 kV, 15 kV and 

analysis observation modes. Because of the high aspect ratio and low contrast of the MNs, 

analysis mode was used for imaging. The major advantage of using TM 3000 SEM was it 

works under low vacuum and does not need specimen coating. 

Confocal laser microscope: 

It is very important to measure the tip radius and height of the MNs and the most common 

methods used are optical or electron microscopy. Because of its steep and complex structures, 

a 3D image analysis gives a better measurement of the needle geometry and quality control. 

In this study an Olympus vertical scanning laser confocal microscope LEXT OLS 4000 was 

used to accurately measure the tip radius and height of MN arrays. 

The device offers a broad magnification range from 108X to 17280X and the exact 3D 

reconstruction of the MNs. The confocal laser microscope LEXT scans the surfaces with a 

laser beam with the wavelength of 405 nm thus allowing submicron visualization of material 

and component surfaces with the resolution of down to 0.10 µm. Measurements were taken 

with the 20X lens using the wide range stitching feature with 20 percent overlap to produce a 

measurement area of 5mm x 5mm. A five level brightness switch was enabled to accurately 

illuminate the specimen. 

Atomic force microscope: 

The most important feature of the MN is that the tip has to be sharp in order to effectively 

pierce the skin. So as to confirm the measurements made from confocal laser microscope, 

AFM (MFP-3D Asylum Research Santa Barbara, USA) was used to measure the tip radius of 
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the MNs. All AFM scans were made using an MFP-3D scanner from Asylum Research, 

Santa Barbara, USA. Silicon nitride cantilever tips (Applied Nanostructures, Santa Clara, 

USA) with a tip radius of 15 nm and spring constant of 0.3 Nm were used. Images were 

interpreted using integrated MFP-3D™ Igor software (USA). Errors in the piezo-linearity 

were corrected for by using zero and first order flattening. 

 

HPLC method  

RP-HPLC-PDA method was developed specifically for the analysis of AMLO in the 

transdermal permeation samples.  A Shimadzu Prominence HPLC system provided with 

DGU-20A3 degasser, LC-20AD binary pumps, SIL-20AHT auto sampler and SPD-M20A 

PDA detector was used for analysis of the samples.  Data acquisition was carried out using 

LC solutions software.  Separation was achieved on an Inertsil ODS column (250 × 4.6 mm; 

5 µm).  The mobile phase comprised of 0.01% v/v formic acid : acetonitril 70:30 (v/v) at a 

flow rate of 1.2 mL/min with an injection volume of 20 µL and the eluents were monitored at 

238 nm.  The developed method was validated as per ICH guidelines. 

 

Solubility studies  

The solubility of AMLO was studied in different vehicle combinations of propylene glycol 

(PG), polyethylene glycol-400 (PEG), and saline (S) at 70:30, 80:20 and 90:10% v/v ratios.  

To each vehicle system, excess amount of AMLO was added and vortexed for 1 min in order 

to obtain a saturated solution and the solutions were equilibrated at 37°C in an orbital shaker 

for 24 h.  After equilibration, the samples were centrifuged at 3000 rpm for 10 min and 

filtered through a nylon syringe filter (0.45µm) and all the samples were appropriately diluted 

and analysed by HPLC method. 
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Skin Preparation 

Pig ears were collected from the local abattoirs immediately after animals were killed by 

electric current.  The ears were transported to the laboratory in a cooling box without 

previous treatment.  In the laboratory, the pig ears were washed carefully with distilled water 

and the hair was removed from the external part of pig ear using an electrical hair clipper.  

Carefully the full-thickness skin from the external part of the pig ear was separated from 

underlying cartilage using a scalpel and excess fat underlying the skin was removed to a 

thickness of 1.2mm was employed for the in vitro transdermal permeation studies.  The 

dermis side was wiped with isopropyl alcohol to remove the residual adhering fat.  Processed 

skin samples were individually wrapped in plastic bags without air entrapment and stored in a 

deep freezer at -20°C until further use. 

  

Application of MNs on skin samples 

Prior to the in vitro skin permeation experiments, the skin samples were allowed to be 

brought to room temperature and then the skin surface was carefully washed with saline.  

Two types of MN devices viz, ADM (0.6, 1.2 and 1.5 mm) and PM (0.6mm) were used to 

poke the skin surface under thumb pressure.   In the case of PM, both single (PM-1) and triple 

(PM-3) insertions at different places within a 1.77cm2 skin area (PM-3) were made in order to 

maintain the MN density closer to ADM of 0.6mm length as shown in Fig. 1.  The MNs were 

periodically checked during this process for potential damage using a stereomicroscope. 

 

Surface visualization and histological examination of the skin samples  

To visually confirm the disruption of skin layers by the MNs, the arrays were pressed over 

the pig ear skin under thumb pressure and held for 1 min.  Then the skin was stained with 

safranin dye (1% w/v in water) and wiped with isopropanol cotton swabs for the 
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identification of the microconduits formed.  In the case of the histological studies, the skin 

section samples with and without MN treatments were prepared after staining with 

haematoxylin and eosin for visualization of skin layers and to display a clear indentation by 

MN penetration.  The sections were observed under a microscope (Olympus; Noida, India).  

The width and depth of microconduits formed were also calculated in triplicate (n = 3 skin 

samples for each MN) with the help of Toup View 3.2 Software (Irwin, U.S.A).  For control, 

skin samples without MN treatment were also prepared. 

 

In Vitro Skin Permeation Studies 

The in vitro transdermal permeation studies were performed using a vertical type Franz 

diffusion cell apparatus fitted with a water circulation system, a water heater and an eight 

stage magnetic stirrer (Orchid Scientifics, Nasik, India). Franz diffusion cells with an 

effective diffusion area of 1.77 cm2 and a receptor volume of around 14 mL were used.  

Saline was used as the receptor fluid.  Pig ear skin was mounted between the donor and 

receptor cells with the SC facing towards the donor cell.  The receptor medium was stirred 

for uniform drug distribution at a speed of 600 rpm throughout the experiment.  Care was 

taken to prevent the entrapment of air bubbles at the interface of the skin (dermis) and the 

receptor solution.  The surface of the skin was maintained at 32°C using a circulating water 

bath. After equilibration, 500 µL of donor solutions containing excess amount of AMLO 

were applied on to the skin (in the donor compartment).  Samples (500 µL) were withdrawn 

from the receptor fluid at six hour increments up to 48 hours and replaced with the fresh 

saline to maintain a constant volume.  All the samples were stored at 4°C, prior to the HPLC 

analysis. 

The cumulative permeation profiles were plotted for the cumulative amount of drug 

permeated (nmoL/cm2) as a function of time, for untreated and microneedle treated skin.  The 
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flux values and the respective lag times were obtained from the slope and the X-intercept of 

the steady state portion of the cumulative permeation profiles.  Apparent permeability and 

diffusion coefficient values were computed from Fick’s first law of diffusion: 

 

Js is the steady-state flux (nmoL/cm²/hr), M is the cumulative amount of drug permeating the 

skin (nmoL/cm²), A is the area of the skin (1.77 cm2), Kp is the apparent permeability 

coefficient (cm/hr), and ΔC is the difference in concentrations of AMLO in the donor and 

receiver. Sink conditions were maintained in the receiver throughout the experiment and 

hence ΔC was approximated to be the drug concentration in the donor compartment.  

Enhancement ratios were also computed to evaluate the relative efficiency of different MNs 

on the AMLO skin permeation enhancement. The enhancement ratios were calculated as 

follows: 

𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎 𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅 =  
Cumulative amount or Flux obtained after MN application
Cumulative amount or Flux obtained from passive studies

 

                     

AMLO content in skin 

After the completion of the permeation studies, skin samples were studied for drug 

disposition.  The skin tissue exposed to the donor solution was cut with a scalpel and washed 

with filtered water and blotted with a paper towel in order to remove the drug which had 

adhered to the surface.  Then skin was minced with a scalpel, and placed in a pre-weighed 

vial.   The drug was extracted from the skin by equilibrating with 5 mL of acetonitrile at 32°C 

in an orbital shaker.  The solutions were then analyzed by HPLC to determine the AMLO 

content. 

 

CKJ
dt

dM
A ps ∆==






1
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Scaling analyses 

Dimensionless correlations between the amount of AMLO permeated (Ct/Cs) and other 

variables such as the thickness (h/L) and the surface area (Sa/L2) of the skin were made in 

order to gain insights into the overall phenomenon of AMLO transdermal permeation 

enhancement by MN application.  The scaling analyses were carried out based on the 

principles of the Buckingham π theorem where it is defined that the dimensionless 

concentration of a drug, which permeates through skin, can be defined in terms of key non-

dimensional parameters (e.g., MN lengths) using the procedures described in previous papers 

[21, 22].   

Eq.1 describes the relationship of all the model parameters used for such analyses (Table 2). 

𝐶𝐶𝑡𝑡
𝐶𝐶𝑠𝑠

= 𝐾𝐾 �𝑆𝑆𝑎𝑎𝐿𝐿
4𝐾𝐾𝑒𝑒

𝑉𝑉𝑑𝑑ℎ𝐷𝐷
�
𝑛𝑛

   (1) 

Where, ‘K’ is a dimensionless constant and ‘n’ is an unknown power; Ct and Cs are the 

amount of AMLO permeated at a given time t (48 h) and the amount of drug loaded in the 

donor compartment for diffusion (surface concentration on skin); Sa is the surface area of 

skin available for diffusion; L is the length of microneedles; Ke and Vd are the first order 

elimination constant and the volume of receptor fluid; ‘h’ is the thickness of skin and D is the 

diffusion coefficient of AMLO in skin. 

Using Eq.1, the correlations between the dimensionless AMLO concentration (Ct/Cs) against 

the dimensionless parameters of the study (h/L and Sa/L2) have been established considering 

that all other variables remain unchanged. 

 

Statistical analysis of the data 

Results of the experimental data were subjected to statistical analysis by one way ANOVA 

(using Fischer’s LSD post hoc test) using SYSTAT 13 software (Systat Software Inc., San 

Jose, USA).  Results with a p value of less than 0.05 were considered to have statistically 
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significant variance.  Mean of replicate measurements (n = 3) with corresponding standard 

deviation (SD) was used to represent the data and to plot the graphs. 
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RESULTS AND DISCUSSION 

Fabrication and characterization of PM 

Polymeric MN arrays (PM) were fabricated using (PEEK)-LT3 (polyether ether ketone) 

using micro-injection moulding technique, with 25 MN on each array (MN density) and the 

array base thickness of 300 µm.  The dimensions of PM, determined using a 3D confocal 

imaging (Fig. 3A) and scanning electron microscopy (SEM) (Fig. 3B), were found to be 556 

± 30 µm in height with a tip radius of 32 ± 8 µm, with a base thickness of 300 µm and MN 

interspacing of approximately 1 mm at the base. 

For better comparison and understanding of the difference in the shape/design between PM 

and ADM devices, 3D confocal images of 0.6 mm ADM were given in Fig. 3C.  Also the 

difference in base thickness among the devices can be clearly observed from Fig. 1. The 

various geometry parameters of both types of MN devices were given in Table 3. 

The dimensions of the PM were found to be consistent and repeatable with good tip shape, 

confirming the complete filling of the PEEK into the MN insert cavity under the maintained 

processing conditions (Table 1) and the technique used is reliable for the bulk manufacture of 

PMs. Compression tests of PM on a steel plate using Bose Electroforce 3100 instrument with 

a 225 N load cell and Wintest® software (Bose, MN, USA) revealed that the PMs were able 

to withstand compression forces of up to 8 N [20].   

Analytical Method 

A rapid and sensitive HPLC-PDA method was developed for the selective quantification of 

AMLO in transdermal permeation studies.  Under the developed LC conditions, AMLO 

eluted at 3.9 min with good peak shape.  Also, the specificity of the method to AMLO was 

demonstrated by the UV spectrum and the peak purity index curves.  The method was 

validated as per ICH guidelines and complied with all the requirements. The method was 
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successfully employed for the quantitative estimation of AMLO in various samples 

throughout the study. 

Solubility Studies 

Solubility studies for AMLO were performed with a view to select appropriate donor vehicle 

for conducting in vitro skin permeation studies.  PG:S and PEG:S combinations at 70:30, 

80:20 and 90:10 %v/v were studied for AMLO solubility.  The solubility data obtained was 

shown in Fig. 4. Solubility of AMLO was relatively higher in PG:S when compared with 

PEG:S combinations (p>0.05) (Fig. 4). The solubility of AMLO increased as the water 

content of the vehicle system increased, in the order 90:10<80:20<70:30 % v/v in both PG:S 

and PEG:S combinations. However, a significant difference was not observed among the 

vehicle combinations (p>0.05). PG:S at 70:30%v/v was selected for the AMLO in vitro skin 

permeation studies.  

Surface visualization and histological examination of skin samples 

In order to visually confirm the ability of disruption of skin layers by MNs, the arrays were 

pressed over the pig ear skin under thumb pressure and held for 1 min and the skin samples 

were stained with safranin (1%w/v).  The skin samples showed clear distinctions in the 

number of the microconduits formed as per the length and density of MNs in ADM and PM 

devices (Fig. 5).  

Histological section images of skin treated with MNs were shown in Fig. 6.  From the 

images, the stratum corneum disruption and the formation of microconduits across skin layers 

was clearly evident.  The average penetration depth (vertical)  (n = 3) of the MNs was found 

to be 180.26 ± 30.39, 400.85 ± 20.83, 478.48 ± 67.72 and 338.20 ± 22.66 µm for ADM (0.6, 

1.2, 1.5 mm) and PM, respectively. The average penetration depth (vertical) was about 25-

35% for ADM and 55-60% for the PM MN lengths (Fig. 6). Even though the length of the 
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MNs differ in ADM, the percentage of MN penetration is almost same, which is an indication 

of uniformity in thumb pressure under which MNs were applied at different times. 

With the ADM devices, as the length of the MNs increased the penetration depth also 

increased. However, the microconduits were found to be wider and deeper with PM when 

compared to ADM of similar lengths i.e. 0.6 mm. These differences in the efficiency of 

creating microconduits in skin layers between the two types of MN devices (ADM and PM) 

may be attributed to the differences in geometry parameters like shape, design and type of 

fabricating material. Regarding the shape/design, PM being conical (3D) in shape, the 

microconduits formed by PM were wider, while that with ADM looks merely like a cut on 

the skin (2D) as the arrays of ADM are low in thickness (2D) (Fig. 3).  Furthermore, owing to 

the sturdy and thick base (when compared to ADM) that supports the solid PM (Fig. 1), the 

effective resistance (because of the viscoelastic nature) of the skin during application of 

arrays may be less for PM, while the ADM might have experienced greater resistance which 

is because of their thin base and array design [23], resulting in a relatively shallow 

penetration with similar MN lengths (0.6 mm ADM). 

In vitro permeation studies  

The comparative in vitro pig ear skin permeation profiles of AMLO without and with MN 

application were shown in Fig. 7.  Various AMLO permeation parameters viz. cumulative 

amount permeated at the end of 48h, steady state flux, lag time, permeability and diffusion 

coefficients without and with microneedle treatment were given in Table 4. 

Significant enhancement in AMLO permeation was observed after MNs application onto the 

skin (p<0.05) when compared to passive permeation studies (Fig. 7). A 2.00, 3.56 and 6.84 

fold increase in the cumulative amount (48 h) of AMLO permeated was observed with 0.6, 

1.2 and 1.5 mm ADM treatments, respectively, when compared to passive permeation 

amount.  A similar trend was observed with other permeation parameters like permeability 
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and diffusion coefficient values (Table 4).  Significant reduction in the lag time was observed 

after application of 1.2 and 1.5 mm ADM when compared to that with passive permeation 

studies (p<0.05).   However, there is no statistically significant difference between passive 

and 0.6mm and 1.2mm ADM treatments in terms of lag time (p>0.05).  

The AMLO flux values were found to be in the order of 1.5mm > 1.2mm > 0.6mm > passive 

with ADM treatments (p<0.05).  A 5.29 fold increase in AMLO flux was observed with the 

1.5 mm when compared to passive studies. It was observed that the enhancement of AMLO 

permeation was only marginal with the application of 0.6 mm ADM when compared to 

passive studies (Fig. 7). This may be due to the fact that the skin disruption/penetration 

caused by 0.6 mm ADM was less as supported by histological section images (Fig. 6).  

 Moreover, the AMLO permeation was significantly higher with 1.5 mm ADM when 

compared to 0.6 and 1.2 mm ADM (p<0.05) even though the density of MNs is low, which is 

may be because of longer needle lengths which intern resulted in deeper skin penetration. 

With the PM application, a 1.63 and 6.11 fold increase in the cumulative amount (48 h) of 

AMLO permeated was observed with PM-1 and PM-3 treatments respectively, when 

compared to passive permeation amounts.  The lag times were found to be significantly lower 

for PM-3 when compared to passive and PM-1 treatments (p<0.05). The AMLO flux values 

were found to be in the order of PM-3 > PM-1 > passive treatments (p<0.05). A 5.23 and 

1.46 fold increase in AMLO flux was observed with the PM-3 and PM-1 respectively, when 

compared to passive studies. A similar trend was observed with other permeation parameters 

like permeability and diffusion coefficient values (Table 4) with both the PM treatments. 

Even though, the skin penetration by PM device (with 0.6mm array) was significantly greater 

when compared to 0.6 mm ADM, the overall permeation enhancement in terms of cumulative 

amount permeated etc. achieved with PM-1 was found to be closer to those of 0.6 mm ADM 

(p>0.05).  This may be because the needle density of 0.6 mm ADM was greater when 
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compared to PM-1 (Table 3), which may have compensated the variation in the extent of skin 

penetration among these MNs, and thus no significant variation in overall permeation 

enhancement was observed among these two MNs (p>0.05).   

In case of the PM, a single application of array didn’t cover the 1.77cm2 surface area of the 

skin and hence in order to maintain the MN density closer to ADM of 0.6mm length the 

arrays were applied three times at different places within a 1.77cm2 skin area (PM-3) as 

shown in Fig. 1.  As the needle density was increased with PM-3, the AMLO transdermal 

permeation increased markedly and was similar to that obtained with 1.5 mm ADM (p>0.05). 

Moreover, it is intriguing to note although the needle density PM-3 (75 MNs) was 

significantly greater when compared to 1.5 mm ADM (31 MNs) the overall AMLO 

permeation enhancement was considerably greater with 1.5 mm ADM with significantly 

shorter lag times (p<0.05), which may be because of deeper (vertical) penetration into skin. 

Even though the depth of the penetration was significantly lower with PM when compared to 

1.5 mm ADM, the comparable permeation enhancement by PM-3 is may be because of 

higher needle density and also wider microconduits formed as evidenced by histological 

section images (Fig. 6). 

The enhancement in AMLO permeation was found to be in the order of 1.5mm ADM ≥ PM-3 

> 1.2mm ADM > 0.6mm ADM ≥PM-1 > Passive.  Even though, no correlation of AMLO 

skin content was observed with different MN treatments, significantly higher amounts of 

AMLO were found to be distributed in skin layers at the end of 48h with MN treated studies 

and is an indication of potential AMLO skin deposition.   

Overall, the transdermal permeation enhancement of AMLO by MN application is a complex 

phenomenon and the permeation enhancement is dependent on the several aspects of the MN 

geometry like the shape/design, length and density etc. 

Scaling analyses 
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Using scaling analyses, correlations were developed for ADM MNs (same type but differing 

in length) between the dimensionless parameters, namely the amount of AMLO permeated 

(Ct/Cs) and skin thickness (h/L) and surface area of skin (Sa/L2) in order to derive a better 

understanding on the effect of specific geometry parameters of MN, like length (L), on 

overall permeation enhancement by MNs of same design (ADM) (Fig. 8 A, B respectively) 

[21, 22].  Eqs. 2 and 3 describe such relationships among the considered parameters within 

the given range.  These correlations were determined for given thickness and surface area of 

skin while the MN length varies (0.6, 1.2 and 1.5 mm). 

𝐶𝐶𝑡𝑡
𝐶𝐶𝑠𝑠

= 5.957𝑥𝑥10−3 �ℎ
𝐿𝐿
�
−1.2206

 for 0.8 ≤ ℎ
𝐿𝐿
 ≤ 2  ---- (2) 

𝐶𝐶𝑡𝑡
𝐶𝐶𝑠𝑠

= 0.112 �𝑆𝑆𝑎𝑎
𝐿𝐿2
�  
−0.6103

  for 78.5 ≤ 𝑆𝑆𝑎𝑎
𝐿𝐿2

 ≤ 491.5 ---- (3) 

Good correlations (R2>0.89) were observed between the dimensionless parameters (Ct/Cs vs 

h/L and Ct/Cs vs Sa/L2) (Fig. 8). These correlations can be used to predict the amount of 

AMLO permeated (Ct/Cs) with high accuracy for other MN lengths in the range of 0.6-1.5 

mm with similar design as ADM. 

CONCLUSION 

Transdermal permeation enhancement of AMLO by MN application and the effects of 

various geometry parameters on the degree of such enhancement was studied in this 

investigation using two types of MN devices (ADM and PM). A significant enhancement in 

the transdermal permeation of AMLO across pig ear skin was observed with application of 

MNs.  It was further noted that the type/shape, density and more importantly, the length of 

MNs (depth of penetration into skin) play a crucial role in the overall permeation 

enhancement of AMLO using this technique.   It may be inferred that the transdermal 

delivery of AMLO in a painless and non-invasive manner may by possible using MN 

applications. However, the observed lag times and transdermal flux values suggest that a still 

higher enhancement in permeation may be required in order to achieve clinically significant 
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levels of the AMLO more rapidly after application of the transdermal system. This 

investigation can form a basis for further studies (in vivo) and for optimization of various MN 

parameters to achieve successful delivery of AMLO via. MN assisted transdermal delivery 

systems and in continuation to this study further development on AMLO containing MNs is 

of good choice. 
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CAPTIONS FOR FIGURES 

Fig. 1: Different MNs used in the study 

Fig. 2: (A) Battenfeld micro-power 15 moulding machine; (B) 3D drawing of the 

microneedle insert 

Fig. 3: (A) 3D confocal image of (a) front view of the PEEK MN array (b) Single MN of 

PEEK (c) line measurement of the PM array; (B) SEM image of (a) MN array of PEEK (b) 

top view of the needle (c) Single MN of PEEK; (C) 3D confocal image of 0.6 mm ADM 

showing its design parameters 

Fig. 4: Solubility Data of AMLO in PG:S and PEG:S Solvent Systems 

Fig. 5: Surface images of stained skin without and with MN treatment 

Fig. 6: Penetration depth calculation of ADM and PM in skin (ToupView® screenshot) 

Fig. 7: Comparative in vitro skin permeation profiles of AMLO from passive and MN 

treatments 

Fig. 8: Scaling relationship of different dimensionless groups for permeation of AMLO - (A) 

Effects of dimensionless length of MNs; (B) Effects of dimensionless surface area for 

diffusion 
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TABLES 

 

Table 1. Micro-injection moulding parameters 

Parameter PEEK 

Melt temperature (°C) 400 

Maximum injection velocity 

(mm/s) 

750 

Clamping force (kN) 50 

Holding pressure (bars) 600 

Mould base temperature (°C) 210 
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Table 2. Model parameters for dimensional scaling analyses of the data 

Parameter Value 

Duration for medication: tm 48 h 

Surface area of skin exposed: Sa 1.77 cm2 

Thickness of stratum corneum: hsc 0.002 cm 

Total Thickness of membrane (distance 

to blood vessel): h 
0.12 cm 

Effective skin thickness: he Variable 

Diffusion coefficient in viable skin: D Variable 

Volume of Fluid in Receptor 

Compartment (distribution): Vd 
14 mL 

Skin surface/Donor concentration: Cs 
Saturated Solution was charged 

as the donor solution 

Microneedle length: L  0.06, 0.12 and 0.15 cm 
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Table 3. Different geometry parameters of MNs used in the study  

Parameter ADM* PM 
 0.6 1.2 1.5 

Length (µm) 600 1200 1500 560 ± 30 
Number of MNs (1.77 cm2) 187 41 31 25 

Shape Flat (2D) Conical (3D) 
Thickness of each MN (µm) 78 (uniform till tip)** 300 (~30 at tip) 
Thickness of array base (µm) 100-200** 300 

Material Medical grade stainless steel 
(SS 316L) 

PEEK LT-3 (polyether 
ether ketone) 

*values are from manufacturer23 
**the width and thickness of the MN and the base varies with length 
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Table 4. Permeation parameters of AMLO without and with MN treatments 

Skin 
treatment 

Permeation Parameters 
Cumulative 

amount permeated 
at 48h (nmoL/cm²) 

Steady state 
flux 

(nmoL/cm2/h) 
Lag Time (h) 

Permeability 
coefficient 

(x10-05) 
(cm/hr) 

Diffusion 
coefficient 

(x10-10)   

(cm2/sec) 

Skin Content 
(µg/g) 

Passive 293.069 ± 28.646 10.03 ± 1.33 19.12 ± 1.06 2.60 ± 0.34 8.68 ± 1.15 1351.55 ± 281.43 

0.6 ADM 586.181 ± 40.822 19.10 ± 2.10 17.33 ± 0.98 4.96 ± 0.54 16.53 ± 1.82 1652.22 ± 246.25 

1.2 ADM 1042.552 ± 174.023 29.96 ± 4.80 13.22 ± 1.03 7.78 ± 1.25 25.93 ± 4.16 1724.24 ± 165.22 

1.5 ADM 2005.307 ± 123.098 53.04 ± 4.43 10.02 ± 0.78 13.77 ± 1.15 45.91 ± 3.83 2197.20 ± 331.71 

PM-1 477.466 ± 64.229 14.65 ± 1.00 16.07 ± 2.18 3.81 ± 0.26 12.68 ± 0.87 1597.32 ± 95.23 

PM-3 1791.853 ± 165.519 52.44 ± 2.77 13.69 ± 1.34 13.62 ± 0.72 45.39 ± 2.40 1880.74 ± 151.62 
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